Foundational Typed Assembly Language with Certified Garbag Collection

Chunxiao Lini Andrew McCreight Zhong Shab Yiyun Cherd Yu Gud
fDepartment of Computer Science and Technology Department of Computer Science
University of Science and Technology of China Yale Unitsersi
Hefei, Anhui 230026, China New Haven, CT 06520-8285, U.S.A
{cxlin3,guoyy @mail.ustc.edu.cn yiyun@ustc.edu.cn {aem,shap@cs.yale.edu

Abstract Some recent research focuses on building type-safe
garbage collectors to remove the collector from the TCB of
Type-directed certifying compilation and typed assembly a TAL system. Wang and Appel [26] and Monnéal.[19]
language (TAL) aim to minimize the trusted computing basepropose to use languages with region-based type systems
of safe languages by directly type-checking low-level ma- and intensional type analysis for type-checking a standard
chine code. However, the safety of TAL still heavily relies o copying garbage collector [14]. But their approaches work
its safe interaction with the underlying garbage collector only with specific GC algorithms and not, for example, with
Based on a recent variant of foundational proof-carrying mark-sweep collectors. The complexity of the type system
code (FPCC), we introduce a general methodology for com- may also increase the TCB of their systems.
bining foundational TAL with a certified garbage collector. GTAL [11] uses a linear type system to encode new types
We demonstrate the practicality of this approach by link- from individual memory words. By building up appropriate
ing a typical TAL with a conservative garbage collector. abstractions, GTAL is capable of type-checking a variety of
This includes proving the safety of the collector, the seund garbage collection mechanisms. Still, the new features in
ness of TAL, and the safe interaction between TAL programsthe type system result in a large TCB. Also, the metatheory
and the garbage collector. Our work is fully mechanized in of GTAL is not mechanized.
the Coq proof assistant and the certified programs can be Foundational proof-carrying cod¢FPCC) [1, 9] can
shipped immediately as FPCC packages. eliminate a large portion of TAL's TCB by mechanically
proving the soundness of its type system, the correctness of
the type checker, and the safety of the associated garbage
1. Introduction collector in a foundational logic. The minimized TCB con-
tains only the soundness of the foundational logic, the cor-
Type-safe languages such as Java and C# provide sever#ectness of its proof checker, and the machine model. The
protection mechanisms for the safe execution of programs.recently proposed separation logic [24] also provides a-pow
The implementation of a safe language, on the other hand erful approach to reasoning about the safety of garbage col-
is a complex system with many components which must belectors, as demonstrated by the work of Birkeetgal. [2].

trusted. These unverified components formttasted com- In this paper we present a new methodology for build-
puting bas€TCB). Techniques such as type-directed certi- ing foundational TAL with a certified garbage collector. We
fying compilation andyped assembly langua@®AL) [21] combine the general framework for mutator-collector verifi

reduce the size of the TCB of these type safe languages. Bycation by McCreighet al.[17] with the open FPCC system
preserving type information during compilation and difgct by Fenget al. [8, 7]. We demonstrate the practicality of
type-checking the assembly code, these techniques removeur approach by linking a TAL with a simple conservative
the compiler from the TCB of a type-safe language. garbage collector [3] in the FPCC setting. This includes
However, the safety of a TAL system still relies on the proving the safety of the collector, the soundness of TAL,
soundness of its type system, the correctness of the typeand the safe interaction between TAL programs and the col-
checker, and the correct implementation of macro instruc- lector. Our paper makes the following new contributions:
tions such amalloc. Because it is difficult to certify the
implementation offree in the presence of memory alias- e As far as we know, the work presented in this pa-
ing, TAL often requires a trusted garbage collector be part per is the first to successfully link a TAL program
of the memory management run-time. with a garbage collector to generate complete FPCC

packages. The type system of our TAL contains non-

trivial features such as mutable references, recursive (£709) P T (CS, H)*
types, and union types, and is capable of typing muta- Egif;)ap) g i %IEIE)]I}
ble recursive data structures. The collector we verified (Heap) H = ’M e
is a conservative variant of a standard stop-the-world (RFile) R = [rew)
mark-sweep collector [14]. (Reg) . = {rk}rE(0-31)
e Although our current paper only shows how to safely EAWdil’rigg ‘i”f - 8 I 111 I g I
link TAL with a certified conservative collector, our -)
(ISeq) il ¢; 1| beqrs, re, £;1

methodology is general, capable of verifying more
complex situations, such as the TAL type system keep-
ing complex information for an accurate collector or (Comm) ¢
even an incremental collector with read/write barriers.

bne rs, ry, £;1

jf|jalf, frec | jTrs

addurg, rs, Ty | addiurg, Ts, W
suburg, rs, Ty | STl T4, TS, 1
slturg, rs, re | andi rg, rs, 7
1w rg, w(rs) | swrs, w(ra)

e We specify the collector using th&tack-based cer-
tified assembly programmin@CAP) framework [8]
extended with separation-logic primitives [24]. Our
specification asserts the machine-level behavior of the Figure 1. Abstract machine syntax
collector and is general enough for various mutator

safetfy ;equiren;lents beﬂgis.tyge safet.y. The Sa]_cetylnductive ConstructiorfCiC) [23], as implemented in the
proot o _Olfr cokebctor, V::c ich is done using SCAP, is Coq proof assistant [5]. CiC is a higher-order predicate
a nontrivial work by itseft. logic extended with inductive definitions. The CiC terms

e The work presented in this paper is fully mechanized in this paper are written using standard logical notatioe. W
within the Coq proof assistant [5]. Thus, the linked let Prop be the universe of all logical propositions afie
code of the mutator and collector can immediately be be the universe of all computational terms.
shipped as an FPCC package with a minimal TCB.

