Typed Cross-Module Compilation

*

Zhong Shao
Dept. of Computer Science
Yale University
New Haven, CT 06520
shao-zhong@cs.yale.edu

Abstract

Higher-order modules are very effective in structuring large
programs and defining generic, reusable software compo-
nents. Unfortunately, many compilation techniques for the
core languages do not work across the module boundaries.
As a result, few optimizing compilers support these module
facilities well.

This paper exploits the semantic property of ML-style
modules to support efficient cross-module compilation. More
specifically, we present a type-directed translation of the
MacQueen-Tofte higher-order modules into a predicative
variant of the polymorphic A-calculus F,. Because modules
can be compiled in the same way as ordinary polymorphic
functions, standard type-based optimizations such as rep-
resentation analysis immediately carry over to the module
languages.

We further show that the full-transparency property of
the MacQueen-Tofte system yields a near optimal cross-
module compilation framework. By propagating various
static information through the module boundaries, many
static program analyses for the core languages can be ex-
tended to work across higher-order modules.

1 Introduction

Modular programming has proven to be extremely valuable
in the development and maintenance of large software sys-
tems [3, 31, 9]. Many modern programming languages such
as Modula-3 [31] and Standard ML [26, 27] provide support
for both core-level and module-level programming. The core

*This research was sponsored in part by the Defense Advanced
Research Projects Agency ITO under the title “Software Evolution
using HOT Language Technology,” DARPA Order No. D888, issued
under Contract No. F30602-96-2-0232, and in part by an NSF CA-
REER Award CCR-9501624, and NSF Grant CCR-9633390. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

To appear in ICFP’98: Proceedings of the 1998 ACM SIG-
PLAN International Conference on Functional Program-
ming, September 1998, Baltimore, Maryland.

language, in general, deals with the detailed implementation
of algorithms in terms of data structures and control con-
structs. The module language, on the other hand, provides
glue to organize large programs and to build generic and
reusable components. A mature and scalable compiler must
support both styles of programming well, generating decent
code even for heavily modularized programs.

ML-style higher-order modules [25, 11, 20] are widely
recognized as one of the most powerful module constructs
in existence today. Recent work on the type-theoretic foun-
dations of ML modules [11, 19, 27] has cleaned up many
rough spots in the original design [26]. Still, the seman-
tics for higher-order modules involves the use of dependent
types [24, 12] or translucent signatures [11, 19]. MacQueen
and Tofte [25] have shown that even a small restriction on
signature matching [19, 11] can significantly compromise the
overall expressiveness (i.e., full transparency) of the under-
lying module language. It is fair to say that the type sys-
tems for higher-order modules is much more elaborate than
(or at least very different from) those for the core-ML-like
languages [8].

This semantic difference between the core and module
languages poses great challenges to compiler writers. Al-
though the module code itself seldom needs to be compiled
efficiently, optimizations used for the core language must be
compatible with the module constructs in order to have a
coherent compiler. Unfortunately, many compilation tech-
niques do not work on programs that use higher-order mod-
ules. In fact, most recent work on compiling functional lan-
guages have ignored issues on the necessary module support.
Take the area of type-directed compilation as an example:
recent work includes representation analysis [18, 33], type
specialization [6], intensional type analysis [14], typed clo-
sure conversion [28], tagless garbage collection [40], to name
just a few. All of these are performed on the variants of core
ML [8] or the polymorphic A-calculus F,, [10, 32]. While they
have all demonstrated that types can be used to make pro-
grams run faster and consume less space, it is not obvious
how any of these would work in the presence of higher-order
modules (which make use of dependent types).

Consider the module code in Figure 1, written in the
SML syntax. Here, structure SA, SB, and SC are simple
modules; signature ASIG and BSIG express the interface of
structures; functor F (inside SB) and APP, also known as
parameterized modules, are just functions from structures
to structures. Functor specifications such as F inside BSIG
use functor signatures to express the interface of functors.

signature ASIG =
sig type s
val £ : s
end

signature BSIG =
sig functor F(X : ASIG) : ASIG
end

structure SA =
struct type s = int
val £ = 3
end

structure SB =

struct
functor F(X : ASIG) =
struct
type s = X.s > X.s
fun £ (x : X.s) = X.f
end
end

functor APP (B : BSIG) = B.F(SA)

structure SC = APP(SB)

Figure 1: An example of ML-style higher-order modules

Structure SB and functor APP are examples of the so-called
“higher-order” modules: structures (SB) can contain other
functors as their components, and functors (APP) can take
arbitrary structures as their arguments. Functors can only
be applied to structures with compatible signatures, as in
APP(SB); the result structure has an interface like that of
the original functor body, but with proper instantiations.

It is easy to see why higher-order modules would break
the type-based optimizations mentioned above. In the F,
calculus, polymorphic functions such as the identity function
At::Q.Ax:t.z always cleanly separate the type abstraction
(A) from the value abstraction (A). Therefore, polymorphic
functions in F, or core ML can be specialized to particular
type arguments at compile time. Furthermore, both repre-
sentation analysis [18, 33] and intensional type analysis [14]
can be performed, inserting coercions or runtime type pa-
rameters at every type-application site. Higher-order mod-
ules, on the other hand, express both the type and value
abstractions through a single construct (i.e., functor). A
functor such as APP and SB.F takes mixed sets of types and
values as its argument, and return another such set as its re-
sult. Functor applications such as APP(SB) cannot be type-
specialized, because we do not know how to identify the
exact type parameters in functors such as APP. Representa-
tion analysis and intensional type analysis are also hard to
perform because of the pervasive use of dependent types.

Higher-order modules also make it very difficult to carry
out static program analysis across the module boundaries.
Because the module signature does not propagate any static
information other than types, many existing techniques,
such as constant propagation, function inlining [2], partial
evaluation [17], and constraint-based analysis [1], lose all
their information at the functor-application boundaries. In
the previous example, if we textually inline all functor appli-
cations in the source, we can deduce that the £ component
in structure SC is equivalent to the following:

fun £ (x : int) = 3

However, because inlining large functors can lead to code
explosion, and moreover, modules often must be compiled
separately, it is impractical to eliminate all functors by in-
lining. The challenge then is to deduce these properties
statically while still supporting separate compilation.

This paper exploits the semantic property [13] of ML-
style modules to support efficient cross-module compilation.

More specifically, we present a type-directed translation of
the MacQueen-Tofte higher-order modules [25] into a pred-
icative variant of the F, calculus. Because modules can be
compiled in the same way as ordinary polymorphic func-
tions, all the type-based optimizations mentioned above im-
mediately carry over to the module languages. The basic
idea of our algorithm is similar to phase-splitting [13]: we
notice that every ML module can be split into a type part
and a value part; the type (value) part of a structure includes
all of its type (value) components plus the type (value) parts
of its structure and functor components; the type part of a
functor is a higher-order type function from the type part
of its arguments to that of its result; the value part of a
functor can be viewed as a polymorphic function quantified
over the type part of its arguments; functor applications can
thus be expressed as a combination of type application and
value application as in the F, calculus.

