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Abstract—Timing predictability is a precondition for successful
communication over a covert timing channel. Real-time systems are
particularly vulnerable to timing channels because real-time appli-
cations can easily have temporal locality due to limited uncertainty
in schedules. In this paper, we show that real-time applications can
create hidden information flow even when the temporal isolation
among the time partitions is strictly enforced. We then introduce
an online algorithm that randomizes time-partition schedules to
reduce the temporal locality, while guaranteeing the schedulability
of, and thus the temporal isolation among, time partitions. We
also present an analysis of the cost of the randomization on the
responsiveness of real-time tasks. From an implementation on a
Linux-based real-time operating system, we validate the analysis
and evaluate the scheduling overhead as well as the impact on an
experimental real-time system.
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I. INTRODUCTION

Time is a crucial resource for enabling safety-critical applica-
tions to operate, monitor, and recover correctly. Especially when
a system is integrated from applications with different levels of
criticality, temporal isolation among them must be enforced to
prevent faulty or malicious applications from misusing the CPU
time resource. Hierarchical scheduling [1], [2] has been the key
mechanism in high-assurance systems as a general approach to
partitioning CPU time among real-time applications. It enforces
time constraints on each application, which can use its share
freely to run its local tasks. Hence, it can abstract away the
details of how others use the assigned time resource, enabling
modular reasoning about individuals’ temporal behavior. Thus
it has been successfully employed especially in avionics sys-
tems [3], [4] and is also increasingly adopted in other time-
critical systems such as automotive systems [5], [6].

However, time is a powerful medium of hidden communi-
cation, especially in real-time systems because of their timing-
predictable nature in operation [7]–[9]. In particular, sharing
time among real-time components makes it possible for them
to communicate indirectly by altering the way they consume
time. In this paper, we demonstrate such an algorithmic timing
channel [10], [11] between real-time partitions that are under
strong budget constraints on CPU time and thus completely iso-
lated from each other by a hierarchical scheduler. The technique
builds a probabilistic model of the receiver’s responsiveness;
the sender modulates how it consumes its own budget, which
influences the receiver’s timing of CPU usage. A Bayesian
inference enables the receiver to profile and predict the sender’s
signals even in the presence of noises due to other non-colluding
time partitions. We also present a learning-based approach that
finds patterns in the execution timings. We discuss conditions
under which a system becomes more vulnerable to the threats.

We then introduce a partition-schedule randomization proto-
col, TIMEDICE, which is the main contribution of this paper.
It reduces the temporal locality in partition schedules under a
priority-based hierarchical scheduling by taking a rather radi-
cal approach: randomly inverting the priority relations among
partitions. This adds noise to the execution timing, not to the
time source [12], [13]. Hence, it is effective for systems in
which it is difficult to completely remove every precise time
source including external sources such as network services.
Furthermore, it does not require modifications at the local
scheduling level (i.e., within partition) [11].

The critical challenge in the partition-schedule randomiza-
tion is that unprincipled randomization may lead partitions to
miss deadlines – i.e., not being able to fully utilize the CPU
budget assigned to it. Hence, at each scheduling decision point,
TIMEDICE determines, on the fly, which partitions are allowed
to take the CPU while not leading other partitions to under-use
their budgets. Therefore, by construction, TIMEDICE guarantees
a set of partitions to be schedulable if they were so before
any randomization. We also show that a slight bias in the
random selection in fact further reduces the level of temporal
locality, thus making the covert timing channel more inaccurate.
We analyze the impact of our partition-level randomization on
the responsiveness of real-time tasks. From an implementation
on a Linux-based real-time operating system, we evaluate the
solution’s impact on the scheduling overhead and task respon-
siveness as well as its effectiveness against the covert channel.

