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Abstract. Typed assembly languages (TAL) and certified assembly program-
ming (CAP) are two techniques for low-level verifications. TAL uses syntactic
types and typing rules for program specification and reasoning, while CAP uses
Hoare-style logic assertions and semantic subsumptions. They are suitable for
different kinds of verification tasks. Previously, programs verified in either one of
them can not interoperate freely with the other, making it hard to integrate them
into a complete system. Moreover, the relationship between TAL and CAP lines
of work has not been discussed extensively.
In this paper, we do so by presenting a translation from a TAL language to a CAP
language. The translation involves an intermediate step of a “semantic” TAL lan-
guage. To better illustrate our key points, all three languages share a same untyped
machine. Thus the shape of the source language is slightly different from the
original TAL’s. Nevertheless, it supports polymorphic code, mutable reference,
existential, and recursive types. The target language is an extension of XCAP, a
recent CAP language, with support of logical recursive specifications and logical
mutable reference, both require minimal changes to XCAP and its meta theory.
Since we proved typing preservation for the translation, there is a clear path to
link and interoperate well-typed programs from traditional certifying compilers
with certified libraries by CAP-like systems.

1 Introduction

Proof-carrying code (PCC) [1] is a general framework that can, in principle, verify
safety properties of arbitrary machine-language programs. Existing PCC systems [2–5],
however, have focused on programs written in type-safe languages [6, 7] or variants of
typed assembly languages (TAL) [8]. Type-based approaches are attractive because they
facilitate automatic generation of the safety proofs (by using certifying compilers) and
provide great support to modularity and higher-order language features. But they also
suffer from several serious limitations. First, types are not expressive enough to specify
sophisticated invariants commonly seen in the verification of low-level system software.
Recent work on logic-based type systems [9–13] have made types more expressive but
they still cannot specify advanced state invariants and assertions [14–16] definable in



a general-purpose predicate logic with inductive definitions [17]. Second, type systems
are too weak to prove advanced properties and program correctness, especially in the
context of concurrent assembly code [15, 18]. Finally, different style languages often
require different type systems, making it hard to reason about interoperability.

An alternative to type-based methods is to use Hoare logic [19, 20]—a widely ap-
plied technique in program verification. Hoare logic supports formal reasoning using
very expressive assertions and inference rules from a general-purpose logic. In the con-
text of foundational proof-carrying code (FPCC) [21, 22], the assertion language is of-
ten unified with the mechanized meta logic (following Gordon [23])—proofs for Hoare
logic consequence relation and Hoare-style program derivations are explicitly written
out in a proof assistant. For example, Touchstone PCC [24] used Hoare-style asser-
tions to express complex program invariants. Appel et al [25, 26] used Hoare-style state
predicates to construct a general semantic model for machine-level programs. Shao et
al [22, 16, 18, 27] recently developed a certified assembly programming (CAP) frame-
work that uses Hoare-style reasoning to verify low-level system libraries and general
multi-threaded assembly programs.

TAL and CAP are suitable for different kinds of verification tasks. Previously, pro-
grams verified in either one of them can not interoperate freely with the other, making it
hard to integrate them into a complete system. Moreover, the relationship between TAL
and CAP lines of work has not been discussed extensively.

In this paper we compare the type-based and logic-based methods by presenting a
type-preserving translation from a TAL language to a CAP langyage. The translation
involves an intermediate step of a “semantic” TAL language. Our translation supports
polymorphic code, mutable reference, existential, and recursive types. The target lan-
guage is an extension of XCAP [27], a recent CAP language which supports embed-
ded code pointers and impredicative polymorphisms. We added to XCAP the support
of logical recursive specifications and logical mutable reference, both require minimal
changes to XCAP and its meta theory, and call our new language XCAP+. Since we
proved typing preservation for the translation from TAL to XCAP+, there is a clear
path to link and interoperate well-typed programs from traditional certifying compilers
with certified libraries by CAP-like systems.

We present the paper in the order of source language TAL (Sec 2), intermediate
language STAL (Sec 3), and target language XCAP+ (Sec 4). Then we present the
complete translation and the type-preservation properties (Sec 5). Finally we do some
brief discussion and conclude (Sec 6).

2 Source Language: TAL

In this section we present a typed assembly language (TAL). To make the comparison
easier, we build all languages in this paper on a common target machine. Throughout
the paper, we also assume an underlying mechanized meta logic like

(Prop) p,q ::= True | False | ¬p | p∧q | p∨q | p⊃ q | ∀x :A. p | ∃x :A. p | . . .