We further show that the full-transparency property of
the MacQueen-Tofte system yields a near optimal cross-
module compilation framework. Here, by full transparency,
we mean that type information is always propagated opti-
mally through all the module boundaries, so structures such
as SC get exactly the same typing whether functor APP is tex-
tually inlined or separately compiled. By propagating other
static information in the same way, we can extend most
static program analyses for core languages to work across
higher-order modules.

The main contributions of this paper are:

o As far as we know, our work is the first comprehensive
and formal study on how to apply type-based com-
pilation techniques [18, 40, 14, 28, 33] to programs
using ML-style modules. Our main result that ML-
style modules can be compiled into an F,-like calculus
is new and significant because immediately all type-
based techniques for F,, become applicable to the mod-
ule languages as well.

e Our translation of the MacQueen-Tofte system into
the F, calculus is the first such algorithm that deals
with the essential features in the ML-like module lan-
guages. Several recent papers [13, 4, 20] have attacked
similar problems but with completely different moti-
vations; they also impose severe restrictions to their
module languages (e.g., no type abbreviation or shar-
ing inside signatures [13], no parameterized types [4],

kind ki = Q| ke — sy | {lke, .l mRE}
tycon pe = o |Int | = p | Ak | pep] | {I=p 0 U=} | ped
type oy u= T(u)| ot —op| {liot,..., 104} | Vaiiks.of
term er u= =z |i|Ar:ioser | Qerel | Aaukier | efus] | {{=es, ..., I'=€i} | €.l | Lot dy in e
decl ds = ¢e|(z=-et);ds
Figure 2: Syntax of the F,-based target calculus TGC
A > opg i ke A > oy Ky A opg{o, Lk}

Ab {I=ps, .l =pi} s {like, .l ik}

Av { l=p, . F e {o LRk,]
A > {...,l=pt, }l =t Mt i Kt

(cpl—eqv)

AT P et:ot AT E e oy
AT E {l=e4y ..., l'=¢€} : {l:ot, ..., 103}

(eprod)

NS R (eselect)

A ope ekl kY ={lik, 1 kL) (cp2)
cp2—equ
Ab {I=psd, ' =psl'} =4 ps o2 sy peeq

AT R e {.,liog, ...}

(prod) (select)

AT B el:oy

Figure 3: Selected typing rules for TGC

and limited forms of functor arguments [20]).

e Our compilation algorithm can handle the entire
SML’97 language [27] including both transparent and
opaque signature matching. In fact, the algorithm
has been implemented and released with the SML/NJ
compiler since version 109.24 (January 9, 1997). As
a result, all type-based optimizations in the compiler
work across the higher-order module boundaries.

e We also describe a new algorithm that does both cross-
module inlining and type specialization, even for func-
tions with free value and type variables. Our algorithm
supports fully transparent propagation of binding in-
formation, even across heavily functorized code. Other
kinds of program analysis can be extended to work
across higher-order modules in the same way.

e To facilitate our presentation, we give a new and more
complete formal definition for the MacQueen-Tofte
higher-order modules. MacQueen and Tofte’s origi-
nal semantics [25] does not address many important
features such as type specifications, type declarations,
and hidden module components. Our new semantics
covers a much richer language and solves the remaining
technical problems.

The rest of this paper is organized as follows: we first
define an F,-based target calculus (TGC) and an ML-style
higher-order module calculus (NRC). The NRC calculus con-
tains all the essential features in an ML-style module system.
We give the static semantics for NRC and then present a
type-directed translation from NRC to TGC. We show how
to exploit the full-transparency property to support cross-
module program analysis. Finally, we discuss implementa-
tion details, related work, and then conclude.

2 An F,-based target calculus

Our target calculus TGC is a predicative variant [13] of the
polymorphic A-calculus F,. The syntax of TGC is given
in Figure 2. Here, kinds classify type constructors (tycon);

types classify terms. Declarations (dec) and the term let d;
in e; are syntactic sugar introduced to simplify the presen-
tation of our translation algorithm. Constructors of kind §2
name monotypes. The monotypes are generated from vari-
ables, Int, and through the arrow constructor (—). The
application and abstraction constructors correspond to the
function kind x; — k}. The product and selection con-
structors correspond to the product kind {I:: k¢, ..., 1Kk}
Types in TGC include the monotypes, and are closed under
products, function spaces, and polymorphic quantification.
Following Harper and Morrisett [14], we use T'(p) to de-
note the corresponding monotype of the constructor x. The
terms are an explicitly typed A-calculus with explicit con-
structor abstraction (A) and application forms. TGC terms
also include the labeled product and selection terms; prod-
uct terms such as {l =e,...,I' =e;} correspond to product
types of {l:0¢,...,l' :0{}.

The static semantics for TGC consists of the following
set of typing rules:

constructor formation A > opyg o Ke
constructor equivalence A > e =4t u't K¢
type formation A ot

type equivalence A > oy = 0}
term formation AT E er:o:
declaration formation AT H dy: T

Here, A is a kind environment that maps from type vari-
ables to kinds, and T is a type environment that maps from
program variables to types. The constructor formation rule
is of form A > s :: k¢, meaning that constructor u; has kind
¢ under kind environment A. Two constructors u: and u;
of kind k; are considered equivalent if A b u; =; py =2 Kq.
The term formation rule is of form A;T" M et : 0, meaning
that term e; is assigned type o; under kind environment A
and type environment I'. Figure 3 gives the typing rules
for the product-related constructors and terms. The rest
of the rules are all standard, as shown in the companion
technical report [35]. It is well known that type-checking
for the TGC-like calculus is decidable, and furthermore, its
typing rules are consistent with properly defined operational
semantics [29, 14].

Access paths:

strpath ps = ;| ps-Si
fetpath py == fi|ps-fi
typpath py = i | pe.ts

Signatures and specifications:

¢| DD’

type i :: ke

type t; it Ke = Ue
structure s;: M,
functor f;: My
sig D end
fsig(s;: M) M,

spec D

st M,
fsig My

Kinds and types:

kind Ke Q] Q— ke
tycon pe = pg | int | pe — pe
Ati:Qupie | pelpe]

Modules and declarations:

decl d = ¢€|dd |local din d’ end
| type ti ke = pe
| structure s; =ms,
| functor fi =my
str ms = ps | fi(si) | (si:Ms) | me
mp := struct d end
fet myg u= py | funct (si: Ms)me

Figure 4: Syntax of the normalized module calculus NRC

3 Module semantics and translation

To show how we translate the ML-style modules into the
TGC calculus, we choose a surface language (SFC) that is
similar to the SML’97 module language[27] extended with
the MacQueen-Tofte higher-order modules [25]. We divide
the translation from SFC to TGC into two steps:

e First, we perform a series of syntactic transformations
and normalizations, and then translate the SFC pro-
gram into a normalized module calculus (NRC);

e Second, we translate the NRC program into the TGC
calculus.

To make the paper more focused, we will only briefly explain
the first step, and then concentrate on describing the NRC
calculus and how we translate NRC into the TGC calculus.
The companion TR [35] gives more details about the SFC
calculus and the SFC-to-NRC translation.