II. SYSTEM MODEL

We consider N real-time partitions Π = {Π1, . . . ,ΠN}
that share the CPU time. The partitions are scheduled in a
hierarchical manner as shown in Fig. 1; when a scheduling
decision is to be made, a partition is selected first by the
global scheduler. Then, the selected partition schedules its tasks
according to its local scheduling policy. This paper considers
a priority-based global scheduling, which is known to achieve
improved responsiveness and CPU utilization compared to
static-partitioning schemes [11], [14]. In this scheme, each
partition is associated with a unique priority Pri(Πi) and the
global scheduler selects the highest-priority partition. Real-time
server algorithms, such as periodic server [15] and sporadic
server [16], can instantiate a priority-based partition. Due to the
enhanced CPU utilization, commercial RTOSes and real-time
hypervisors [2], [6], [17] as well as open-source ones [18], [19]
are increasingly supporting priority-based partition scheduling.

Explicit inter-partition communications through overt chan-
nels are handled by an OS-layer service (e.g., message-passing)
which does not require synchronization between partitions. We
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Fig. 1: Hierarchical scheduling. The local tasks of partition Πi

can run only when it has a budget.

do not consider shared-resource-based inter-partition commu-
nication that may require a synchronization protocol such as
Priority Inheritance/Ceiling Protocols [20].

a) Real-time partition and task models: Each partition
is associated with a maximum budget Bi and a replenishment
period Ti; the partition can serve up to Bi (e.g., 10 ms) to
its tasks during each period Ti (e.g., 100 ms) as shown in
Fig. 1. We denote the remaining budget for time t by Bi(t)
and 0 ≤ Bi(t) ≤ Bi. When a task of partition Πi executes,
Bi(t) is depleted for the amount of task execution. No task of
Πi can execute when Bi(t) = 0 unless there is a higher-priority
partition that has an unused budget but no task to run; the budget
may be used by Πi to (i) prevent additional interference by the
deferred executions [21], [22] and (ii) to improve responsiveness
because the CPU would otherwise be idled anyway. Hence, the
lower-priority partition may end up using more than its budget.
Nevertheless, this does not change the worst-case behavior of
the higher-priority partition.

Each partition Πi is comprised of a set of tasks Πi =
{τi,1, τi,2, . . . , τi,|Πi|}. Each task is characterized by τi,j :=
(pi,j , ei,j), where pi,j is the minimum inter-arrival time (also
called as period) and ei,j is the worst-case execution time
(WCET). That is, for each arrival it may execute for an arbitrary
amount of time upper-bounded by ei,j .

b) Terminology: Although it is a task that arrives and
executes on CPU, we will use these terms to describe a
partition’s state for ease of explanation. A partition is said to (i)
arrive if its budget is being replenished and (ii) execute when
it has taken the CPU and one of its tasks runs. Also, it is said
to be active if its remaining budget is non-zero. Otherwise, it is
said to be inactive. Lastly, to guarantee the temporal isolation
among partitions, each needs to be schedulable:

Definition 1 (Schedulable partition). Partition Πi is said to be
schedulable if it is guaranteed to serve its tasks for its maximum
budget Bi over every replenishment period Ti.

III. COVERT TIMING CHANNEL BETWEEN PARTITIONS

In high-assurance systems, information flows must be explicit
(e.g., ‘authorized channels’ in Multiple Independent Levels of
Security (MILS) systems [23], [24]). That is, any communica-
tion between partitions must be known and configured a priori.
However, as applications are increasingly developed/supplied
by third-party vendors in various forms and updated frequently,
it is challenging to trust or verify them thoroughly. A hidden
information flow, i.e., covert channel, can thus be used to leak
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out sensitive information to a partition that is not allowed
to obtain it through authorized channels. In this section, we
show how hierarchical scheduling can be exploited by real-time
partitions to create such a hidden information flow. As shown
in Fig. 2, a sender partition tries to transmit a binary signal (0
or 1) by modulating the way it consumes its budget depending
on each signal. The sender’s varying behavior affects how/when
the receiver partition consumes its budget. The receiver decodes
its local observation to infer the sender’s signal. The presence
of other partitions, which share the CPU time with the sender
and receiver, induces errors in the receiver’s interpretation.