(Program) P ::= (C,S,I)
(State) S ::= (H,R)
(Heap) H ::= {l ; w}∗

(RegFile) R ::= {r ; w}∗
(Register) r ::= {rk}k∈{0...31}

(Word,Labels) w,f,l ::= i (nat nums)

(CodeHeap) C ::= {f ; I}∗
(InstrSeq) I ::= c;I | jd f | jmp r

(Command) c ::= bgti rs, i,f | addi rd ,rs, i
| add rd ,rs,rt
| movi rd , i | mov rd ,rs
| ld rd ,rs(i) | st rd(i),rs

Fig. 1. Syntax of target machine TM

if I= then (C,(H,R),I) 7−→
jd f (C,(H,R),C(f)) when f∈dom(C)
jmp r (C,(H,R),C(R(r))) when R(r)∈dom(C)
bgti rs, i,f;I′ (C,(H,R),I′) when R(rs)≤ i; (C,(H,R),C(f)) when R(rs)> i
c;I′ (C,Nextc(H,R),I′)

if c = then Nextc(H,R) =
add rd ,rs,rt (H,R{rd ;R(rs)+R(rt)})
mov rd ,rs (H,R{rd ;R(rs)})
movi rd , i (H,R{rd ; i})
ld rd ,rs(i) (H,R{rd ;H(R(rs)+i)}) when R(rs)+i ∈ dom(H)
st rd(i),rs (H{R(rd)+i;R(rs)},R) when R(rd)+i ∈ dom(H)

Fig. 2. Operational semantics of TM

2.1 Target Machine (TM)

We define the syntax and the operational semantics of the target abstract machine (TM)
in Fig 1. A complete TM program consists of a code heap, a dynamic state component
made up of the register file and data heap, and an instruction sequence. The instruction
set is minimal but extensions are straightforward. To control the complexity of the pa-
per, we ignore the allocation of memory. The register file is made up of 32 registers and
the data heap can potentially be infinite. The operational semantics of this language (see
Fig 2) should pose no surprise. Note that it is illegal to access undefined heap locations,
or jump to a code label that does not exist; under both cases, the execution gets “stuck.”

2.2 Typed Assembly Language (TAL)

The TAL language presented here follows the principle of the original typed assembly
languages [8]. However, due to the usage of an untyped raw machine, the shape of
typing judgments and rules are slightly different.

Fig 3 presents the type definitions in TAL. Machine word is classified as of value
type (τ) including integer, code, tuple, existential package, and recursive data structures.
A code heap specification (Ψ) is a partial environment that maps a code label to a
“precondition” type ([∆].Γ) for its corresponding code block. Here ∆ is a type variable
environment and Γ is a register file type which specifies the type for each register.



Ψ `{[∆].Γ}P (Well-formed Program)

` C :Ψ Ψ ` S : [∆].Γ Ψ `{[∆].Γ}I
Ψ `{[∆].Γ}(C,S,I)

(PROG)

` C :Ψ (Well-formed Code Heap)

Ψ `{Ψ(f)}C(f) ∀f∈dom(Ψ)
` C :Ψ

(CDHP)

(CdHpSpec) Ψ ::= {f ; [∆].Γ}∗

(RfileTy) Γ ::= {r ; τ}∗

(TyVarEnv) ∆ ::= · | α,∆

(WordTy) τ ::= α | int | code[∆].Γ
| 〈τ1, . . . ,τn〉 | ∃α.τ
| µα.τ

(DtHpSpec) Φ ::= {l ; τ}∗

Ψ `{[∆].Γ}I (Well-formed Instruction Sequence)

`{Γ}c{Γ′} Ψ `{[∆].Γ′}I
c∈{add,mov,movi, ld,st}

Ψ `{[∆].Γ}c;I
(SEQ)

f∈dom(Ψ)
Ψ `{[∆].Γ{rd ;code Ψ(f)}}I

Ψ `{[∆].Γ}movi rd ,f;I
(MOVF)

f∈dom(Ψ) ` [∆].Γ≤Ψ(f)
Ψ `{[∆].Γ} jd f

(JD)
Γ(r)=code[∆′].Γ′ ` [∆].Γ≤ [∆′].Γ′

Ψ `{[∆].Γ} jmp r
(JMP)

f∈dom(Ψ) Γ(rs)= int
Ψ `{[∆].Γ}I ` [∆].Γ≤Ψ(f)

Ψ `{[∆].Γ}bgti rs, i,f;I
(BGTI)

` [∆].Γ≤ [∆′].Γ′ Ψ `{[∆′].Γ′}I
Ψ `{[∆].Γ}I (WEAKEN)

Fig. 3. Type definitions and top-level static semantics of TAL

Similarily, a data heap specification (Φ) is a partial environment that maps from a data
label to a value type for its corresponding heap cell.

The top-level semantic rules of TAL are also presented in Fig 3. A program is well-
formed if each of its components is. For a code heap to be well-formed, each block in it
must be well-formed. The intuition behind well-formed instruction sequence judgment
is that if the state satisfies the precondition [∆].Γ, then executing I is safe with respect
to Ψ. Weakening is allowed to turn one precondition into another provided that they
satisfy the subtyping relation. A instruction sequence c;I is safe if one can find another
register file type which serves as both the post-condition of c and the precondition of I.
A direct jump is safe if the current precondition implies the precondition of the target
code block specified in Ψ. An indirect jump is safe when the target register is of a code
type with a weaker precondition. Constant code labels can be moved into registers.

The remaining typing rules for TAL is presented in Fig 4. Valid subtypings include
reducing the registers, instantiation of code type, packing, unpacking, folding, and un-
folding. For simple instructions, their pre- and post-conditions do not involve change
of type variable environment, thus we only specify the register file types before and
after their execution. The well-formed state rule instantiates the current type variable
environment and requires a current data heap specification to be supplied and checked.
Other judgments and rules are standard and straight-forward.