3.1 Normalization and the NRC calculus

The syntax of our normalized module calculus NRC is de-
fined in Figure 4. During the SFC-to-NRC translation, each
identifier in the surface language is alpha-converted and as-
signed a unique internal name, so an identifier (e.g., z;) in
NRC always consists of two parts: an external name (z) and
an internal stamp (z). We use ¢, s, and f to denote type,
structure, and functor identifiers, and p¢, ps, and py for the
access paths.

The NRC module language includes standard constructs
such as signatures (M,), functor signatures (My), structure
expression (ms), and functor expressions (mgs). A signa-
ture contains a list of type, structure, and functor specifica-
tions (D). A type specification can either be a flexible one—
specifying only the arity of the underlying type constructor;
or it can be a type abbreviation. Type-sharing specifica-
tions in SFC are converted into type abbreviations [22]. A
structure expression can be a structure path (p,), a func-
tor application (fi(s;)), a structure matched by a signature
(si : My), or a definitional structure (mp). Functors in NRC
are higher-order because they can be passed as arguments
or returned as results by other functors.

To simplify the presentation, we did not include value
specification and value declaration in the current NRC cal-
culus. We also used a rather simple type language where p.
denotes type constructor and k. denotes its kind (i.e, the
arity). These simplifications do not affect the generality of
our algorithm since the main idea of our translation can be
illustrated independent of these core-language features. Sec-
tion 5 gives more details on how to handle value components
and other advanced core-language features.

The translation from SFC to NRC does a series of nor-
malizations that turn complex SFC constructs into simpler
and more primitive NRC constructs. The most important
transformation is to make explicit all enrichment coercions
occurring at every signature matching (see the companion
TR [35] for details). After this transformation, a structure
s; in NRC will only match a signature M, if the following
are all satisfied: first, s; must contain the same number of
components as those in Mj; second, each pair of correspond-
ing components in s; and M, must have the same external
and internal names and follow the same order; finally, each
functor component in s; must have a signature syntactically
equivalent to its counterpart in M,. These invariants are
reflected and enforced in NRC’s static semantics given in
Section 3.2.

Another unusual feature of NRC is that functor body
must be of form struct...end, i.e., a definitional structure
expression marked syntactically as mp. This is exploited by
the static semantics to ensure a one-to-one mapping between
type stamps and their definitional type paths. To convert
an arbitrary functor expression (say funct (s;:M,)m,) into
this form, the SFC-to-NRC translation wraps an extra layer
around the functor body ms; the resulting functor body
becomes:

funct (s;:M;) struct structure R = mg end.

Functor bodies inside functor signatures are transformed in
the same way. Meanwhile, functor application such as F(S)
is translated into:

let structure T = F(S) in T.R end.

Finally, all module declarations inside the let expressions
in SFC are pushed upwards and then turned into the NRC
local declarations (see the companion TR [35] for details).

Stamp n = sameasi Path Pe ps | €
Tycon pim T il o) | ° | i?tl I]#m ~ Hm | StampEnv N Stamp L TypPath
Qi Um | Bm (M _ fin
TypRln ¢ = hm SpecEnv D = Id-— Spec
StrRlzn s = R RlznEnv R = Id% Rim
FctRizn ry o= (me, B, A:) | (As) Basis B = (A,N,D,R)
Rizn r = 1| rs |7y AuzInfo Ay m= (pe,01)
Figure 5: Semantic objects for NRC
signature subsumption BbrF M, < M, Figure 7
module declaration BH d: N;D; R=d; Figure 7
module expression BF*m_:N;M_;r.— e Figure 7
stgnature instantiation ptipe;BH My : N;r, = oy Figure 8
stignature kind translation e M = Kt Figure 9
module type translation B (M_,r)) = u; ot Figure 9

Figure 6: NRC semantics and translation: a summary

3.2 Static semantics for NRC

Before presenting the translation from NRC to TGC, we
first give a new and more complete formal semantics for the
MacQueen-Tofte higher-order modules [25] in the context
of NRC. Under our stamp-based approach, the “type” of a
module—also called the modtype in this paper—is expressed
as a pair of a signature and a realization. The signature cap-
tures the module skeleton such as names of its components
and the kind and sharing information for type specifications.
The realization describes the actual type definition for all
the type paths (p:) in an NRC construct. The job of the
static semantics is to infer and validate the semantic types
for all NRC type paths, and then propagate this information
to different modules.

Figure 5 defines the semantic objects used by our new se-
mantics. Figure 6 gives a summary of all the semantic rules;
we use a single set of deduction rules to describe both the
static semantics and the translation algorithm. A deduction
suchas WF X :Y = Z has the following meaning: un-
der the environment W, the NRC construct X is elaborated
into the semantic object Y and translated into the TGC
construct Z. In the rest of this paper, we use fx, 0r, etc.
to denote the empty environments; ¥ to denote the environ-
ment overlay; e to denote things that are irrelevant under
the current rule; and s;.p, to denote an access path that
starts with an structure s; and ends with a tail path p,. We
also restrict our semantics to elaborate normalized NRC pro-
grams only; an NRC program is normalized if there are no
duplicate bindings within each scope, and all of its functor
definitions have distinctly named formal parameters; these
conditions are enforced by the SRC-to-NRC translation.

Returning to Figure 5, here, py, is an internal “semantic”
type constructor designed for type-checking. The only dif-
ference between p,, and the NRC type constructor y. is that
Ue might be a type path p; but p,, cannot be. During the
elaboration, formal type constructors in NRC are translated
into type stamps of the form n(k., ut) where n is a stamp, ke
is its kind, and p; is a TGC type constructor—auxiliary in-
formation used solely for the NRC-to-TGC translation. The
type equivalence relation =,, on u,, is the standard struc-

tural equivalence except that two stamped types n(kc, pt)

and n'(k,, ;) are equivalent if and only if n and n’ are equal.

A realization can be a type realization (r:), a structure
realization (r,), or a functor realization (rf). A type real-
ization captures the actual definition of a type component;
it is represented simply as the internal type constructor pm,.
A structure realization captures the detailed definitions of
all the components in a structure; it is defined as a real-
ization environment (R) which maps from (type, structure,
and functor) identifiers to realizations. A functor realization
captures the typing relationship between the argument and
the result of a functor; it is defined either as a realization
closure (my, B, A;) or as a formal template (A;). In both
cases, A; contains auxiliary TGC type information main-
tained solely for the NRC-to-TGC translation.

The realization for a fully defined functor, e.g., funct
(si : Ms)ms, is a realization closure (my, B, A:). The code
part of the closure, mj, is simply the actual functor body m.
The environment part of the closure is the current basis! B
(defined below). The realization for a formal functor param-
eter, e.g., functor B.F inside APP in Figure 1, is defined as
a formal template, marked as (A:); all we know about such
functor is its signature.