a) Strategy and pre-conditions: Fig. 3 illustrates a strat-
egy for forming a covert timing channel between real-time
partitions. The sender and receiver partitions have an agreed-
upon time at which they start the profiling phase, during which
the sender sends bits 0 and 1 alternately. When the sender wants
to signal bit 1, it uses up its budget. Otherwise, it consumes its
budget as little as possible. Meanwhile, the receiver observes
how its local tasks execute. Unlike the mechanism used in [11]
that requires coordination between two local tasks (as shown
in Fig. 18 in Sec. V-C), a single task of the receiver partition
measures times it takes to execute a block of code, i.e., response
times (from arrival to finish). Hence, if it observes a relatively
long response time, the sender partition has likely consumed
its budget and thus has signaled bit 1. They may even form
a multi-bit channel by dividing the response time range into
multiple levels. Furthermore, the receiver could instead collect
richer information about its execution (e.g., Fig. 4(b)) and apply
a machine learning method, as will be explained shortly.

Although it is easy to coordinate the start time, their execution
frequencies should be chosen in consideration of the budget con-
straints. Suppose that the replenishment periods of the sender
and receiver partitions are TS and TR, respectively, where
TS < TR. First, they need to agree on the length of the receiver’s
monitoring window, during which a single observation is made.
Second, the slower replenishment rate determines the rate of
their executions. In the example, the sender can execute as fast
as the receiver because the latter’s replenishment rate is slower.
Once these are known, the sender can determine how many
times it needs to execute during a monitoring window, which
is three times in the example shown in Fig. 3.
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Fig. 4: (a) Response time-based and (b) learning-based profilings and (c) feasibility test.

b) Profiling phase: The presence of other partitions (other
than the sender and receiver) in the system, however, can
make the interpretation of a receiver’s observation ambiguous;
a long response time could be due to those other partitions
preempting the receiver partition directly. Hence, a profiling
phase is necessary. One way is to build probabilistic models
Pr(R|X = 0) and Pr(R|X = 1), where R denotes the response
time and X denotes the sender’s signal which is unknown
to the receiver. These probability distributions are estimated
in the profiling phase by the receiver from a collection of
measurements. Specifically, (i) the sender sends 0 and 1 alter-
nately during the profiling phase and (ii) the receiver collects
m measurements and divide them into two groups, Rodd =
{r1, r3, . . . , rm−1} and Reven = {r2, r4,. . . ,rm}. Since the
response time is likely to be shorter when the sender’s signal
is 0, the receiver estimates Pr(R|X = 0) (resp. Pr(R|X = 1))
from the group whose mean value is smaller (resp. larger).
Fig. 4(a) shows the probability distribution of the receiver’s
response times measured in an example system. The bottom
plot shows the profiles Pr(R|X = 0) and Pr(R|X = 1) that
the receiver learns during the profiling phase. Although they
look separated, the bottom plot suggests that when a response
time is, for instance, R = 102 ms, it is more likely that the
sender has signaled bit 0 (the long response time is actually
due to a large delay by those other than the sender), which
cannot be explained by Pr(R) (shown in the top plot) alone.

c) Communication phase: In the communication phase,
the receiver’s goal is to infer the most likely signal X from
each new observation, R. For example, the receiver can per-
form Bayesian inference: Pr(X|R) = Pr(R|X)·Pr(X)

Pr(R|X=0)+Pr(R|X=1) .
Because the receiver does not know what message the sender
is sending, it has no reason to believe that the sender treats
bit 0 differently from bit 1, hence Pr(X = 0) = Pr(X = 1).
Then, the receiver can infer X by comparing the values for
Pr(R|X = 0) and Pr(R|X = 1) given a measurement R = r:
e.g., X = 0 if Pr(R = r|X = 0) > Pr(R = r|X = 1).

d) Learning-based approach: As an alternative ap-
proach, we also present a learning-based scheme that learns
patterns of when the receiver executes. For this, the receiver
divides its monitoring window into M micro intervals and
monitors if it was able to use the CPU during the ith interval.