` [∆].Γ≤ [∆′].Γ′ (Subtyping)

∆ ⊇ ∆′ ∀ r ∈ dom(Γ′)
Γ(r)=Γ′(r) ∆′ ` Γ′(r)

` [∆].Γ≤ [∆′].Γ′
(SUBT)

Γ(r)=code[α,∆′].Γ′ ∆ ` τ′

` [∆].Γ≤ [∆].Γ{r :code[∆′].Γ′[τ′/α]} (TAPP)

Γ(r)=τ[τ′/α] ∆ ` τ′

` [∆].Γ≤ [∆].Γ{r :∃α.τ} (PACK)
Γ(r)=∃α.τ

` [∆].Γ≤ [α,∆].Γ{r :τ} (UNPACK)

Γ(r)=τ[µα.τ/α]
` [∆].Γ≤ [∆].Γ{r :µα.τ} (FOLD)

Γ(r)=µα.τ
` [∆].Γ≤ [∆].Γ{r :τ[µα.τ/α]} (UNFOLD)

`{Γ}c{Γ′} (Well-formed Instruction)

Γ(rs) = int

`{Γ}addi rd ,rs, i{Γ{rd : int}} (ADDI)
Γ(rs) = Γ(rt) = int

`{Γ}add rd ,rs,rt {Γ{rd : int}} (ADD)

`{Γ}movi rd ,w{Γ{rd : int}} (MOVI)
Γ(rs) = τ

`{Γ}mov rd ,rs {Γ{rd :τ}} (MOV)

Γ(rs)=〈τ1, . . . ,τw+1, . . . ,τn〉
`{Γ} ld rd ,rs(w){Γ{rd :τw+1}}

(LD)
Γ(rd)=〈τ1, . . . ,τw+1, . . . ,τn〉 Γ(rs)=τw+1

`{Γ}st rd(w),rs {Γ} (ST)

∆ ` τ Ψ ` S : [∆].Γ Ψ `H :Φ Ψ;Φ ` R :Γ Ψ;Φ ` w :τ

(Well-formed Type, State, Heap, Register file, and Word)

FTV (τ)⊆∆
∆ ` τ

(TYPE)
· ` τi ∀ i Ψ `H :Φ Ψ;Φ ` R :Γ[τ1, . . . ,τn/α1, . . . ,αn]

Ψ ` (H,R) : [α1, . . . ,αn].Γ
(STATE)

Ψ;Φ `H(l) :Φ(l) ∀ l∈dom(Φ)
Ψ `H :Φ

(HEAP)
Ψ;Φ ` R(r) :Γ(r) ∀ r∈dom(Γ)

Ψ;Φ ` R :Γ
(RFILE)

Ψ;Φ ` w : int
(INT)

f∈dom(Ψ)
Ψ;Φ ` f :code Ψ(f)

(CODE)
· ` τ′ Ψ;Φ ` f :code[α,∆].Γ

Ψ;Φ ` f :code[∆].Γ[τ′/α]
(POLY)

Φ(l+i−1)=τi ∀ i
Ψ;Φ ` l :〈τ1, . . . ,τn〉

(TUP)
· ` τ′ Ψ;Φ ` w :τ[τ′/α]

Ψ;Φ ` w :∃α.τ
(EXT)

Ψ;Φ ` w :τ[µα.τ/α]
Ψ;Φ ` w :µα.τ

(REC)

Fig. 4. Static semantics of TAL (continued)

The soundness theorem guarantees that given a well-formed program, the machine
will never get stuck. It is proved following the syntactic approach of proving type sound-
ness [28]. We also list a few key lemmas below.

Theorem 1 (TAL Soundness). If Ψ `{[∆].Γ}P, then for all natural number n, there
exists a program P′ such that P 7−→n P′.



Lemma 1 (State Weakening).
If Ψ ` S : [∆].Γ and ` [∆].Γ≤ [∆′].Γ′ then Ψ ` S : [∆′].Γ′.

Lemma 2 (Instruction Typing).
If Ψ ` S : [∆].Γ and ` {Γ}c{Γ′} then Ψ ` Nextc(S) : [∆].Γ′.

3 A “Semantic” TAL Language

Instead of doing translation from TAL to CAP directly, we create a new “Semantic”
TAL language (STAL) to serve as an intermediate step between them. Let us revisit the
static semantics of TAL in Figure 4 and the lemmas used in TAL soundness proof.

First look at the set of subtyping rules between preconditions (` [∆].Γ≤ [∆′].Γ′).
If we also look at the State Weakening lemma (Lemma 1) in TAL soundness proof,
it is easy to see that all of those syntactic rules are just used for the meta implication
between the two state typings in the soundness proof. Given a mechanized meta logic,
we can replace these rules with a single one,

Ψ ` S : [∆].Γ ⊃ Ψ ` S : [∆′].Γ′ ∀ S,Ψ
` [∆].Γ≤ [∆′].Γ′

(SUBT)

which explicitly requests the meta implications between two state typing. By doing so,
not only did we remove the fixed syntactic subtyping rules from TAL, but the State
Weakening lemma is no longer part of the soundness proof. More importantly, the
subtyping between preconditions is no longer limited to the built-in rules. Any valid
implication relation between state typing is allowed. This is much more flexible and
powerful.