The basis environment B is a tuple (A, N, D, R) where
A is an auxiliary TGC kind environment, N is a stamp en-
vironment, D is a specification environment (represented as
NRC specifications), and R is a realization environment.
The kind environment A does not play any role for the
static semantics; it is purely maintained for the NRC-to-
TGC translation (mainly to simplify the technical proof).
The stamp environment /N records all the type stamps de-
fined so far and maps each of them to its definitional type
path. The specification environment D and the realiza-
tion environment R form the actual modtype environment.
Given a module access path p_, we can retrieve its modtype
by looking it up in the corresponding environments; the re-
sult is abbreviated as B(p_) = (M_,r_) where wild card “_”
implies either structure entity (s) or functor entity (f).

At any time during the elaboration, an NRC type p. can
be mapped into its actual semantic type pm, and vice versa.

1Neither the kind environment nor the stamp environment is re-
quired here, but we include it anyway to simplify the notation.

Signature subsumption: |[BF M, < M,

BF D
B sig D end

D' B D < D" BF D < D"
. 7 (1) ' " Hn
sig D' end Bt DD < D"D

(2)

BbF e <e (3) B b functor f;:My < functor fi:M; (4)

B M,

< M, c2m(B, pic) =m c2m(B, pc)
B = structure s;:M, < structure s;:M,

(5)

(6)

B type tiiike=pc < type ti::KCI;I,’c

B b type titke= pe < type titke (7) B I type titike < type tit:ke (8)

Typing and translation of declaration(s): ‘B Fd:N;D;R=>d: ‘

sm = c2m(B, p.) m has kind k.
B H type tittke=pc : On; {type tiike=pc}; {ti = um} =€

(9)

BF my : N; My; rs = e N'={nw si.pt | pt = N(n),n € Dom(N)}

B H structure s;=ms, : N'; {structure s;:M,}; {si — rs} = (ss = et)

(10)

BF mg : N'; Mf;ry = ey N' =0x

B H functor fi=my : On; {functor fi:Ms}; {fir>rs} = (fi=es) (1)

BHe:Dn;lo; 0 =c¢ (12)

Bk d :N';D';R = d; BY (@, N',D',R') t¢ d" : N"; D"; R" = d{
BH d'd' : NyN"; D'D"; R'W R" = did}

(13)

BHd :N;D ;R = d, BW (@A,N',D',R') < d" : N"; D"; R' = dY
B H locald ind"end : NWN"; D"; R wR'" = did}

(14)

Typing and translation of module expression: ‘B F»m_: Ny M_;r. = et ‘

B(p))=(M_r.) (15) B(s;) = (M}, rs) BF M, < M, 16
BbFp_ :0n; M 5r_.=p_ B b (8i:Ms) @ On; Mssrs = 85 (16)

BH d:N;D;R = d: et = {z; = z;,...} for all z; € Dom(D'), z; not a type
B b structdend : N'; sig D' end; RofBWR' = let d; ine;

(17)

= My, = k¢ A ={siks} si;si;B&J(A,@N,@D,@R)H M, : N;ry = oy
BW (A, N, {structure s;: M,},{si—>rs}) F* mp : o ; Mi;r, = e
b (Mg, ry) = uy; 04 Ay = (Asike-py, VSiki.or — op) ry = (mp, B, At)

18
B P funct (s;: Mg)mp @ On; £sig(si: My)My ; 1y = AsiiikiA85:0¢.€4 (18)

B(fi) = (Mf,7¢) B(si) = (Ms,rs) My = fsig(s;: M,) M,
D' = {structure s;:M,} R = {s;—rs} B (Mg, rs) = ;e
if 7y = (A:) and A; = (ui,®) then pi[ui];e;BYW (0a,0n,D',RYH M, : N';r, => o
if rf = (my, B',e) then (AofB,NofB,DofB' ¢ D', RofB'WR')F* my : N'; e;r, =>e
B b fi(si) + N'5 Mg ro = Q(fi[pe])s

(19)

Figure 7: Module semantics and its translation into TGC

Signature instantiation and translation: ‘m ipz;BH Mg : N;rs = oy ‘

pt;pz;BH D : N'; R = lis

R" = RofBW R’

: ! " (20)
Ut ;pe;BH sig D end : N'; R' = {lts}
Ut;pe;BH D : Ny R= It ps;pe;BWY(0a,N,D,R)H D' : N'; R = lts 21)
peipe; B H DD' : NyN';RWR = It,lts
pm = c2m(B, puc) pm haskind ke R={ti— pm}
;pz;BH € s Or = 22 23
Hesp e Oxiln ¢ (22) Wi ;Pz; B H (type titke=pc) : On; R=— ¢ (23)
né DOIn(NOfB) Kt = Ke P = n(Kfc,/It-ti) (24)
peipz; B H (type titike) : {n > pzti}; {ti— pm} = ¢
Ut.8i;Pz.8i; BH My @ N;rs = oy o5
Bt Pz B H (structure s;:M,) @ N; {s; — rs} = si:0¢ (25)
= M, = Kt A = {s;ks} Si;si;Blﬂ(A,ﬁN,mD,qu) H M, : Njrs =0y
wy = pe-fi wilsi];e; BW (A, N, {structure s;:M,},{si—>r,}) H M, : o ;e =0}
of =Vsitki.or — o} ¢ = (uf,08) ry = (4s) 26)

Ut ;pz; B H (functor fi:fsig(si:M,)M;) : On; {fis 1} = fiiof

Figure 8: Signature instantiation and its translation into TGC

Given a basis environment B = (N, D, R), the ¢2m opera-
tor converts p. into a semantic type by replacing each type
path p; in p. with its actual definition R(p:); the result is
denoted as ¢2m(B,). Similarly, the m2c operator can
convert a semantic type pum, back to the external format by
replacing each stamped type n(kc, ut) with its definitional
type path N(n). The m2c operator is not used in the cur-
rent semantics, but it is useful for inferring the signature of
modules with value (i.e., val) components.

The most unusual aspect of our semantics is the rules for
signature subsumption (see Rules 1-8 in Figure 7): they are
much more restrictive than those used by MacQueen and
Tofte [25]. To have one signature subsume another, both
must contain the same number of components, following
the same order (Rules 2 and 3); furthermore, the respec-
tive functor components must have syntactically equivalent
signature (Rule 4). This restriction, which is critical to the
NRC-to-TGC translation, ensures that each NRC functor
can only replace another if they have precisely same signa-
ture. Nevertheless, the surface language (SFC) can still have
the more general subsumption rules, but signature matching
in SFC must have all subsumption coercions made explicit
during the translation from SFC to NRC (see discussions on
related topics in Section 3.1).

Another interesting aspect is the elaboration of functor
application (see Rule 19 in Figure 7). Functor application
fi(si) in NRC requires that the argument structure s; have
the syntactically same signature (M) as the formal param-
eter of f;. This again requires that signature matching at
each functor application be made explicit during the SFC-
to-NRC translation. The actual application is then done by
applying the functor realization r¢ of f; to the realization
rs of s;. If f; is a formal functor, that is, 7y is a realization
template (A;), we deduce the result realization through in-

stantiation of f;’s body signature M,; if rs is a realization
closure (m}, R', A;), we get the result by re-elaborating the
functor body (of fi).