Specifically, for each monitoring window, an execution vector,
v = (v1, v2, . . . , vM ), is created, where each vi is set to 1 if
the receiver executed during the ith interval, or 0 otherwise.
The receiver collects a training set through the profiling phase.
Each of the execution vectors in the training set is labeled as
either 0 or 1 (i.e., sender’s signal). Fig. 4(b) shows the 0/1
heatmap of execution vectors of length M = 150 collected over
500 monitoring windows. The receiver can apply a supervised
learning method (e.g., Support Vector Machine, Random Forest)
to train a model that can predict the sender’s signal given a
newly-observed execution vector in the communication phase.

e) Motivating scenario: To exemplify a scenario in which
real-time partitions can communicate over the covert timing
channel explained above, we deployed an implementation of
the techniques on an experimental 1/10th-scale self-driving car
platform composed of 4 partitions as shown in Fig. 5. We
chose a Linux-based RTOS, LITMUSRT [19], as the hierar-
chical scheduler because Linux-based RTOSes are increasingly
adopted by high-end real-time systems. The local real-time
tasks run as ROS (Robot Operating System) [25] nodes. Hence,
explicit inter-partition communication is only allowed through
the ROS’ publish-subscribe channels over TCP/IP, which can
easily be monitored. The vision-based steering control (Π2)
publishes a steering command, and the path planner (Π3), which
computes a series of waypoints from the current position to a
destination, publishes a navigation command, both of which are
subscribed by the top-level behavior controller (Π1) to compute
and send out a driving command to the actuators. These data
are also sent to the logging partition (Π4) for post-debugging.
However, the precise location, which is a sensitive data item
processed by the planner (Π3), is not published to any partition.

Now, using the prototype system, we consider a scenario
in which an ill-intentioned system operator collects the trace
of the vehicle’s precise location by leaking it out from the
path planning partition (Π3) to the logging partition (Π4)

Table 2: Partition configuration for a prototype 1/10th-scale
self-driving car platform.

Application Ti Bi

P1 Behavior control 10 ms 1 ms
P2 Vision-based steering 20 ms 10 ms
P3 Path planning 30 ms 3 ms
P4 Data logging 50 ms 5 ms
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Figure 10: Impact of TimeDice on the accuracy of the response
time-based covert-channel.

scheduling decision, and it takes the CPU until the next
scheduling point that occurs upon task completion/arrival
or budget depletion. TimeDice implements the random-
ization algorithm (i.e., Algorithms 1–3) presented in Sec-
tion 4.1. Specifically, once a partition is “randomly” selected,
it cannot use the CPU for longer than the quantum size
(MIN_INV_SIZE in Algorithm 3, which is set to 1 ms in our
implementation). That is, unless a regular scheduling event
(e.g., task completion/arrival, budget depletion) occurs, the
randomization happens every 1 ms.

Prototype platform. We deployed our implementation on
an experimental 1/10th-scale self-driving car platform that is
composed of 4 partitions as shown in Figure XYZ.

TODO: talk about the self-driving car platform? We run
the system on Intel NUC mini PC [1] that has Core i5-7260U
processor operating at 2.20 GHz and a main memory of 8 GB.

5.2 Results
We denote by NoRandom and TimeDice the default global
scheduler of LITMUSRT and TimeDice-enabled scheduler,
respectively. Additionally, TimeDiceW (=TimeDice) and
TimeDiceU are used to distinguish respectively the weighted
and uniform random selection of partition when needed.

Covert-channel accuracy. We extend the feasibility test
presented in Section 3 by measuring the accuracy of com-

NoRandom

TimeDiceW

TimeDiceU

Figure 11: Probability distribution of the receiver’s response
time in the ‘Light load’ configuration.

munication over the covert channel when TimeDice is used.
Figure 10 shows the impact of TimeDice on the channel ac-
curacy. The results highlight the following: (i) TimeDice is
more effective when the system is more vulnerable to the
response time-based covert channel, which can be observed
from the ‘Light load’ case: TimeDiceW reduces the accuracy
from 98.53% to 57.03%, which makes the communication
over the channel not significantly better than a random guess.
This is mainly because partitions have more room to allow
priority inversion when the system is lightly loaded, hence
active partitions (including CPU idling) are more likely to
pass the candidacy test (as presented in Sec. 4.1.1); (ii) Al-
though TimeDiceU can already reduce the channel accuracy
significantly, the weighted random selection further enhances
the effectiveness of the randomization.