Now let us look at the set of instruction typing rules (` {Γ}c{Γ′}). Also look at
the Instruction Typing lemma (Lemma 2) in TAL soundness proof. Again all these
syntactic rules are just used for the meta implication between two state typings in the
soundness proof. (The difference this time is that the two states are now different and
are states before and after the execution of an instruction.) Applying our trick again, we
can replace these rules with a single one,

Ψ ` S : [∆].Γ ⊃ Ψ ` Nextc(S) : [∆].Γ′ ∀ S,Ψ
` {Γ}c{Γ′} (INSTR).

We also successfully removed the fixed syntactic instruction typing rules as well as he
Instruction Typing lemma from TAL. The new form of instruction typing is much more
flexible and powerful.

Of course, in composing the actual meta proof supplied to the new SUBT and IN-
STR rules, it is most likely that those disappeared lemmas will still be used. Neverthless,
making them separated from the type language and its meta theory is important because
it reduces the size of the type language, as well as allows more flexible reasoning. By
introducing meta implication into TAL, we made one step forward so now there is a
mixture of syntactic types and logic proofs.



We call this version of TAL a semantic TAL (STAL). STAL and TAL share the
exactly same syntax and top-level static semantics, as well as the same state and value
typing rules (The remaining of Figure 4). While STAL has much more reasoning power
than TAL do, the soundness of STAL are simpler than TAL’s. Nevertheless, instead
of merely supplying type signatures to their code, now the programmers have to also
supply actual meta logic proof.

As an intermediate step from TAL toward CAP, STAL only upgrades TAL’s ex-
pressiveness by using general logic implications in the subtyping and instruction typing
rules. STAL program specifications are still fullly syntactic types and thus are not as
expressive as general logic predicate.

It is obvious to obtain the following TAL to STAL typing translation theorm. (we
ignore the cases of those judgments where TAL and STAL share the exactly same rules.)

Theorem 2 (Typing Preservations from TAL to STAL).

1. if `TAL [∆].Γ≤ [∆′].Γ′ then `STAL [∆].Γ≤ [∆′].Γ′;
2. if `TAL {Γ}c{Γ′} then `STAL {Γ}c{Γ′}.

4 Target Language: XCAP+

4.1 XCAP: A Certified Assembly Programming Language

Certified assembly programming (CAP) [15] is logic-based verification framework for
assembly code. Recently, XCAP [27], a language following CAP, was proposed to solve
the problem of modular support of higher-order features like embedded code pointers
(ECPs) and impredicative polymorphisms. This paper uses XCAP as the base language
for the target of translation from TAL.

Figure 5 defines the core of the XCAP specification language called extended log-
ical propositions (PropX). PropX can be viewed as a lifted version of the meta logic
propositions, extended with an cptr constant to specify ECPs. PropX can be used to
construct assertions on machine states. For example, to specify that r1, r2, and r3 store
the same value, we write λ(H,R).〈R(r1)=R(r2)∧R(r2)=R(r3)〉. We also define
code heap specifications and assertion subsumption (⇒) accordingly.

To establish the validity of extended propositions, XCAP defines a set of inductively
defined validity rules in Figure 6. The judgment, Γ `Ψ P, means that P is valid under
environment Γ (a set of extended propositions) and code heap specification Ψ. The
introduction rules of lifted proposition 〈p〉 and ECP proposition cptr(f,a) require that
p and Ψ(f)=a be valid in the meta logic. The interpretation of extended propositions
is defined as their validity under the empty environment: [[P ]]Ψ , · `Ψ P.

We present the XCAP inference rules also in Figure 5. Comparing to TAL’s top-level
static semantics, we can see that they share similar structures. This is convenient for the
later translation. Due to space constraint, we only explain the rules that are different
from TAL.

In the top level rule, the current state is checked upon the interpretation of current
assertion. For simple instructions, we require the pre- and post-condition satisfy the



Ψ `{a}P (Well-formed Program)

` C :Ψ ([[a ]]Ψ S) Ψ `{a}I
Ψ `{a}(C,S,I)

(PROG)

` C :Ψ (Well-formed Code Heap)

Ψ `{Ψ(f)}C(f) ∀f∈dom(Ψ)
` C :Ψ

(CDHP)

Ψ `{a}I (Well-formed Instruction Sequence)

(CdH pSpec) Ψ ::= {f; a}∗

(Assertion) a ∈ State→ PropX

(PropX) P,Q ::= 〈p〉 | cptr(f,a)
| P∧∧Q | P∨∨Q | P→→Q

| ∀∀x :A.P | ∃∃x :A.P

| ∃∃α :A→PropX.P

[[a ]]Ψ , λS. [[a S ]]Ψ
a⇒a′ , ∀Ψ,S. [[a ]]Ψ S⊃ [[a′ ]]Ψ S

a⇒c a′ , ∀Ψ,S. [[a ]]Ψ S⊃ [[a′ ]]Ψ Nextc(S)

a⇒c a′ Ψ `{a′}I
c∈{add,mov,movi, ld,st}

Ψ `{a}c;I
(SEQ)