Because NRC does not have datatypes, new stamped
types are only generated during signature instantiation (see
Figure 8). In fact, only flexible type specifications are as-
signed new stamped types (see Rule 24). To maintain the
mapping from a new stamp to its definitional type path,
the instantiation procedure always memoizes the access path
(pg) for the current component.

The static semantics for NRC satisfies a very nice full-
transparency property: a functor application is assigned the
same typing whether we compile it as is or by textually in-
lining the functor body. Full transparency opens up the
possibility of embedding NRC into an F,-like calculus such
as TGC. After all, F, shares a similar property: given a term
e = At :: k.e1 and a constructor p of kind k, type applica-
tion e[u] always has the same type as the result of inlined
application [u/t]e; where [p/t] is a substitution mapping ¢
to p. The main challenge is then to model functors using
type abstraction (A) and value abstraction (A) in TGC.

3.3 Translation from NRC to TGC

The NRC-to-TGC translation uses the same set of deduction
rules as in the static semantics (see Figures 7 to 9). There
are two key ideas behind our algorithm:

e First, functor application f;(s;) in NRC always re-
quires that the argument s; has exactly the same sig-
nature as the formal parameter of f;. NRC also uses
a very restricted set of signature subsumption rules
where functors can only match if they have same func-
tor signatures. These restrictions allow us to use the

Relating signature with TGC kind: = M_

F D = ks
b sig D end —> {lks}

P My = Kt

(30)
F* structure s;:: M, = 8;::K¢

= My, = ki +F M, = &k}

= fsig(si:Ms)MQ = Kt —)K;

(27) F type tiske=p. = € (28)

(32) e = ¢ (33)

Kt

P type tittke = tittke (29)

I‘szﬁfﬁt

(31)
b functor fi:: My = fiuky

b= D = Ilks +F D' = Iks'
F DD = lks,lks'

(34)

Relating modtype with TGC type: ‘ F (M_,r.) = pt;ot‘

M, =sig D end RF D = lcs;lts
b (Ms,rs) = {les}; {lts}

RP e = ge (37)

RbP D = les;lis

Rt D' = lcs';lts'

Rt DD = lcs,lcs'; lts, lts'

P (Ms, R(si)) = pe;0t
R P structure s;:: M, = s;=p4;8i:0¢

rf = (o,0,4;) or (Ae) Ai= (p,00)
B (Mg,rf) = ps;04

(36)

R b= type tinke=p. = ¢ (39)

pm = R(ti) pe = m2t(um)
R = type tiuke = ti=p4€

(40)

F (Mg, R(fi)) = pe; 0
R b functor fi: My = fi=py; fi:o¢

42)

Figure 9: Relating NRC semantic objects with TGC types

signature to guide our translation.

e Second, an NRC module can be split into a type part
and a value part. We use the signature (e.g., M,)
rather than the modtype to guide splitting. The type
(value) part of a structure includes its “type” (value)
components plus the type (value) parts of its structure
and functor components. By “type” components, we
include only those with flexible type specifications in
M, (not those type-abbreviation specs).

The type part of a functor is a higher-order type func-
tion from the type part of its arguments to that of
its result; the value part of a functor is a polymorphic
function quantified over the type part of its arguments;
functor applications can thus be expressed as a com-
bination of type application and value application as
in the TGC calculus.

Rules 9-19 in Figure 7 give the translation from the NRC
module declarations (expressions) to the TGC declarations
(expressions). All module declarations (except type dec-
larations) are translated into the TGC value declarations.
Module access path is translated into TGC record selection
(Rule 15). We take the liberty of using the same p, and
py to denote the TGC selection terms such as z;.---.s; and
xi.---.fi. Definitional structure struct...end is trans-
lated into record construction in TGC (Rule 17).

Each NRC functor, funct(s; : M,)ms, is translated into
a TGC polymorphic function, As; :: k¢.As; : 0¢.e; (see Rule
18). Here, we assume that type and value identifiers in TGC
belong to different name space so we can use the same s; to
name both without causing confusion (we can always tell the

identifier status in TGC). We use the signature-instantiation
procedure in Figure 8 to split functor parameter into two
parts: its type part is a type parameter (s;) of kind ky; its
value part is a value parameter (s;) of type o:. Kind (k¢)
can be inferred from the signature alone (see Rules 27-34
in Figure 9), and once again only flexible constructors are
included in the type part (Rules 28 vs 29).

If we name the type part of the functor parameter as a
TGC type constructor “s;” of kind k¢, all its components
can be assigned a TGC tycon as well. This is again done by
the signature instantiation: the p; on the left-hand side of
Rules 2026 denote the TGC tycon of the enclosing struc-
ture. For example, according to Rule 24, the flexible tycon
t; is translated into a stamped type n(kc, (ut.t;)) where n
is a new stamp, and the selection constructor pu:.t; is the
corresponding TGC tycon for the component ¢;.

After we instantiate the parameter signature, the functor
body my is elaborated into a structure realization r,. The
type part of this functor is expressed as a tycon As; :: Kg.pu
where p; is the type part of mp. This information is mem-
oized inside the functor realization (ry) for future use (e.g.,
Rule 36). The type part of my is calculated by the procedure
defined in Figure 9: given a structure with signature M, and
realization r,, its type part is simply a TGC product con-
structor, counting only those flexible type components (Rule
39 vs. Rule 40). The m2t operator in Rule 40 translates
a semantic type g, into the TGC tycon u; by replacing all
instances of stamped types n(k., py) with u;.

Translating functor applications is much simpler (Rule
19). A functor application f;(s;) is translated into a TGC
expression Q(f;[u:])si. Here, the value part of functor f; is

signature 7 type part (kind xz)

A : ASIG ka = {t:Q}
F : FSIG K,FZK,A—){}
X : XSIG kx ={F :: kr}
module Z type part (tycon uz)
X px = Xt
I pr={}
J pry = {t = Int}
K px ={}
G MrGe =)\XT::K)C.

{I:,UJ’J:P«hK:P‘K}

value part (type oz)
oa={}
OF = VAT:2HA~({} - {})

ox ={F:oF

value part (term ez)

ex = Xv
er ={}
es ={}

EK = @(Xv.F[[,LJ])J

ea :AXT::lix.)\Xv:Ux.
let] =e;J =ej; K =ex
in{I=1,J=JK=K}

Figure 10: Translating a simple NRC program

translated into a TGC polymorphic function named f;; the
value part of structure s; is translated into a TGC record
named s;; polymorphic function f; is applied to the type
part of structure s;, which is a TGC tycon u; extracted
from s;’s modtype (M,,rs).

To prove the correctness of our translation, we need to re-
late the basis environment in NRC with the kind and type
environments in TGC. Given a basis B, we can derive its
corresponding TGC environments as follows: the kind en-
vironment A is just the A component maintained inside B;
the type environment I" is calculated by applying the proce-
dure defined in Figure 9, assuming Rof B+ Dof B = e, lts,
then we convert the list of record fields Its into a TGC type
environment in a straightforward manner. In the companion
TR [35], we show that as long as the basis B satisfies certain
pre-conditions (i.e., it is well-formed and it preserves TGC
typing, see TR [35] for detailed definitions), our translation
algorithm preserves typing.