We have also developed various mechanisms in Coqg2-1. Abstract machine

to simplify proof construction.
Figure 1 gives the syntax of our abstract machine. A pro-

In Section 2, we introduce the preliminary knowledge gramP is a triple of a code heaP, a machine stat® and
needed to understand the rest of the paper. In Section 3, instruction sequende A code heayC is a partial map
we present our general methodology for building TAL with ¢ 00 ~ode labels to instruction sequences A machine
certified garbage collection. In Sections 4—6 we apply this giates contains a data hedp and a register fil®. A data
methodology to verify the safo interactio_n of a TAL v_vith_ heapH is a partial map from 4-byte aligned addressde
a conservative coIIector. We discuss the implementation in,, 5.4 valuess, while a register file is a map from registers
Section 7. Finally, we discuss related vyork ond conclude. 5 word values, withr0 always mapped to 0. A command

Note that all lemmas and theorems in this paper are me-.. js 3 non-control-flow instruction such as a register add or
chanically proved in Coq. Their detailed proofs are avail- a heap load. An instruction sequeric®r code block, is a

able on our project web site [16]. series of commands and branches followed by an uncondi-
_) tional jump instruction. For simplicity, we separate theleo
2. Basic setting heapC from the mutable data hedp. Also, we use an in-

struction sequence instead of the standardegister. This

Before presenting our general methodology we give a results in the additional return addreiss; in the jump and
general introduction to the FPCC system that our work uses.link instructionjal £, f,.;. By expanding this instruction
This includes a MIPS32-style [18] abstract machine model to the MIPS instruction paifal £ andj f..t, all our certi-
and thelightweight open framework for certified assembly fied code [16] can directly run on the SPIM simulator [15].
programming[7] (LOCAP), a program logic for reasoning Following [18], we give the small step operational se-
about the interaction of two different verification systems mantics of the abstract machine in Figure 2. We wiite:)
We also present the embedding of SCAP [8] in LOCAP. As for the value bound te in the mapX, andX {z ~ v} for
demonstrated by Fenet al. [8, 7], SCAP is suitable for the map obtained by updating the bindingzofo v in X.
certifying system level libraries, and we use it to construc Note that for alw/sw command, if the source address is not
the safety proof for our garbage collector. in the domain of the heap, the next state is undefined. The

Both the machine model and the program logic are for- next step of a program is undefined if it jumps to an invalid
malized within a mechanized meta-logic, t@alculus of label or the next state of its first command is undefined.

| ifT = | then(C, (H,R),I) — | (CdSpec) 0 = o]
it if £ € dom(C), (C, (H, R), C(%)) (ChSpec) ¥ == {(1,0)}"
jal £, free if £ € dom(C), (Assert) a € ChSpec — State — Prop
(C, (H,R{r31 ~ £,c:}), C(£)) (Interp) [€ CdSpec — Assert
jrrs i(fCRE]E)RG) d°(m(((c)))) a=a & VISalS — o US
y def ’
beqro, o, T | T R(xy) £ R(zo), (C, (L R),T), veu = V). (4,6l (56) e
else iff € dom(C), (C, (H, R), C(£)) (@w = ALS WV CUAaVS
bne rs, ry, £;1' | if R(xs) = R(x:), (C, (H,R),I'),
i else iff € dom(C), (C, (H, R), C(£)) Figure 3. LOCAP specification constructs
Gl if Next.((H,R)) =, (C,S,I')
| ifc= | thenNext.(H, R)= | (Well-formed Program
addu rgq, Is, It (]H[, R{rd 4 R(rs) + R(It)}) VEC: v (a v S) t {a} I
addiurg, s, W Eﬁ, ﬁ?d ~ ﬁgrsg + %}() 5 U (CS,I) (o9
subu rg, rs, Tt , Rira ~ R(rs) — R(re
sTl Ty, Ts, 1 (H, R{rq ~ R(xs)/2}) (Well-formed Code Hegp
slturg, Ts, rv | (H,R{rs~ k}) F{([6])e} C(E) V(£,60) € W
if R(rs) < R(ry), k=1, elsek =0 tl]]>\I}}\Il(%2c~ \I/’() (coHP)
andirg, rs, 7 | (H,R{rs~ R(rs) mod 8}) '
1w re, w(rs) if (R(rs)+w) € dom(H), (Well-formed Instruction Sequerjce
(H, R{ra ~ H(R(rs) +w)})
sv Ts, W(za) if (R(za) +) € dom(H), a= AU, S. 30. (f,Q? EVUA]YS)
(H{R(ra) + v~ R(rs)}, R) Flatit
Figure 2. Abstract machine semantics &= ()‘ng’rﬁ’gﬁf)jﬁ A [6] @ (H,R)
: (9R)
F{a} jrrs
2.2. Program logic a= A\, (H,R). 36.
(£,0) € UA[0] ¥ (H,R{r31 ~> fret}) (981)
The readers may view LOCAP as a simplified OCAP [7], F{a} jal £, fre:
oran extended CAPO [8]. We use it to em_bed Mo yerifica— F{a'}T a= AU,S.a’ ¥ Nextc(S)
tion systems, namely TAL and SCAP. As listed in Figure 3, Tt ol (sEQ

the specification of a code block is given éyThis may be

a state predicate in Hoare logic [12], a register file type in
TAL, or anything else. LOCAP is a simplification of OCAP
because there are only two kinds of code block specifica-

tions, so the language dictionary of OCAP is not needed. A The weakening lemma states that if a code block is well-
code heap specificatioh is a set of £, 0) pairs. Therefore, formed with some’, it is also well-formed with a stronger
a code block may have more than one kind of specification assertiora, and the proof of a well-formed code block can
in ¥. We utilize this property to specify the GC interface for pe lifted from a locall’ to a global¥’.