The effect of TimeDice can be explained best by the prob-
ability distribution of the receiver’s response times under
different settings shown in Figure 11. First of all, TimeDiceU
tries to make Pr(r|x = 0) and Pr(r|x = 0) similar to each other,
thus making it ambiguous to infer the most likely signal x
given a new measurement r. However, as can be seen from the
middle plot, the temporal locality, albeit reduced, still remains
even with TimeDiceU. The weighted-random selection, as
explained in Section 4.1.2, spreads the execution range of the
receiver partition, thus finally little to no information can be
gained from the probabilistic models.

Any way to measure a metric from the pdfs?
Application to self-driving car (if time allows)

Task responsiveness. As analyzed in Section 4.2, TimeDice
affects the task responsiveness. Hence, we evaluate the cost
by measuring task response times from the 5-partition system
shown in Table 3. Task priorities follow Rate Monotonic pol-
icy [25], i.e., a task with shorter period is assigned higher prior-
ity, and we assume implicit deadline (=minimum inter-arrival

9

Fig. 5: Prototype 1/10th-scale self-driving car platform.



over a covert channel. For this, we applied the learning-based
technique presented above. In particular, the planning task in
Π3 uses the period of 50 ms and modulates its execution
length every three arrivals. At the receiver task in Π4, we
collected 3000 samples for training and evaluated its accuracy
against 2000 test samples. Under this setting, the pair was able
to achieve channel accuracy of 95.23%. However, it should
be noted that an engineering effort would be required when
applying these techniques to a full-scale system because it
would create a higher level of channel noise. This demonstration
highlights that systems that employ priority-based hierarchical
scheduling can be vulnerable to covert timing channels.

f) Feasibility test: To show the feasibility of the scenarios
presented above in a general setting, we run an example system
of five synthetic partitions, Π = {Πi : 1 ≤ i ≤ 5}, on the
same platform. The parameters are shown in Table I in Sec. V.
The partitions are assigned different replenishment periods to
represent various base-rate groups and also to remove potential
bias due to the particular selection of the periods. Each partition
is assigned a budget of size Bi = 0.16Ti, hence the total CPU
utilization equals 80%. Π2 is the sender and Π4 is the receiver.
The tasks in the other three partitions create unpredictable noise
on the channel by varying their periods and execution times
randomly (by up to 20%).

The receiver task measures its response time every 150 ms
(i.e., 3 · T4) and thus executes a code block that would take
three full budget-replenishments of Π4 in the worst-case. The
sender partition consumes its budget as much (resp. little) as
possible for three consecutive times to signal bit 1 (resp. 0).
Fig. 4(c) shows that under this setting, the accuracy of the
covert channel reaches about 95.7%. Also, such a high accuracy
can be achieved without requiring a large number of samples
for profiling. Higher accuracy can be achieved if the system is
lightly loaded and thus creates less noise on the channel. We
performed a similar experiment as the base setting above but
with a half utilization: partition budgets and task execution times
are cut by half. As shown in Fig. 4(c), the channel achieves
98.6% accuracy. In fact, as will be shown in later sections, our
solution is more effective in such a scenario that is advantageous
to the adversary.

We also evaluated the learning-based approach. Upon collect-
ing a training set of execution vectors, the receiver applies the
Support Vector Machine (SVM) [26] with Radial Basis Function
kernel to train a classifier that can predict the sender’s signal
from an execution vector of the receiver. The learning-based
approach achieves improved accuracy for both configurations,
as shown in Fig. 4(c) (? markers). This is because an execution
vector embeds more information than a response time; in fact,
the latter can be derived from the former.

g) Adversary model: We assume any partition can be
malicious and able to control the timing of its local tasks pre-
cisely. For instance, tasks can be launched at precise times using
facilities originally intended to manage precedence constraints
among tasks and to align task arrivals with certain events such
as periodic retrieval of sensor data. With such capabilities, the
adversary can maximize the chance for successful communi-

cation over the covert channel. In addition, we do not address
microarchitectural timing channels [27]–[29]. The algorithmic
timing channel addressed in this paper can exist even if the
microarchitectural timing channels were completely removed.