Theorem 3.1 (type preservation) Given a well-formed
basis B, suppose B preserves TGC typing, and A and T are
its derived TGC kind and type environments, then

o for each NRC module expression m_, if m_ is normal-
ized with respect to B and BF* m_: N; M_; r_. =
et and P M_ = k; and P (M_,r.) = ;01
then A > pi::ke and AT F er oy

e for each NRC module declaration d, ifd is normalized
with respect to B and Bt d : N; D; R = d;, and
TV is the derived TGC type environment constructed
from R and D, then BW(Qa, N, D, R) preserves TGC
typing and AT B dy - T,

We conclude this section by applying our algorithm to a
sample NRC program. We use ML-like signature declaration
to simplify the presentation of NRC signature expressions
(keyword funsig denotes functor signatures).

signature ASIG = sig type t end
funsig FSIG = fsig (A : ASIG) : sig type u = A.t end
signature XSIG = sig functor F : FSIG end
functor G (X : XSIG)
struct structure I
structure J
structure K

struct type t = int end
(I : ASIG)
X.F(D)

end.

Here, identifiers ASIG, FSIG, and XSIG behave like macros
and they are inlined whenever used inside any NRC pro-
gram. Inside the functor body, structure I has signature

sig type t = int end,

this is not same as the parameter signature of X.F so we need
to insert an explicit signature matching to create structure
J. To show how our algorithm works, we give the detailed
translation results of every module expression in Figure 10.
Here, for every functor parameter Z (e.g., X and A in the
example), we use Zr to denote its corresponding TGC con-
structor identifier and Zy to denote the TGC value identi-
fier; if Z has signature ZSIG, we can infer the TGC kind
of Zy (denoted as kz) and the TGC type of Zy (denoted
as oz). Similarly, for every module identifier Z, we give its
corresponding TGC type constructor (denoted as pz) and
target term expression (denoted as ez). Notice the type
part for the body of functor X.F does not include type u.
Doing so would force the use of dependent kinds to model
kx. The fact that type t in structure K is equivalent to int
is deduced and propagated by the elaborator.

4 Cross-module program analysis

‘We can extend the stamp-based semantics for NRC to sup-
port cross-module program analysis. Full transparency guar-
antees that type information be optimally propagated across
module boundaries. We could propagate other static infor-
mation in the same manner, and by doing this, many static
program analyses for the core languages can be extended to
work across higher-order modules. Because the realization
part of a modtype is always hidden inside the compiler, we
can freely add new static information into the realization
without making any changes to the source-level signature
calculus.

To support cross-module inlining, we add a new form
of the “type” specifications and declarations into the NRC
calculus. We call it binfo, meaning the binding information:

spec D == ... | binfo b;
decl d = ... | binfo b; =ep

where e, is a form of binfo expressions, possibly defined as
follows:

bexp e» == py | Dyn | STFun(e;) | STVal(c) | ...

Here, Dyn denotes a value that we know nothing about at
compile time; STFun (e) denotes a function that is statically
known as a closed expression e, written in some typed in-
termediate language such as TGC; and STVal (c) refers to
a statically known constant ¢. Notice we do not make any
changes to SFC, instead, the SFC-to-NRC translation can
use heuristics (or hints from the programmer) to decide the
possible inlining candidates, and then insert the proper binfo
specifications and declarations into the NRC code.

We extend the semantic objects, NRC realizations, to in-
clude a mapping from binfo identifiers to their corresponding
binding information. The binfo expressions will be recorded
in the realization closure of a functor, just like normal type
declarations. All deduction rules remain unchanged, and
the binding information will be optimally propagated just
as the normal type information.

We then systematically replace each value specification
in signatures by a compound structure specification that
records all the relevant type, value, and binfo information.
Taking the code in Figure 1 as our example, the value spec-
ification val f : s in ASIG is re-interpreted internally as

follows:

structure f : sig val dv : s
binfo dvB
type tenv
type venvT
val venv : venvT
binfo venvB

end

Here, binfo v, is a new form of specification used for
binding information. Signature matching on binfo is always
transparent. The value component dv is f’s original defini-
tion. The binfo component dvB denotes £’s binding informa-
tion. We use tenv and venv to record all the free type and
value identifiers (and paths) in the definition of £. We use
venvT to specify the type of venv because each value com-
ponent must have a type. Finally, the closure venv might be
a constant itself, so we introduce venvB to record its bind-
ing information. Given a structure S with signature ASIG,
the access to S.f can now be implemented as follows: (1)
if dvB is Dynm, or if the optimization is turned off, then
S.f under the new interpretation is just S.f.dv; (2) if dvB
is STFun (e), then S.f is translated into “Q (e[S.f.tenv])
venv” where venv is c¢ if venvB is STVal (c), or S.f.venv if
otherwise; (3) if dvB is STVal (c), then S.f is simply c.

Inside each structure body, we replace each value com-
ponent by a structure declaration that is consistent with our
changes on the signatures. For example, function f inside
structure SB.F is replaced by the following:

structure f =

struct fun dv (x : X.s) = X.f
binfo dvB = STFun (Ate :: Q.\ve : te. AT : te.Ve)
type tenv = X.s
type venvl = X.s
val venv = X.f.dv
binfo venvB = X.f.dvB

end

If we use the same stamp-based semantics to elaborate the
functor application APP(SB), we can deduce that the £ com-
ponent in structure SC (in Figure 1) is simply “Az :: int.3”.

Under this algorithm, the binding information of each
value component is always propagated optimally even across

10

higher-order modules. A more traditional approach would
compile the higher-order modules into the usual higher-order
functions in the core language, and then perform the heavy-
weight control flow analysis [37] on them. Our module elab-
oration algorithm is somewhat similar to the abstract exe-
cution, but it separates the module-level declarations from
the the core-language expressions within. The elaboration
is simple and very efficient because the module-level code is
always small and non-recursive.

5 Implementation

We have implemented both the translation algorithm and
the cross-module inlining algorithm in the SML/NJ com-
piler [36] and the FLINT/ML compiler [34]. The imple-
mentation in SML/NJ has been released and in production
use since version 109.24 (January 9, 1997). In our imple-
mentation, we extended the NRC-to-TGC translation to
handle other features in SML’97 [27] such as value compo-
nents, opaque signature matching, polymorphic types, and
recursive datatypes. The translation makes it possible to
support type-based optimizations even in the presence of
higher-order modules. The cross-module inlining algorithm
we implemented currently only inlines and specializes all
the primitive functions, but the binding information is fully
propagated across the signature matching and functor appli-
cation. The new inlining algorithm replaced the old ad-hoc
algorithm in SML/NJ which does not even propagate inlin-
ing information across signature matching. In the following,
we briefly explain some of these implementation issues; more
details can be found in the companion TR [35].