(λS.cptr(f,Ψ(f))∧∧a S)⇒ a′

f∈dom(Ψ) Ψ `{a′}I
Ψ `{a}I (ECP)

a⇒Ψ(f) f∈dom(Ψ)
Ψ `{a} jd f

(JD)
a⇒ (λ(H,R).a′ (H,R) ∧∧ cptr(R(r),a′))

Ψ `{a} jmp r
(JMP)

(λ(H,R).〈R(rs)≤ i〉 ∧∧ a (H,R))⇒ a′ Ψ `{a′}I
(λ(H,R).〈R(rs)> i〉 ∧∧ a (H,R))⇒Ψ(f) f∈ dom(Ψ)

Ψ `{a}bgti rs, i,f;I
(BGTI)

Fig. 5. Assertion language and inference rules for XCAP

Γ `Ψ P (Validity of Extended Propositions) (The following omits the Ψ in Γ `Ψ P.)

(env) Γ := · | Γ,P
P ∈ Γ
Γ `P (ENV)

p
Γ `〈p〉 (〈〉-I) Γ `〈p〉 p⊃ (Γ `Q)

Γ `Q (〈〉-E)

Ψ(f)=a

Γ `cptr(f,a)
(CP-I)

Γ `cptr(f,a) (Ψ(f)=a)⊃(Γ `Q)
Γ `Q (CP-E)

Γ `P Γ `Q
Γ `P∧∧Q (∧∧-I)

Γ `P∧∧Q
Γ `P (∧∧-E1)

Γ `P∧∧Q
Γ `Q (∧∧-E2) Γ `P

Γ `P∨∨Q (∨∨-I1) Γ `Q
Γ `P∨∨Q (∨∨-I2)

Γ `P∨∨Q Γ,P `R Γ,Q `R
Γ `R (∨∨-E)

Γ,P `Q
Γ `P→→Q

(→→-I)
Γ `P→→Q Γ `P

Γ `Q (→→-E)

Γ `P[B/x] ∀ B :A
Γ `∀∀x :A.P

(∀∀-I1)
Γ `∀∀x :A.P B :A

Γ `P[B/x]
(∀∀-E1)

B :A Γ `P[B/x]
Γ `∃∃x :A.P

(∃∃-I1)

Γ `∃∃x :A.P Γ,P[B/x] `Q ∀ B :A
Γ `Q (∃∃-E1)

a :A→PropX Γ `P[a/α]
Γ `∃∃α :A→PropX.P

(∃∃-I2)

Fig. 6. Validity rules for extended propositions (PropX)



weakest precondition relation. Direct jump is safe as long as the target code’s precon-
dition is weaker than the current one. For indirect jump, the current precondition has to
guarantee that the target address is a well-formed code label with a weaker precondi-
tion. The ECP rule allows one to introduce new ECP propositions about any labels in
the code heap specification into the new assertion.

Consistency of PropX interpretation, “[[〈False〉 ]]Ψ is not provable,” is merely a
corollary of the following theorem.

Theorem 3 (Soundness of PropX Interpretation).

1. If [[〈p〉 ]]Ψ then p;
2. if [[cptr(f,a) ]]Ψ then Ψ(f) = a;
3. if [[P∧∧Q ]]Ψ then [[P ]]Ψ and [[Q ]]Ψ;
4. if [[P∨∨Q ]]Ψ then either [[P ]]Ψ or [[Q ]]Ψ;
5. if [[P→→Q ]]Ψ and [[P ]]Ψ then [[Q ]]Ψ;
6. if [[∀∀x :A.P ]]Ψ and B :A then [[P[B/x] ]]Ψ;
7. if [[∃∃x :A.P ]]Ψ then there exists B :A such that [[P[B/x] ]]Ψ;
8. if [[∃∃α :A→PropX.P ]]Ψ then there exists a :A→PropX such that [[P[a/α] ]]Ψ.

The soundness of XCAP is also proved in the similar way as for TAL.

Theorem 4 (XCAP Soundness). If Ψ `{a}P, then for any natural number n, there
exists a program P′ such that P 7−→n P′.

In the following sections, we present two extensions to XCAP. These extensions
only change the assertion language and do not alter the structure of XCAP. As a result,
soundness and many other meta properties of XCAP easily hold. Our extensions, in-
cluding the validity soundness and XCAP soundness theorems, have been mechanized
in Coq Proof Assistant [17]. Our implementation is available at [29].

4.2 Supporting Logical Recursive Specifications

Recursive specifications are very useful in describing complex invariants. Simple recur-
sive data structures such as link-list are already supported by XCAP. However, for the
recursive types (µα.τ) found in TAL, their counterpart in logic, “recursive predicates”,
can not be easily defined in XCAP. We add a piece of syntax to PropX to support
recursive predicates and use syntactic methods to establish their validities.

We define the recursive predicate constructor as below.