TAL. The interpretation functiofj]| translate® into a pred- .

icatea over the environmen¥ and the machine state, to Leémma 1 (Weakening).

allow a to specify the code pointers (labels of code blocks) 1+ If 2 = a"andr- {a'} I, then:- {a} I;

in ¥. Both# and[]| will be instantiated for TAL and SCAP ~ 2- If ¥ € W' and {(a)w} I, then:- {(a)y} I.

in our following discussion. Finally= is the implication
relation on assertions and a lifted assert{ajy, combines
a with all the information in¥.

We show the LOCAP inference rules in Figure 4. A
well-formed program is a well-formed code heap with an
appropriate initial state. A code heé&ps well-formed with Theorem 1 (Soundness-Correctness).
respect tol if each pair in¥ corresponds to a well-formed If ¢ + (C,S,I), for all natural number n there exists
code block inC. Interested readers may find the detailed a (C,S’,1’), such that(C,S,I) ~—, (C,S,I'); and if
explanation of the rules in [7], but this is not required for (C,S,T') — (C,S”,C(f)), then there exists é, such
understanding the rest of the paper. that(£,0) € ¥ and[[d] ¥ S".

Figure 4. LOCAP inference rules (excerpt)

The soundness-correctness theorem of the CAP system
ensures that a well-formed program will run forever without
reaching any undefined steps in Figure 2, and the patrtial
correctness of the program against its specification holds.

(SPred) p,q € State — Prop
(Guar) g € State — State — Prop
(CdSpec) 0 = (p,g)

def

wfst(0,q, ¥) = V(H,R). q (H,R) —

Ir. (R(x31),T) € U A [¥ (H,R)

whst(n +1,q,) £ V(H,R). q (H,R) —

Ip,g. (R(x31), (p,g)) € ¥ Ap (H,R)A
wfst(n, g (H,R), ¥)

[(p, 8)]scar = AW, S. pS A In. whst(n, g S,)

U bsear {(,8)} T = F {([(P,8)]scar)w} T

‘ U bsear {(p,g)} I ‘ (Well-formed Instruction Sequence Leminas

(£,(p,8) €V (fret,(p”,8") €Y
V(H,R). p (H,R) — p’ (H, R{r31 ~» fret })A
vS'. g (H,R{r31 ~ fret}) S —
pll S/ /\ VSN- gll Sl SII — g (H, R) S//
V(H, R), (H',R").
¢ (H,R) (H',R’) — R(r31) = R'(r31)
v FSCAP {(p7 g)} Jal f7 fret

VS.pS — ¢SS
U Fsear {(p,)} jr r31

(cALL)

(RETURN)

Figure 5. SCAP in LOCAP

Embedding of SCAP. Following [7], we show the embed-
ding of SCAP in LOCAP in Figure 5. An SCAP code speci-
fication is a pair consisting of a preconditipand a guaran-
teeg. Herep resembles a precondition in Hoare logic while

¢ relates the current state to the return state (of the curren

procedure). A guarantegat the entry of a procedure can

be used to assert its safety guarantee, as we will see later.

The SCAP interpretatior{(p, g)]|scar asserts that the

TAL Collector

(_Well-formed State + GC Inv_)

lw rl7, 4(rl7)

(_Well-formed State + GC Inv_)
alloc:
addiu r24, r31, O

C Well-formed State + GC Inv)

jal alloe, write

C Well-formed State + GC Inv)

write:

guar

jr ra

(Well-formed State + GC Inv)

Figure 6. TAL and GC steps

the collector to form a well-formed complete code heap in
LOCAP. Following Theorem 1, the code in a well-formed
code heap will run safely forever from a correct initial stat
This is exactly what we want, as it implies the safe inter-
action of the TAL program and the garbage collector. This
leads to the following steps to combine foundational TAL
with certified garbage collection:

Certifying the collector. We prove the well-formedness of
the collector with SCAP specifications. For each collector
routine with the specificatio(p, g), assertiorp should in-
clude all of the information required by the collector rou-
tine, whileg should capture its basic safety guarantee.

Embedding of TAL. We get a foundational TAL by em-
bedding its type system in LOCAP (much like how we em-
bed SCAP in LOCAP in Section 2.2). The soundness of
TAL follows directly from the soundness of LOCAP. The
type system of TAL must also reflect our choice of collector

ﬁn that it must contain enough information to meet the re-

quirements of the SCAP specifications of the collector rou-
tines.

whole machine state satisfipsand there is a well-formed cgjiector interface compatibility. We must also provide
control stack somewhere in the state. The abstract stackthe TAL specifications for the collector routines to type-

predicatewfst(n, g S, ¥) generally asserts that the current
function can return to the label stored #3831 in the re-
turn state. n is the number of stack frames. Whenis
0, the caller of the SCAP function must be a TAL program.
A set of lemmas is also proved for building well-formed

check the TAL client codes. Therefore in the code heap
specification of the global code heap (which contains both
the client and the collector), we have both the SCAP and
TAL specifications for the collector interface. For each-col
lector interface, we supply the missing proof required kg th

code blocks with SCAP code specifications. A detailed ~pup rule using Lemma 1, if the interpretation of its TAL

knowledge ofwfst and the lemmas is not needed for under-

specification implies the interpretation of its SCAP one.

standing the rest of the paper; interested readers may refer

to [8, 7] for their explanations.