h) Objective of the paper: The covert timing channel
presented above can be removed by a static time partitioning,
such as the table-driven scheduling in IMA (Integrated Modular
Avionics) architecture of ARINC 653 standard [1], because no
two partitions can be active at any given instant. However, as
studied in [11], [14], static partitioning schemes suffer from low
CPU utilization. To remove the covert timing channel between
non-static time partitions, (physical) time passage due to one’s
execution must not be observable by another. BLINDER [11]
is based on a strong assumption that all sources of physical
time are removed. However, in modern computer systems, many
precise time sources are available, and hence it is difficult to
eliminate every source of physical time. The goal of this paper is
thus to reduce the capacity of the covert timing channel between
real-time applications that (i) are dynamically partitioned and
(ii) run in an environment where it is impossible to eliminate
every source of physical time, (iii) while guaranteeing the real-
time requirements (i.e., schedulability) of the partitions.

IV. SCHEDULABILITY-PRESERVING PARTITION SCHEDULE
RANDOMIZATION

The covert timing channel presented in Sec. III is made
possible by the priority relation between the sender and receiver
partitions — the former, who has a higher priority, can affect the
latter’s execution in whatever way it wants. Hence, our solution,
the TIMEDICE algorithm, is to invert the relationship randomly
on the fly while preserving the partition-level schedulability;
partitions are schedulable (Definition 1) if they were so before
any randomization. Fig. 6 shows actual schedule traces for an
example configuration when (a) partitions are scheduled by a
fixed-priority policy (i.e., no randomization) and (b) they are
randomized by TIMEDICE during run-time.

A. TIMEDICE Algorithm

The TIMEDICE algorithm picks a partition in a non-
deterministic way instead of selecting the highest-priority par-
tition. This priority inversion, however, could make some parti-
tions unschedulable (i.e., missing their deadlines, thus under-
using their budgets) if the candidates are chosen in an un-
principled way. Nonetheless, partition schedule should not be
conservatively randomized. Hence, the key challenge lies in
determining (a) which partitions are allowed to execute, and
(b) how long a priority inversion is allowed. The TIMEDICE
algorithm, shown in Algorithm 1, consists of two steps: (i)
candidate search, which forms a list of candidate partitions
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(b) With TIMEDICE.
Fig. 6: Actual schedule trace for a 3-partition example.



Algorithm 1: TimeDice(Π, t)
Lt = (Π(1),Π(2), . . . ,Π(n),ΠIDLE) // active partitions

Step 1 – Candidate Search
LC ← {Π(1)} // Candidate list
for Π(i) = Π(2), . . . ,Π(n),ΠIDLE do

if CandidacyTest(Π(i), t) == False then
Break // No need to test for Π(i+1), · · ·

end
LC ← LC ∪ {Π(i)}

end

Step 2 – Random Selection
Πx ← Select one from LC

return Πx

Algorithm 2: CandidacyTest(Π(i), t)
for Πh ∈ hp(Π(i))− hp(Π(i−1)) do

if SchedulabilityTest(Πh, t) == False then
return False

end
end
return True // All hp(Π(i)) are schedulable

allowed to take the CPU, and (ii) random selection, which
selects one randomly from the list.

1) Step 1 – Candidate search: Algorithms 1 and 2 sum-
marize the candidate search process. Suppose we are to make a
scheduling decision at time t. Let Lt = (Π(1),Π(2), . . . ,Π(n))
be the list of active partitions, sorted in decreasing order of
priority. Then, for each Π(i), starting from the highest priority,
TIMEDICE tests if it can be a candidate. It passes the candidacy
test if its execution at time t would still allow to meet deadlines
for all of the higher-priority partitions, hp(Π(i)), including
partitions that are not active at present. If any of them would
miss its deadline, Π(i) cannot be added to the candidate list,
and the search process stops for time t. This is because if a
higher-priority partition Πh would miss its deadline due to the
execution of Π(i), Πh would miss the deadline due to Π(i+1)

anyway. Note that the highest-priority active partition, Π(1), is
always a candidate because no priority inversion occurs due
to its execution. Meanwhile, if all of the active partitions pass
the candidacy test, an additional test is performed to check if
the CPU can be idled. This can be implemented by adding an
‘imaginary’ idle partition, ΠIDLE , and treating it as if it is
another active partition, as shown in Algorithm 1. If passed, it
is added to the candidate list.