Adding value components to the NRC calculus is quite
trivial. Handling value specifications in signatures requires
a utility function (i.e., ¢2m) to convert source-level types
(c) into internal semantic types (pm). Similarly, to infer
the full signature of an arbitrary structure expression, we
use a utility function (i.e., m2c) to convert the semantic
type (pm) of each value component back to its source-level
counterpart (u.)—this is possible because the stamp envi-
ronment (V) in the basis maintains a one-to-one mapping
from each type stamp to its definitional type path.

The semantics given in Section 3.2 always re-elaborates
the functor body at each functor application, but much of
this is redundant. Under our implementation, only type-
related components are re-elaborated at each functor appli-
cation; all value-related components are type-checked once
and for all when the functor definition is processed.

Opaque signature matching [27] can be implemented us-
ing the same signature-instantiation algorithm given in Fig-
ure 8. All flexible type components are turned into “ab-
stract” types, represented as fresh stamps annotated with
its representation type (e.g., n(k,u)). The NRC-to-TGC
translation then converts these stamped types into concrete
TGC types by dropping all the stamps. This method does
not propagate abstract types into the intermediate language
but is sufficient if the underlying compiler does not analyze
abstract types.

Although the translation algorithm itself does not im-
prove the efficiency of the module code, it does allow many
type-based optimizations to be applied to languages that use
ML-style modules. Recent work [36, 38, 33] shows that type-
based optimizations dramatically improve the performance
of heavily modularized ML programs.

6 Related work

Module systems have been an active research area in the past
decade. The ML module system was first proposed by Mac-
Queen [24] and later incorporated into Standard ML [26].
Harper and Mitchell [12] show that the SML’90 module lan-
guage can be translated into a typed lambda calculus (XML)
with dependent types. Together with Moggi, they later show
that even in the presence of dependent types, type-checking
of XML is still decidable [13], thanks to the phase-distinction
property of ML-style modules. The SML’90 module lan-
guage, however, contains several major problems; for exam-
ple, type abbreviations are not allowed in signatures, opaque
signature matching is not supported, and modules are first-
order only. These problems were heavily researched [11, 19,
20, 23, 39, 25, 16] and mostly resolved in SML’97 [27]. The
main remaining issue is with the design of higher-order mod-
ules, with proposals ranging from fully transparent ones [25],
to applicative functors [20, 7], or abstract functors [11, 19,
23]. Fully transparent modules are most expressive, but it
is not clear whether they are absolutely necessary; they also
interact poorly with true separate compilation [19]. This
paper shows that at least from the implementation point
of view, full transparency is important in providing optimal
support to efficient cross-module compilation.

The question of whether higher-order modules can be
compiled into simple F,-like calculus has been open for a
while. Several recent papers [13, 4, 20] have attacked vari-
ants of this problem with different motivations; however,
they all impose severe restrictions to their module languages.
The algorithm hidden inside Harper, Mitchell, and Moggi’s
phase-distinction paper [13] is most related, however, it does
not support type abbreviation and sharing in signatures.?
Supporting type abbreviation is non-trivial, as discovered by
Morrisett [30] and also demonstrated in this paper. Harper
and Stone [15] give a new type-theoretical semantics for the
entire SML’97, however, their internal language, IL, con-
tains a separate module calculus that uses translucent signa-
tures. Biswas [4] gives a semantics for the MacQueen-Tofte
modules based on simple polymorphic types; however, his
algorithm does not support parameterized type construc-
tors. Another difference is that in his scheme, functors are
not considered as higher-order type constructors, instead,
he has to encode certain type constructors of kind 2 using
higher-order types; this significantly complicates his seman-
tics. Finally, Leroy [20] uses applicative functors to achieve
full transparency, but his approach handles limited functor
arguments only; Courant [7]’s semantics does not have such
restriction, but he did not give a translation of his calculus
into the F, calculus.

Both Lillibridge [23] and Leroy [21] discussed how to add
value identities to their module interfaces though neither of
them gave any actual algorithm. Blume and Appel [5] pro-
posed a cross-module inlining algorithm that supports in-
lining of functions with free variables. Their algorithm is

2Although the paper by Harper et al [13] was published in 1990,
the importance of its phase-splitting algorithm was not recognized
until very recently. In fact, we reinvented the same algorithm while
working on the type-directed compilation of ML-style modules during
1996. The first version of our algorithm was presented at the IFIP
WG2.8 meeting in September 1996. It was at that meeting when Bob
Harper pointed us to the phase-distinction paper. In January 1997,
Greg Morrisett [30] told us that he had problems adapting the original
phase-splitting algorithm [13] to SML [27] since it does not support
type abbreviations in signatures. As a result, the TIL compiler today
is still using an intermediate language with dependent “singleton”
kinds rather than the plain F,, calculus.

11

carried in an untyped setting, so type specialization is not
directly supported; neither does their algorithm guarantee
the fully transparent propagation of the inlining informa-
tion. Our algorithm does guarantee the optimal propaga-
tion, but at the price of further complicating the module
elaboration. We are currently working together on an inlin-
ing algorithm that combines the best of both schemes.

Type-directed compilation has received much attention
lately, but little has been done to extend it to work across
higher-order modules. Shao and Appel [36] extended Leroy’s
representation analysis [18] to work for the SML’90 modules;
their algorithm works only for the pure-coercion-based rep-
resentation analysis [18]. The algorithm in this paper trans-
lates the module language into the F, calculus, so type-
based optimizations [18, 33, 14, 28, 40] that work for F,
immediately work for higher-order modules as well.

7 Conclusions

‘We have presented a series of techniques for compiling across
higher-order modules. These techniques have been imple-
mented and released with the SML/NJ compiler since ver-
sion 109.24 (January 9, 1997). The main contribution of our
work is the translation algorithm from ML-style modules
(SML’97 extended with MacQueen-Tofte higher-order mod-
ules) to the F,, calculus. Without such translation, none of
those important type-based optimizations [14, 33, 34] would
apply to the full SML language. We have also presented
ways to extend various program analyses to work across
higher-order modules; in fact, we show that for fully trans-
parent modules, static information can always be optimally
propagated across the module boundaries. Finally, we have
presented a new and more complete formal definition for the
MacQueen-Tofte higher-order modules; our new semantics
covers a much richer language and solves all the remaining
technical problems in MacQueen and Tofte’s original pro-
posal [25].

Availability

The implementation discussed in this paper is now released
with the Standard ML of New Jersey (SML/NJ) compiler
and the FLINT/ML compiler [34]. SML/NJ is a joint work
by Lucent, Princeton, Yale and AT&T. FLINT is a modern
compiler infrastructure developed at Yale University. Both
FLINT and SML/NJ are available from the following web
site:

http://flint.cs.yale.edu

Acknowledgement

I would like to thank Andrew Appel, Christopher League,
David MacQueen, Bratin Saha, Chris Stone, Valery Tri-
fonov, and the anonymous referees for their comments and
suggestions on an early version of this paper. The imple-
mentation of higher-order modules inside SML/NJ is joint
work with David MacQueen at Lucent Technologies.