3. The general methodology

In the rest of this section, we discuss several general as-
pects of embedding TAL into LOCAP with respect to vari-
ous garbage collectors.

Our basic idea comes from the analysis in Section 2.2: if 3.1. Typed assembly language in LOCAP

we are able to prove that the client program is well-formed
using a TAL-style type system, and that the collector is

well-formed using SCAP, then we can link the client with

The register file typ&" of the original TAL [21] is a nat-
ural candidate for the TAL instantiation of the LOCAP code

mark_field(val) {
if (val < ST || val >= ED) return;
if (val mod 8 !'= 0) return;
if (markbit(val) == BLACK) return;
markbit(val) = BLACK; stack_push(val);
}
gcO) {
mark_field(rootl);

mark_field(rootn);

while(!stack_empty()){
ptr = stack_popQ);
mark_field(ptr->first);
mark_field(ptr->second);

}

for(addr = ST; addr < ED; addr ++)
if (markbit(addr) == WHITE){

addr->first = freeptr; freeptr =

} else markbit(addr) = WHITE;

addr;

}
alloc() {
if (freeptr NULL) gc();
if (freeptr NULL) loopQ);
1 = freeptr; freeptr = freeptr->first;
return 1;

Figure 7. A conservative collector

specificatiord, and its interpretatiofj JJ-a., as shown bel-
low, is a variant of the one used in [7].
[T Trac e AV, (H, R). JH;.
U b (Hyp, R) : T A geinv((H, R), Hy)

The interpretation allows us to partition the state, reason
ing about TAL code as though it were running on a virtual
heapH; provided by the collector. Both the TAL state typ-
ing rules and the collector invariant depend on the collecto
used. With an precise collecto, -, (Hy,R) : I' must
contain pointer information for each heap object, whildwit
a conservative collector this is not necessary. ghéwv in-
variants of various precise collectors are described if.[17

The invariant¥ t, (H;,R):T" corresponds to the
well-formed state relation of the original TAL, but with ad-
ditional information required by the collector routines to
correctly trace the live objects ifl;. The garbage collec-
tor representation invariagt_inv((H, R), H-) specifies the
collector’s data structures i(H, R) and their relationship
with the virtual heafHl; accessed by TAL clients.

In addition, the TAL instruction sequence lemmas,
which correspond to the instruction typing rules of the erig
inal TAL, must ensure that the invariants [{f]]+». hold at

any step in the execution of a well-formed instruction se-

null = 0
st,ed == 8|16[24]...
ptrs £ {1](1mod8=0)A(st<1<ed)}
wptr(1) £ 1eptrs
roots = {r17,r18,r31,r0}
vptr(1
P—() (REFL)
reach(H, 1,1)
vptr(1) wvptr(1’) reach(H,1”,1")
H(1) =1" VH(1+4) =1"
@) () (NEXT)

reach(H,1,1")

def

rchrts((H, R), 1) Jr € roots. reach(H, R(r),1)

Figure 8. Pointer validity and reachability

On the other hand, to prove collector interface compat-
ibility, we must show that the successful execution of each
collector routine also preserves these invariants, as sliow
Figure 6. That is, for each collector routine, its guarantee
satisfies the following relation, whefeandI" are defined
by the behavior of this routine.

V\I/, S, Sl. g S Sl b [[F]]TAL US — [[F/]]TAL v S/

Next we will present a case study that demonstrates the
practicality and effectiveness of our methodology.

4. A certified conservative collector

Like TALx86 [20] and TALT [6], we choose a conser-
vative garbage collector [3]. This kind of collector treats
all values as potential pointers, eliminating the need &pke
complex pointer location information in the TAL type sys-
tem and simplifying the collector interface.

Our collector is a standard stop-the-world mark-sweep
collector [14] and uses the valid pointer check procedure of
the Boehm-Demers-Weiser collector [3]. To simplify the
problem, our collector only allocates heap chunks with a
fixed size of two words. The pseudo code of our collector
is presented in Figure 7.

4.1. The specification interface

We define in Figure 8 the view of the heap that the col-
lector and TAL must agree on. The constant addnediss
0. The variablest anded are the lower and upper bounds
of the collector’s allocatable heap, and are aligned ate3, th
size of a heap chunk. Thus, a valuéas a valid pointer
(vptr(1)) only if it falls in the range of the allocatable heap

guence proved with these lemmas, as shown in Figure 6.and points to the start of a heap chunk.

That is, the execution of TAL code preserves state well-

formedness, and never breaks the collector’s invariant.