(PropX) P,Q ::= . . . | (µµ α :A→PropX.λx :A.P B)

To understand the formation of recursive predicate, let us start from the innermost
proposition P. λx :A.P is a predicate of type A →PropX . So µµα : A →PropX .λx :A.P
is meant to be a recursive predicate of type A →PropX , which corresponds to recur-
sive types found in type systems. Since the basic unit of definition is extended propo-
sition instead of extended predicate, we apply it with a term B of type A, and make



(µµ α :A→PropX.λx :A.P B) the basic shape of recursive predicates formula. When us-
ing recursive predicates formulas, we often use its predicate form, and use the notation
µµα :A→ PropX .λx :A.P to represent predicate λy :A.(µµ α :A→PropX.λx :A.P y).

To establish validity of recursive predicate formulas, we add the following rule to
the validity rules in Figure 6. It is essentially a fold rule for recursive types.

B :A Γ ` P[B/x][µµα :A→ PropX .λx :A.P/α]
Γ ` (µµ α :A→PropX.λx :A.P B)

(µ-I)

We extend PropX interpretation soundness (Theorem 3) with the following case:

If [[ (µµ α :A→PropX .λx :A.P B) ]]Ψ then [[P[B/x][µµα :A→ PropX .λx :A.P/α] ]]Ψ.

4.3 Supporting Logical mutable reference

Weak update (also termed as “mutable reference” or “general references”) is a com-
monly used memory mutation model. Examples of weak update include ML reference
cells (int ref) and managed data pointers (int gc*) in .NET common type system. In
the weak update model, each memory cell’s values must satisfy a certain fixed value
type. The tuple type in TAL (such as the one to be shown in next section) is also a weak
update reference cell types.

Unfournately, weak update is not well-supported by CAP and other Hoare-logic-
based PCC systems. The problem is due to the lack of a global data heap invariant
that local assertions about heap cells can be checked upon. Existing Hoare-logic-based
PCC systems either avoid supporting weak update [24, 16], limit the assertions (for
reference cells) to types only [30], or resort to heavyweight techniques that require the
construction of complex semantic models [26, 31]. In this section we present a weak
update extension of the XCAP using the similar syntactic technique for ECPs.

We add a reference cell proposition ref(l,t) to the extended propositions. It asso-
ciates word type t (a value predicate) with data label l.

(PropX) P,Q ::= . . . | ref(l,t)
(WordTy) t ∈ Word→ PropX

We can use the following macro to describe a record of n cells.

record(l,t1, . . . ,tn) , ref(l,t1)∧∧ . . . ∧∧ ref(l+n−1,tn)

To testify the validity of reference cell propositions, in the interpretation [[P ]]Ψ,Φ
we need an additional “data heap specification” parameter Φ which, similar to the code
heap specification Ψ, is a partial mapping from data labels to word types.

(DtHpSpec) Φ ::= {l ; t}∗

To establish validity of ref(l,t), data label l and word type t need to be in Φ.

Φ(l)=t

Γ `Ψ,Φ ref(l,t)
(RF-I)

Γ `Ψ,Φ ref(l,t) (Φ(l)=t)⊃(Γ `Q)
Γ `Ψ,Φ Q

(RF-E)



Validity rules of other cases remain unchanged other than taking an extra Φ argument.
Validity soundness of those cases also holds, with the following additional case.

If [[ ref(l,t) ]]Ψ,Φ then Φ(l) = t;

Different from code heap, the data heap is dynamic. Its specification can not be ob-
tained statically. Instead, we need to find it out in each execution steps. So the assertion
interpretation is changed to:

[[a ]]Ψ , λ(H,R).∃Φ,Hs,Hw.H=Hs]Hw∧ [[a (Hs,R) ]]Ψ,Φ∧DH Ψ Φ Hw

There should exist a data heap specification Φ describing the weak update part of cur-
rent data heap. Other than checking validity of (a (H,R)) using Ψ and Φ, we also needs
to checking validity of Φ.

For a data heap specification Φ to be valid, each reference cell must contains value
that matches its word type.

DH Ψ Φ H , ∀l∈dom(Φ)=dom(H). [[Φ(l) H(l) ]]Ψ,Φ

Based on the weak update memory model defined above, we can derived many
useful “macro” inference rules below. These rules can help guide the proof process by
the programmer. (insens(a,r) asserts predicate is insensitive to register r, i.e., does not
talk about register r. Its definition is omitted here.)

Ψ `{(λ(H,R).a(H,R)∧∧t R(rd))}I insens(a,rd)
Ψ `{(λ(H,R).a(H,R)∧∧ ref(R(rs)+w,t))} ld rd ,rs(w);I

(W-LD)

Ψ `{a}I
Ψ `{(λ(H,R).a(H,R)∧∧ ref(R(rd)+w,t)∧∧t R(rs))}st rd(w),rs;I

(W-ST)

To avoid confusion, we call the XCAP language plus the logical recursive specifi-
cation and logical mutable reference extension as the XCAP+ language, which serves
as the target language of the translation.