a) Detailed process of candidate search: Suppose we
are testing if Π(i) can be a candidate for time t. In order to
check for this, the schedulability test (Algorithm 3) is performed
against each Πh ∈ hp(Π(i)). Πh is schedulable if and only if
its worst-case busy interval does not end past its deadline. The
busy interval begins with a priority inversion by Π(i) at time t:

Definition 2. The level-Πh busy interval with base time t and
initial window of size w, denoted by Wh,t(w) (shown in Fig. 7),
is a time window [t, t+ q) that is comprised of the following:

(a) a priority inversion of size w by Π(i) during [t, t+ w),
(b) all remaining execution budgets of hp(Πh) as of time t,
(c) all the future executions of hp(Πh) that will arrive on or

Algorithm 3: SchedulabilityTest(Πh, t)
w ← MIN INV SIZE // length of priority-inversion
W 0 ← w + Bh(t) +

∑
Πj∈hp(Πh) Bj(t) // Eq. (2)

deadline← rh,t + Th // rh,t + 2Th if Πh is inactive

while Wk+1! = Wk do
Wk+1 ←W 0 +

∑
Πj∈hp(Πh)d(Wk(w)− oj,t)/Tje0 ·Bj

if Πh is inactive then
Wk+1 ←Wk+1 + d(Wk(w)− oh,t)/The0 ·Bh

end
if Wk+1 > deadline then

return False // Potential deadline miss
end

end
return True // Πh is schedulable
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Fig. 7: Busy interval Wh,t(w) is extended as long as Πh is
delayed by hp(Πh). Wh,t(w) = (a) + (b) + (c) + (d).

after t and are used up by the end of the busy interval,
(d) the remaining execution budget of Πh itself.

Wh,t(w) = q = (a) + (b) + (c) + (d) is the length of the busy
interval, and the end of the interval, i.e., t+ q, is the first time
instant when Πh itself and all of hp(Πh) that arrive during
[t, t + q) use up their budgets if [t, t + w) is taken by a low-
priority partition Π(i).

Informally speaking, the level-Πh busy interval represents
how long it would take, in the worst-case, for Πh to use up its
remaining budget if it allows for a priority inversion of length
w from time t to t + w. Finding Wh,t(w) can be viewed as a
simulation of the worst-case schedule from time t with a priority
inversion of size w.
Wh,t(w) for given t and w is computed iteratively as shown

in Algorithm 3. Note that at time t, the amount of remaining
budgets of all partitions (i.e., (b) and (d) in Fig. 7) are known.
The worst-case busy interval is when all the future executions
of hp(Πh) (i.e., (c) in Fig. 7) arrive as frequently as possible.
This happens if they use up their budgets as soon as they
become available. Since the last replenishment time of each
Πj ∈ hp(Πh) before t, denoted by rj,t, is already known at
time t, the relative offsets of their next replenishment time from
t are known and calculated by oj,t = rj,t+Tj−t. Then, Wh,t(w)
is computed by the following iterative equation (similar to the
approach to finding response time [30]):

W k+1
h,t (w) = W 0

h,t(w) +
∑

Πj∈hp(Πh)

⌈
W k
h,t(w)− oj,t

Tj

⌉
0

Bj , (1)
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where dxe0 = max(dxe, 0). Here, the summand represents
the interference from the higher-priority partitions (i.e., (c) in
Fig. 7). W 0

h,t(w), i.e., the initial busy interval, is comprised of
(a), (b), and (d) in Fig. 7:

W 0
h,t(w) = w +Bh(t) +

∑
Πj∈hp(Πh)

Bj(t). (2)

Using the iterative procedure, Wh,t(w) is computed as follows:

Wh,t(w) =

{
W k+1

h,t (w) = W k
h,t(w) if converging for some k

∞ if not converging
.