The reachability predicateach(H, 1,1’) is inductively
defined. In the base case, a valid pointer is reachable from

def

eq(H) = \H'.H =H
geinv((H,R), Hy) £ 3B, F.
sted_ok(R) A BU F = ptrs A
dom(H;) ={1,1+4|1€ B} A
H I eq(Hy) * flst(F, R) * mbits(ptrs, 0) * mstack(), R)

def

chkeq(H, H',1) = H(1) = H'(1) AH(1 +4) = H'(1 + 4)
ge_step((H, R), (H',R")) <

(V1. rchrts((H, R),1) — chkeq(H, H',1))A

(Vr € roots. R(r) = R'(x))

def

alloc_step((H, R), (H',R")) = 1.
1 ¢ dom(H) A (1 +4) ¢ dom(H)A
H =H{l~ —}1+4~ -} AR =R{r18 ~ 1}
pa £ AS. IH;. ge_inv(S, Hy)
ga & A\(H,R), (H',R"). VH;. gc_inv((H, R), H;) —
JH,, H, R, gc_inv((H', R'), H}) A
ge_step((Hr, R), (HI, RT)) A
alloc_step((H{, R), (H, R'))

Figure 9. Collector interface specification

itself. In the inductive casd, is reachable from if it is
reachable from the pointers in the heap chunk at

We define the collector’s root sedots as the set of reg-
isters used by TAL. For simplicity, we have four registers in
this set, but it would not be difficult make more registers us-
able in TAL. The predicatechrts(S, 1) asserts that points
to a live heap chunk in stafe

4.2. Specification and proof construction

We now present the collector’s safety specification and a

discussion of the construction of the safety proof.

SCAP Specification. Our specification of the collector in-
terface &11oc) includes the preconditiop, and the guar-
anteeg,, as defined in Figure 9.

The collector’s representation invariggitinv is defined
using separation logic [24]. We writél I P if the heap
predicateP, which has the typdiecap — Prop, is valid
with H. H I P *Q is valid if H can be split into two
disjoint subheap#l; andHs,, such that botH, I+ P and
Hs I+ @ are valid propositions. The preconditionaifloc,
as defined withgc_inv, asserts that:

e The heap boundariest and ed are stored inR
(sted_ok(R)). The set of allocatable pointersts) is
split into the allocated subsé&t and the free subsét,
while the allocated subhedji; contains exactly the
heap chunks irB.

(IFlag) p == 1]0
(WTy) T == «afnul|int
| T (% 7% | pat|TVT
(RITy) T = {7}
(CdSpec) 6 == T
(DhSpec) @ == {1~ (7%,7%)}"

def

Uk I L= F ([T} I

W b e T (Well-formed Instruction Sequence Leminas

(£,T)EV Fp D<I o
\I/ l_TAL I: J f

(£, 7)Y eV (fre, ") €W
Foa T{r31~T"} < T

W ' jal £, free (9AL)
I(rs)=7 bt 7<7 Uhbp Mrg~7): T (MoV)
VU b I': addiu rg, rs, o; T
U(f)=T" T(rs)=nulvr
Fae T{rs ~ nul} <TV Wk Hrg~ 7} T (NULL)

U b It beqrs, 10, £;1

Figure 10. TAL in LOCAP

e The global heajil contains the allocated subhedp,
the free list with the head pointer & (flst(F, R)), the
mark bits for all the pointers iptrs (mbits(ptrs, 0)),
and the mark stack with the stack pointers storeRin
(mstack(0, R)).

The guarantee;, specifies the situation where a free
chunk is successfully allocated. It simply divides theestat
transition ofalloc into a collection phase and an allocation
phase with an auxiliary sta(éﬂ, RT), and asserts that:

e The representation invariagic_inv is preserved be-
tween the entry statéH,R) and the return state
(H',R’), with allocated subheaf¥s; andH, respec-
tively.

e The collection phase turn@s,R) into (H!, Rt) and
the gc_step relation asserts that the live chunks are
equal in the two heaps, while the values of the root
registers are equal in the two register files. The allo-
cation phase turngH, R) into (H/,R’) and theal-
loc_step relation asserts thadf, has exactly one more
heap chunk thaH!, with its pointer stored iR’ (r18).

Proof Construction. The verification of the collector in-
volves two main steps. We first form the verification envi-
ronment¥ . with the SCAP specifications for each lahel

in the collector’s code heaPsc. Then for each we prove

the CAP well-formedness of the corresponding code block
Cegc(1) with the SCAP lemmas in Figure 5. Due to space

Fraw % bFrae % < ‘ (Well-formed Type, Subtyping
ftv(r) =10 I'(r)=7 Fm 7 Vredom(I') C roots
TR (MO0 T
P(1) = (r¢°,7f*) b 7 vptr(l) V1€ dom(®)
Foae @
I'(zx) =T'(xr) Vredom(I) I'(r) = pa.7
Fao T <TY (sus) Fao T <T{r~ 7[pa.7/a]}

(RFILE)

(HEAP)

(UNFOLD)

I(x) = rpo.7/0] — (REFL)
FOLD
Fao T <T{r~ pa.7} () P 77 <77

(UNIONL)

(0-1)

FraL ! < 70

(UNIONR) (NULL-INT)

Faao 7<7VT Frao 7' <7V m

‘ U:Pbpp k:k Whe S:T ‘ (Value, Heap, Rfile, State Typing

(INT) (£, ew

NULL SR ———
(NULL) Ui d by weint T oFL £ T

W d a0 nul (copg)

Frac fst(®(1)) < 78° boac snd(®(1)) < 774 U Db wiT b7 <7
(TUPLE) ;
WD bgae 1 (780, 77%) WD b weT

(suBTY)

U P bpa we Tlpa.7/0 U@ b w:T ——— (JUNK)
oo ™) .0
(REQ) S (INIT) WP bra Wi T

Ui bga Wi pa.T
Fac @ ®1) = (7{°,7f*) ¥;® b H(1+4): 77 V1edom(P)
U P g H: P
Faao I' U@ kg R(x) : I'(xr) Vredom(l) U:Pbpy H: D U; Db R:T
VD R:T (RFILE) UFm S:T

(HEAP)

(STATE)