Example Below is a “mini object”, using the recursive predicates and weak update
extensions presented in previous sections.

classs c {

void f (c x) { x.f(x) }

}

c , µµ α :Word →PropX .λx :Word. ref(x, λy :Word.cptr(y, λ(H,R).(α R(r1))))

The above example may looks similar to what one would normally write in a syn-
tactic type system. However, given the ability to write general logic predicate in the
sepcifications, it is possible to compose very interesting data structures and properties.
Below is an example: a record pointer l which points to an even number, a data pointer
to a reference cell storing an odd number, and a code pointer which, among other things,
expects register r1 to be an unaliased pointer to a prime number. (7→ and ∗ are separa-
tion logic connectives which can be build in XCAP using shallow embedding.)

record(l, even, λw. ref(w,odd), λw.cptr(w, λ(H,R).(∃∃w.R(r1) 7→w∧prime w)∗ . . .))



Translation from TAL WordTy to XCAP+ WordTy

pintq , λw.True

pcode[∆].Γq , λw.codeptr(w,p[∆].Γq)

p〈τ1, . . . ,τn〉q , λw. record(w,pτ1q, . . . ,pτnq)

p∃α.τq , λw.∃∃α :Word →PropX .pτq
pµα.τq , λw.(µµ α :Word →PropX .λx :Word.(pτq x) w)

Translation from TAL Precondition to XCAP+ Assertion

p[α1, . . . ,αm].{r1 ;τ1, . . . ,rn ;τn}q
, λ(H,R).∃∃α1, . . . ,αm : Word →PropX .(pτ1q R(r1))∧∧ . . . ∧∧(pτnq R(rn))

Translation from TAL CdHpSpec to XCAP+ CdHpSpec

p{l1 ; [∆1].Γ1, . . . ,ln ; [∆n].Γn}q , {l1 ;p[∆1].Γ1q, . . . ,ln ;p[∆n].Γnq}

Translation from TAL DtHpSpec to XCAP+ DtHpSpec

p{l1 ;τ1, . . . ,ln ;τn}q , {l1 ;pτ1q, . . . ,ln ;pτnq}

Fig. 7. Type translations from TAL/STAL to XCAP+

5 A Translation from TAL/STAL to XCAP+

We first give a translation from TAL/STAL types to XCAP+ assertions. We then show
the type-preserving property of the STAL to XCAP+ translation. Finally we do some
brief discussion of the translation.

5.1 Type Translations from TAL/STAL to XCAP+

We present the type translations from TAL to XCAP+ in Figure 7. Various p·q translate
TAL types into XCAP+ assertions and specifications.

In the word type translation, integer type becomes a tautology as any machine word
can be treated as an integer. Code type is translated into ECP formulas. Tuple types in
TAL is translated into record type in XCAP+. Existential types and recursive types in
TAL are also translated into their XCAP+ counterparts.

The translation of a TAL precondition, which is a type variable environment plus
a register file type, is an XCAP+ assertions. The type variables in the environment
are now existentially quantified over XCAP+ word types at the outmost of the target
assertion. The register file typing corresponds to a bunch of conjunction of register
value checking.

The translations of TAL code and data heap specifications are carried out by sim-
ply translating each element’s type in them into XCAP+ assertions or word types, and
preserving the partial mapping.



5.2 Typing Preservations from TAL/STAL to XCAP+

An important property of the previous type translations is whether they preserve the
typing, i.e., whether well-formed TAL/STAL entities are still well-formed in XCAP+
after the translation. As the following typing preservation lemma show, all STAL typing
derivations gets preserved in XCAP+ after the translations.

Theorem 5 (Typing Preservations from STAL to XCAP+).

1. If Ψ `STAL {[∆].Γ}P then pΨq `XCAP+ {p[∆].Γq}P;
2. if `STAL C :Ψ then `XCAP+ C :pΨq;
3. if Ψ `STAL {[∆].Γ}I then pΨq `XCAP+ {p[∆].Γq}I;
4. if Ψ `STAL S : [∆].Γ then [[p[∆].Γq ]]pΨq S;
5. if Ψ `STAL H :Φ then DH pΨq pΦq H;
6. if Ψ;Φ `STAL R :Γ then [[p[].Γq (H,R) ]]pΨq,pΦq;
7. if Ψ;Φ `STAL w :τ then [[pτq w ]]pΨq,pΦq;
8. if `STAL [∆].Γ≤ [∆′].Γ′ then p[∆].Γq⇒ p[∆′].Γ′q;
9. if `STAL {Γ}c{Γ′} then p[∆].ΓqΨ ⇒c p[∆].Γ′q.