References

[1] A. Aiken and N. Heintze. Constraint-based program analysis.
POPL’95 Tutorial, January 1995.

(2]
(3]

(10]

[11]

[12]

(13]

[14]

(15]

[16]

(17]

18]

A. W. Appel. Compiling with Continuations.
University Press, 1992.

Cambridge

E. Biagioni, R. Harper, P. Lee, and B. Milnes. Signatures for
a network protocol stack: A systems application of Standard
ML. In 1994 ACM Conference on Lisp and Functional Pro-
gramming, pages 55—64, New York, June 1994. ACM Press.

S. K. Biswas. Higher-order functors with transparent signa-
tures. In Twenty-second Annual ACM Symp. on Principles
of Prog. Languages, pages 154-163, New York, Jan 1995.
ACM Press.

M. Blume and A. W. Appel. Lambda-splitting: A higher-
order approach to cross-module optimizations. In Proc. 1997
ACM SIGPLAN International Conference on Functional
Programming (ICFP’97), pages 112-124. ACM Press, June
1997.

C. Chambers. The Design and Implementation of the SELF
Compiler, an Optimizing Compiler for Object-Oriented Pro-
gramming Languages. PhD thesis, Stanford University, Stan-
ford, California, March 1992.

J. Courant. An applicative module calculus. In M. Bidoit and
M. Dauchet, editors, TAPSOFT’97: Theory and Practice
of Software Development: LNCS Vol 1214, pages 622-636,
New York, 1997. Springer-Verlag.

L. Damas and R. Milner. Principal type-schemes for func-
tional programs. In Ninth Annual ACM Symp. on Principles
of Prog. Languages, pages 207-212, New York, Jan 1982.
ACM Press.

L. George. MLRISC: Customizable and reusable code gen-
erators. Technical memorandum, AT&T Bell Laboratories,
Murray Hill, NJ, 1997.

J. Y. Girard. Interpretation Fonctionnelle et Elimination
des Coupures dans I’Arithmetique d’Ordre Superieur. PhD
thesis, University of Paris VII, 1972.

R. Harper and M. Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In Twenty-first Annual
ACM Symp. on Principles of Prog. Languages, pages 123—
137, New York, Jan 1994. ACM Press.

R. Harper and J. C. Mitchell. On the type structure of Stan-
dard ML. ACM Trans. on Programming Languages and Sys-
tems, 15(2):211-252, April 1993.

R. Harper, J. C. Mitchell, and E. Moggi. Higher-order mod-
ules and the phase distinction. In Seventeenth Annual ACM
Symp. on Principles of Prog. Languages, pages 341-344,
New York, Jan 1990. ACM Press.

R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. In Twenty-second Annual ACM
Symp. on Principles of Prog. Languages, pages 130-141,
New York, Jan 1995. ACM Press.

R. Harper and C. Stone. An interpretation of Standard ML
in type theory. Technical Report CMU-CS-97-147, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA, June 1997.

M. P. Jones. Using parameterized signatures to express mod-
ular structure. In Twenty-third Annual ACM Symp. on
Principles of Prog. Languages, pages 68-78, New York, Jan
1996. ACM Press.

N. D. Jones. Partial evaluation. POPL’91, tutorial handout,
January 1991.

X. Leroy. Unboxed objects and polymorphic typing. In
Nineteenth Annual ACM Symp. on Principles of Prog. Lan-
guages, pages 177-188, New York, Jan 1992. ACM Press.
Longer version available as INRIA Tech Report.

X. Leroy. Manifest types, modules, and separate compila-
tion. In Twenty-first Annual ACM Symp. on Principles of
Prog. Languages, pages 109-122, New York, Jan 1994. ACM
Press.

12

(20]

(21]

(22]

[23

(24]

(25]

(26]

(27]

(28]

(29]

(30]
(31]

(32]

(33]

(34]

(35]

X. Leroy. Applicative functors and fully transparent higher-
order modules. In Twenty-second Annual ACM Symp. on
Principles of Prog. Languages, pages 142-153, New York,
Jan 1995. ACM Press.

X. Leroy. A modular module system. Technical report 2866,
INRIA, April 1996.

X. Leroy. A syntactic theory of type generativity and sharing.
Journal of Functional Programming, 6(5):1-32, September
1996.

M. Lillibridge. Translucent Sums: A Foundation for Higher-
Order Module Systems. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, May
1997. Tech Report CMU-CS-97-122.

D. MacQueen. Using dependent types to express modular
structure. In Proc. 13th Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, pages 277—
286. ACM Press, 1986.

D. MacQueen and M. Tofte. A semantics for higher order
functors. In The 5th European Symposium on Programming,
pages 409—-423, Berlin, April 1994. Spinger-Verlag.

R. Milner, M. Tofte, and R. Harper. The Definition of Stan-
dard ML. MIT Press, Cambridge, Massachusetts, 1990.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Def-
inition of Standard ML (Revised). MIT Press, Cambridge,
Massachusetts, 1997.

Y. Minamide, G. Morrisett, and R. Harper. Typed closure
conversion. In Proc. 23rd Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, pages 271—
283. ACM Press, 1996.

G. Morrisett. Compiling with Types. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA, December 1995. Tech Report CMU-CS-95-226.

G. Morrisett. Personal Communication, Cornell University,
January 1997.

G. Nelson, editor. Systems programming with Modula-3.
Prentice Hall, Englewood Cliffs, NJ, 1991.

J. C. Reynolds. Towards a theory of type structure. In
Proceedings, Colloque sur la Programmation, Lecture Notes
in Computer Science, volume 19, pages 408—425. Springer-
Verlag, Berlin, 1974.

Z. Shao. Flexible representation analysis. In Proc. 1997
ACM SIGPLAN International Conference on Functional
Programming (ICFP’97), pages 85-98. ACM Press, June
1997.

Z. Shao. An overview of the FLINT /ML compiler. In Proc.
1997 ACM SIGPLAN Workshop on Types in Compilation,
June 1997.

Z. Shao. Typed cross-module compilation. Technical Report
YALEU/DCS/RR-1126, Department of Computer Science,
Yale University, New Haven, CT, June 1998.

Z. Shao and A. W. Appel. A type-based compiler for Stan-
dard ML. In Proc. ACM SIGPLAN ’95 Conf. on Prog. Lang.
Design and Implementation, pages 116-129. ACM Press,
1995.

Q. Shivers. Control-Flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie Mellon Univ., Pittsburgh,
Pennsylvania, May 1991. CMU-CS-91-145.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML. In
Proc. ACM SIGPLAN 96 Conf. on Prog. Lang. Design and
Implementation, pages 181-192. ACM Press, 1996.

M. Tofte. Principal signatures for high-order ML functors.
In Nineteenth Annual ACM Symp. on Principles of Prog.
Languages, pages 189-199, New York, Jan 1992. ACM Press.
A. Tolmach. Tag-free garbage collection using explicit type
parameters. In Proc. 199/ ACM Conf. on Lisp and Func-

tional Programming, pages 1-11, New York, June 1994.
ACM Press.