Figure 11. TAL state typing rules

limitations, we omit detailed discussion of the collecsor’ with a size of two words. This does not reduce the expres-
proof construction. Interested readers will find the assem- siveness of our type system, since a tuple with arbitramy siz
bly code implementation, SCAP specification and proof of can be encoded into a list of our fixed-sized tuples.

the collector in [16]. The TAL typing rules listed in Figure 11 are similar to
those of the original TAL. However, we require that the do-
5. A typed assembly language with GC main of a well-formed code heap specification contains only

valid heap pointers, and a well-formed register file type as-
We show in Figure 10 our definition of TAL types, serts only the root register setots defined in Figure 8.

which includes code types, mutable reference types, recur- AS partly listed in Figure 10, our TAL lemmas for CAP
sive types and union types. We do not include a polymor- resemb_le_ t_he instruction typing rules of the 0r|g|nal TAL.
phic code type, as it is orthogonal to our primary concern, The definition ofl -, T': Tis based onthe TAL interpre-

memory management, and this extension should not be hardation [[]]TA.L in Section 3.1, and_the representation invariant
for our system. gc_invin Figure 9. Instead of using tli&11o0c macro of the

Our TAL type system is built over the abstract machine ©riginal TAL, our TAL supports heap allocation by making
in Section 2.1 and based on the definitions in Section 4.1,2 function call to the garbage collectgial alloc, fret).

and thus is different from the original TAL [21] in several The readers should note that there are.other possible sets
ways. Since both the registers and heap cells contain onlyof TAL lemmas for our type system besides the ones we
word-size values, we use one value typr all values, in- used. The choice of these lemmas may also depend on the

stead of havingmall valueandheap valugypes as in the ~ actual type-checking algorithm.
original TAL. We also use fixed-sized tuple types to makeit A well-formed TAL instruction sequence proved with
consistent with our collector, which allocates heap chunksthe TAL lemmas keeps the invariant that at any step of its

execution the machine state of TAL is well-formed and the
collector’s invariant holds. We follow the soundness proof
of the original TAL to prove that the execution preserves
the TAL state typing relation. The preservation of the col-
lector’s invariant is proved by observing the fact that well

formed TAL instructions never change the heap’s domain.

5.1. Collector interface compatibility

As the final step, we prove that the SCAP specification ¢ i,¢ step(S, (I, R")), Wi S:T, Fra 7o

of the collector interface in Figure 9 is compatible with its
TAL specificationl",, which asserts that the function returns
a pointer to a new heap chunk in registai8 and that the
types of the other TAL registers are preserved.

Theorem 2 (Collector interface compatibility).
For any code heap specificatidnand any instantiation of
word value types,, 7, 7o andry, we have:
([Faldw = ([(Pa; g))w
where:
Ia

def

17 ~> Tq, 10 ~> 73,131 ~>
17 0 31
{r17 ~ 74,10 ~ T3, 718 ~ (70, 79)}}.

After unfolding the two interpretations, we get di-
rectly from ([T.]])w. Then, we instantiate the first pa-
rameter of wfst to 0. From Lemmas 3 and 5, we
know from g, that the return state o&lloc satisfies
([{x17 : 74,70 : 7,718 : (10, 7)) }])w, as required by the
unfoldedwfst predicate. We list here the most important
lemmas for proving Theorem 2.

Lemma 2 (Heap pruning).

If U;® b H: ®and¥; d . R: T, then:

LU @,) Frac H: @)/ r);

2. \IJ; (I)/(H,R) FTAL R:T

where® 5 is the data heap specification formed with ex-
actly the live labels in the stafefrom ®.

The proof of Lemma 2 follows the proof of theeap up-
datelemma of the original TAL, but with additional case
analysis to separate root-reachable pointers from theofest
the word values.

Lemma 3 (GC step).
If gC_Step(S, S/) andWv FTAL S: F, then: ¥ |7TAL S/ I

Lemma 3 is proved using Lemma 2 by observing that

both¥ k. S:T andV¥ b, §' : T can be proved using
the same data heap specificatibp.

Lemma 4 (Heap extension).
If U;® s H:®, vptr(l), 1 ¢ dom(H), b 75°, and
Frae 774, then:
1.U:® by R:T.
2. 10 @ bpa wo i 750, @andW; @ oy wy 7%, then
U @' by, H{L~wo {1+ 4~ wy}: P
where®’ stands fo®{1 ~ (75, 77*)}.

chase(list * i) {
while(i <> NULL){

i->next;

alloc(0, i);

i =
i =
}
}

Figure 12. An example

Lemma 5 (Allocation step).
and
Frae 71, then: ¥ oy (H',R) : T{r: <7'8,T2>}.

The proof of Lemma 4 resembles the proof of tiesap
extensionemma of the original TAL. Lemma 5 is trivially
derivable from Lemma 4.

6. An example of linked code

We now give an example to show the safe linking of code
verified in TAL with our collector. The pseudo code of
chase is given in Figure 12, which repeatedly removes a
node from a list and appends a new one.i lis not null
initially, the program will surely run out of memory with-
out a collector. We type check the assembly implementation
Cc in Figure 13 with the following code heap specification.
The skipped’s are listed at the corresponding labels in Fig-
ure 13.
£ {(alloc,

{r17 ~> list, 0 ~ int,r31 ~»
{r17 ~ list,r0 ~» int, r18 ~» (int% list®)}}),
(init,---), (chase,---), (write,---), (ret, -+)}.