Proof. We show selected cases for (3). By induction over the structure of Ψ `TAL {[∆].Γ}I.

case WEAKEN.
` [∆].Γ≤ [∆′].Γ′ Ψ `{[∆′].Γ′}I

Ψ `{[∆].Γ}I
By induction hypothesis it follows that pΨq `XCAP+ {p[∆′].Γ′q}I. The following weak-

ening lemma easily holds for XCAP+: “if Ψ `{a′}I and a⇒ a′ then Ψ `{a}I”. By (8)
it follows that p[∆].Γq⇒ p[∆′].Γ′q. Thus it follows that pΨq `XCAP+ {p[∆].Γq}I.

case SEQ.
Ψ `{Γ}c{Γ′} Ψ `{[∆].Γ′}I c∈{add,mov,movi, ld,st}

Ψ `{[∆].Γ}c;I
By induction hypothesis it follows that pΨq `XCAP+ {p[∆].Γ′q}I. By (9) it follows

that p[∆].ΓqΨ ⇒c p[∆].Γ′q. By rule SEQ it follows that pΨq `XCAP+ {p[∆].Γq}c;I.

case JD.
f∈dom(Ψ) ` [∆].Γ≤Ψ(f)

Ψ `{[∆].Γ} jd f

By (8) it follows that p[∆].Γq⇒ pΨ(f)q, and then p[∆].Γq⇒ pΨq(f). By rule JD
it follows that pΨq `XCAP+ {p[∆].Γq}jd f.

case JMP.
Γ(r)=code[∆′].Γ′ ` [∆].Γ≤ [∆′].Γ′

Ψ `{[∆].Γ} jmp r

By translation it follows that p[∆].Γq⇒ λ(H,R).cptr(R(r),p[∆′].Γ′q). By (8) it fol-
lows that p[∆].Γq⇒ p[∆′].Γ′q. By rule JMP it follows that pΨq `XCAP+ {p[∆].Γq}jmp r.

case MOVF.
f∈dom(Ψ) Ψ `{[∆].Γ{rd ;code Ψ(f)}}I

Ψ `{[∆].Γ}movi rd ,f;I
By induction hypothesis it follows that pΨq `XCAP+ {p[∆].Γ{rd ;code Ψ(f)}q}I.

By rule ECP and SEQ it follows that pΨq `XCAP+ {p[∆].Γq}movi rd ,f;I. ¥



5.3 Discussion

We discussed the relationship between TAL and CAP by showing a translation from
TAL to XCAP+. However, this work is by no means limited to the translation itself.

For example, one can treat the translation as a shallow embeddeding of TAL types
and typing rules in XCAP+, which means there is no need to build meta theory for TAL
while still letting the programmer working at TAL level.

One interesting perspective to view the XCAP+ system is from TAL programmer’s
side. When writting programs that will interact with XCAP+ code that involve complex
logical specification not expressible in TAL, so long as the interfaces abstract and hide
that part of “real” logical specification (e.g., by using existential packages), and local
code behavior is simple enough (which is usually the case), the programmers can “pre-
tend” that they are dealing with external TAL code instead of XCAP+ ones, by using
the macros and lemmas defined for the translations. This lowers the requirement on pro-
grammers, as they do not need to learn XCAP+, even if they are dealing with external
XCAP+ code.

6 Related Work and Conclusion

Hamid and Shao [30] introduced an Extensible TAL with Runtime System (XTAL) and
showed its translation to an earlier version of Certified Assembly Programming. Their
main goal is to make sure the translation result can interoperate with the run-time system
written and verified in CAP and thus form a complete FPCC proof. Since CAP does not
have modular support of embedded code pointer and weak update, the translation there
can not be merely from XTAL value types to CAP predicates, but rather needs XTAL
heap types as well. This requires both the source type systems and programs to be fixed.

Chen et al [4] have developed LTAL, a low-level typed assembly language which
is used to compile core ML to FPCC. LTAL is based in turn upon an abstraction layer,
TML (typed machine language) [32], which is an even lower-level intermediate lan-
guage. Complex parts of the semantic proofs, such as the indexed model of recursive
types and stratified model of mutable fields, are hidden in the soundness proof of TML.

Recently, Appel et al [33] proposed a new modal model for expressing recursive and
impredicatively quantified types with mutable reference. Their method uses a Kripke
semantics of the Godel-Lob logic of provability. To support mutable reference, they
include the memory mapping information in the “world”. A full comparison between
the CAP/XCAP line of work and the line of index-based semantic FPCC work will be
an interesting yet non-trivial problem. Here we are only going to list a few of them.

First, CAP is designed to support more than ”type safety” at each program point.
The code heap specification specifies the safety policy in general logic predicates, and
is completely customizable. Meta theory of CAP guarantees that these safety policy
is actually observable. While in indexed FPCC work, the definition of “codeptr” has
always been based on a non-stuckness safety. It remains unclear how to change the
definition of “codeptr” in order to support customizable and observable safety policies
without rebuilding the meta theory.



Second, CAP is designed to support directly verifying assembly programs with
non-trivial properties not expressible in traditional types. Various examples of CAP
programs has been mechanically certified [22, 16, 18, 27]. While the indexed FPCC
work has been focusing on type-preserving compilations from high-level languages,
thus have few application of direct verification at assembly level. The translation pre-
sented in this paper is one effort on connecting CAP/XCAP with high-level languages.

Conclusion We presented a type-preserving translation from a TAL language to a CAP
language. Our translation supports polymorphic code, mutable reference, existential,
and recursive types. To do so, we used an intermediate “semantic” TAL language. We
also extended the XCAP language to support logical recursive specifications and muta-
ble references. Our result will lead to linking and inter-operating well-typed programs
from traditional certifying compilers with certified libraries by CAP-like systems.
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