When the instructions pass type checking, for each')
pair in ¥ we get the proof that:

AT we} Ce(1)

From Section 4, we have for ea¢h, (p, g)) pair in the
collector’s code heap specificatidn, that:

H {<[[(p7 g)]])‘l’ec} CGC(l)
We also obtain from Theorem 2 and Lemma 1 that:

F{{[T2)])wec} Coc(alloc)

We form the global code hedpand its specification:

def

C = CcUCqse

def

qj - qjc U qj@c
With Lemma 1, we have for eadh, 6) pair in ¥ that:
@)D} C)

Finally, we obtain the well-formedness of the linked
codeC with thecpHPrule in Figure 4.

list & pa.nul v (intt, o)

init: {r17 ~> list, 0 ~ int}
j chase # unfold
chase: {r17 ~s nul v (int!, list'), r0 ~ int}

null elim

{r17 ~ (int', list'), r0 ~> int}
load next

{r17 ~> list, 0 ~ int}

beq rl7, r0, ret
1w r17, 4(r17)

jal alloc, write

write: {r17 ~ list,r18 ~» (int®, list®), r0 ~» int}
sw r0, 0(r18) # write val
{r17 ~ list, r18 ~> (int!, list®), r0 ~» int}

sw r17, 4(r18) # write next
{r17 ~> list, r18 ~> (int!, list'), r0 ~» int}

addiu r17, ri18, O # move
{r17 ~ nul v (int}, list'), r18 ~» (int!, list"), r0 ~» int}

j chase # sub domain
ret: {}
j ret

Figure 13. An example (assembly)

7. Implementation

Our verification is fully mechanized within Coq [5], an

interactive theorem prover that uses CiC as its underlying
logic, where specifications and proofs are constructed as

types and terms in CiC, respectively. Proof checking in Coq
is thus type checking of terms in CiC, which is easier to im-
plement and more trustworthy. Coq also provides a rich
language for defining both logical and computational con-
structors, with the ability to construct inductive predes
and well-formed recursive functions. Using this, we build
the abstract machine model and the sound program logics.

The tricky part of the implementation is to obtain the
pruned data heap specificatioh,s mentioned in Sec-
tion 5.1, which implies that every labglin its domain sat-
isfiesrchrts(S,1). As @ is a mapping function in thé&'et
universe, we cannot gét s by a case analysis on the proof
of the decidability ofrchrts(S, 1) (if it can be constructed
directly), as this will break the proof-irrelevance axionat
is commonly accepted. To solve this problem, we define in
the Set universe a well-formed recursive Boolean function
which is equivalent to the predicatehrts, and obtaind /s
by case analysis on the return value of this function.

To simplify the proof construction, we have imple-
mented (in Coq) a verification condition generator (VCGen)

| Lines Component
833 Basic properties and tactics
1941 Abstract machine encoding and lemmas
1263 Finite set library
884 Separation logic library
398 LOCAP
1188 TAL in LOCAP
874 Reachability properties
237 GC Safety for TAL
360 SCAP in LOCAP, VCGen and related tacti¢s
154 Code, specification and proof éiase
2618 Code, specification and proof of the collector
276 Link upchase and the collector in LOCAP

Figure 14. Proof script size

since itis orthogonal to the main goal of this work. Building
a certified TAL type checker is not hard since it has a very
straight-forward (and decidable) type-checking alganith

In Figure 14 we give a breakdown of the size of our
proofs for our foundational TAL with certified GC. For each
component we give the number of non-empty lines of Coq
proof scripts. The work took several man-months (by pro-
grammers who are familiar with the Coq system) to com-
plete. Interested readers can obtain the Coq implementatio
from our project web site [16].

8. More related work and conclusion

Much work has been done concerning TAL and garbage
collector safety in addition to those mentioned in Section 1
TALT [6] considered the impact of garbage collection on
the soundness of its type system and mechanically proved
GC safety assuming a conservative collector, but the type
system interface for the collector is not clearly defined and
it is unclear how their definition of GC safety can be used
to link with a real collector. Vanderwaart and Crary [25]
proposed a type system with an interface for an accurate
garbage collector. But again, this work addresses only the
mutator (TAL) side of GC safety, while our work comple-
ments their work by mechanically proving the safety of both
TAL and the collector, including their interaction.

Earlier work on mechanized verification of garbage col-
lectors (such as [13, 10, 4]) focused mostly on abstract al-
gorithms. Our certified collector, on the other hand, is & rea
machine-level implementation with concrete specification
and it can run directly on real machine. However, our ver-
ification only addresses the safety of the collector, not any

for SCAP and provedits correctness. We have also built var-liveness properties.

ious automated proof tactics such as those involving sepa-

ration logic. This results in a proof which is aboyt4 the
size of our first proof and is much easier to follow.
We omit the implementation of a type-checker for TAL,

The work on CAP systems [27, 22, 8, 7] provides a nice
way to build FPCC packages. Our work builds on the CAPO
system in [8] and the OCAP system in [7]. Fesigal.[7]
described linking TAL with a certifiechalloc function.

Ouridea of using interpretation to specify the TAL/collect
interface is borrowed from this work.

We introduce in this paper a general methodology based [10]
on a new variant of FPCC for combining foundational TAL

with a certified garbage collector. We demonstrate the prac-

ticality of this approach by linking a typical TAL with a con-
servative garbage collector. Our work is fully mechanized
in the Coq proof assistant and the certified programs can be[12]

shipped immediately as FPCC packages. In the future we

plan to extend this work by applying our methodology to
link TAL with more complex accurate collectors.

Acknowledgment

[11]

[13]

[14]

This research is based on work supported in part by [15]
National Science Foundation (of USA) under Grant CCR- [16]
0524545, gifts from Intel (USA), Microsoft, and Intel China

Research Center, Innovation Funds from Chinese Academy
of Sciences, and the National Natural Science Foundation

of China under Grant No. 60673126. Any opinions, find-

ings, and conclusions contained in this document are those
of the authors and do not reflect the views of these agencies.

References

[1] A.W. Appel. Foundational proof-carrying code. 8ymp. on

(2]

(3]

(4]

[5] Coq Development Team. The Coq proof assistant reference

(6]

(7]

(8]

(9]

Logic in Comp. Sci. (LICS’01pages 247-258. IEEE Comp.
Soc., June 2001.

L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local+ea
soning about a copying garbage collector. Aroc. of the
31st ACM symp. on Principles of Prog. Langages 220—
231, New York, NY, USA, 2004. ACM Press.

H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environmentSoftware Practice and Exp.
18(9):807-820, 1988.

L. Burdy. B vs. Coq to prove a garbage collector. In R. J.
Boulton and P. B. Jackson, editorB4th Int'l Conference
on Theorem Proving in Higher Order Logics: Supplemen-
tal Proc, pages 85-97, Sept. 2001. Report EDI-INF-RR-
0046, Division of Informatics, University of Edinburgh.

manual. Coq release v8.0, Oct. 2005.

K. Crary. Toward a foundational typed assembly language
In Proc. of the 30th ACM Symp. on Principles of Prog.
Lang, pages 198-212, Jan. 2003.

X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework
for foundational proof-carrying code. IRroc. 3rd ACM
Workshop on Types in Language Design and Implementa-
tion, pages 67-78, Nice, France, Jan. 2007. ACM Press.
X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Mod-
ular verification of assembly code with stack-based control
abstractions. I°LDI'06: Proc. of the 2006 ACM SIGPLAN
conference on Prog. Lang. Design and Implne 2006.

N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A
syntactic approach to foundational proof-carrying code. |

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Proc. 17th Annual IEEE Symp. on Logic in Computer Sci-
ence pages 89-100, July 2002.

K. Havelund. Mechanical verification of a garbage aociite.

In FMPPTA'99 1999.

C. Hawblitzel, H. Huang, L. Wittie, and J. Chen. A garbag
collecting typed assembly language.Rroc. 3rd ACM SIG-
PLAN Int'l Workshop on Types in Lang. Design and Impl.
ACM Press, Jan. 2007.

C. A. R. Hoare. An axiomatic basis for computer program-
ming. Communications of the ACNDct. 1969.

P. Jackson. Verifying a garbage collection algorithim
Proc. of 11th Int'l Conference on Theorem Proving in
Higher Order Logics TPHOLs'98volume 1479 oflecture
Notes in Computer Sciengeages 225-244, Canberra, Sept.
1998. Springer-Verlag.

R. E. JonesGarbage Collection: Algorithms for Automatic
Dynamic Memory ManagemenViley, 1996.

J. Larus. SPIM: a MIPS32 simulator. v7.3, 2006.

C. Lin, A. McCreight, Z. Shao, Y. Chen, and Y. Guo.
Foundational typed assembly language with certified
garbage collection (documents and Cog implementa-
tion). http://flint.cs.yale.edu/publications/
talgc.html, 2007.

A. McCreight, Z. Shao, C. Lin, and L. Li. A general frame-
work for certifying garbage collectors and their mutatdrs.
PLDI '07: Proc. of the 2007 ACM SIGPLAN conference on
Prog. Lang. Design and ImplJune 2007.

MIPS Technologies, Inc. MIPS32! Architecture For Pro-
grammers Volume II: Instruction Set, v2.50.

S. Monnier, B. Saha, and Z. Shao. Principled scavenging
In Proc. 2001 ACM Conf. on Prog. Lang. Design and Impl.
pages 81-91, New York, 2001. ACM Press.

G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels
F. Smith, D. Walker, S. Weirich, and S. Zdancewic. TALx86:
A realistic typed assembly language. 1899 ACM SIG-
PLAN Workshop on Compiler Support for System Software
pages 25-35, Atlanta, GA, USA, May 1999.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From sys-
tem F to typed assembly languagd@OPLAS 21(3):527—-
568, 1999.

Z. Ni and Z. Shao. Certified assembly programming with
embedded code pointers. Rroc. 33rd ACM SIGPLAN-
SIGACT symp. on Principles of prog. landan. 2006.

C. Paulin-Mohring. Inductive definitions in the system
Cog—rules and properties. Broc. TLCA volume 664 of
Lecture Notes in Computer Sciend®93.

J. C. Reynolds. Separation logic: A logic for shared aie
data structures. 1bICS '02: Proc. of the 17th Annual IEEE
Symp. on Logic in Comp. Scpages 55-74, Washington,
DC, USA, 2002. IEEE Computer Society.

J. C. Vanderwaart and K. Crary. A typed interface for
garbage collection. IRroc. 1st ACM SIGPLAN Int’l Work-
shop on Types in Lang. Design and Impages 109-122,
New York, NY, USA, 2003. ACM Press.

D. C. Wang and A. W. Appel. Type-preserving garbage col-
lectors. InProc. 28th ACM Symp. on Principles of Prog.
Lang, pages 166-178. ACM Press, 2001.

D. Yu, N. A. Hamid, and Z. Shao. Building certified libras

for PCC: Dynamic storage allocatioscience of Computer
Programming 50(1-3):101-127, 2004.