It is the worst-case (i.e., longest possible) level-Πh busy interval
that starts with an execution of size w at t by a lower-
priority partition. The scheduler tests if Πh would still meet its
deadline with the priority inversion in addition to the maximum
interference from hp(Πh) by checking if the worst-case busy
interval ends by its deadline, i.e., the next replenishment time:

t+Wh,t(w) ≤ rh,t + Th. (3)

Note that the busy-interval analysis presented above assumes no
synchronization between partitions (e.g., for overt inter-partition
communication as explained in Sec. II).

b) Indirect interference on inactive Πh: The analysis
above assumes that Πh is active at time t. One may overlook the
case when Πh is inactive, concluding that a priority inversion
at present would not affect the future execution of Πh; thus,
no schedulability test for the inactive Πh is needed. However,
the scheduler also needs to test if the upcoming execution of
Πh, shown in Fig. 8, who is not active at present but would
arrive at the next replenishment time rh,t + Th at the earliest,
would meet its upcoming deadline rh,t + 2Th. The reason is
that a priority inversion at time t by a lower-priority partition
can indirectly interfere with the future execution of Πh: higher-
priority partition(s), i.e., hp(Πh), are delayed by the priority
inversion from t to t + w, which creates a cascading delay
that interferes with the execution of Πh that will arrive in
the future. Hence, the schedulability test should be performed
against inactive partitions as well. For such a case, Eq. (1) can
be simply extended, as shown in Algorithm 3, to include the
upcoming execution of Πh as another higher-priority partition
(i.e., part of (c) in Fig. 7). If the busy interval ends before Πh’s
upcoming arrival at rh,t + Th, the new term would be zero.

c) Search complexity: The schedulability test needs to
be performed at most once for each partition in the system.
Thus the search complexity is O(|Π|). This can be explained
better with an example shown in Fig. 9. Suppose there are 9

Π! Π" Π# Π$ Π% Π& Π' Π(𝚷:

ℒ𝒕: Π(!) Π(,)Π(") Π(#)
: SchedulabilityTest(Π-, t)

𝐼𝑑𝑙𝑒

Π,

Fig. 9: For Π(i)’s candidacy test, we only need to check those
Πh ∈ hp(Π(i)) that have not been examined when testing
Π(i−1).

partitions in the system, and Lt = (Π3,Π5,Π6,Π9) are active
at present. First, Π(1) = Π3, and hence no schedulability test
is performed because, as explained earlier, its execution does
not make a priority inversion. Now, for Π(2) = Π5, we need
to check if its execution for a length of w could make Π(1) =
Π3 potentially unschedulable. We also need to check for Π4,
which is inactive, due to a possibility of the indirect interference
explained above. For Π(3) = Π6, we do not need to test for Π3

and Π4 again because if they are schedulable in the presence
of Π(2)’s priority inversion, they are still schedulable when it
is made by Π(3). That is, from their point of view, it does not
matter who is creating a priority inversion, which is why the
analyses in Eq. (1) and Eq. (2) depend only on the size of a
priority inversion, w, not on who causes the priority inversion.
Hence, for each Π(i) we only need to consider those Πh ∈
hp(Π(i)) that have not been examined when testing Π(i−1).

2) Step 2 – Weighted random selection of partition: Once
a list of candidate partitions is found, the scheduler picks one
randomly as shown in Algorithm 1. One may pick a partition
uniform randomly: each candidate has an equal chance of 1

|LC | .
Counter-intuitively, this can make a schedule less randomized.
Consider an example in Fig. 10 in which a selection is being
made between two partitions, LC = {Π1,Π2}, at time t.
Ignoring the idling option, the probability of Π1 being selected
for t is 1/2. If another selection is made at t+1, the probability
is again 1/2. Hence, the probability that Π1 would use up its
budget during [t, t + 2) is 1/4, which is high considering the
time until the deadline. Hence, it would likely finish too early.

In order to alleviate such biases, we propose a weighted
selection process that considers the remaining budget and time
until the deadline. Suppose a selection is made at time t. For
each candidate Πi ∈ LC , the scheduler computes the remaining
utilization:

ui,t = Bi(t)/(di,t − t),
where di,t is the deadline of Πi as of time t (i.e., the next replen-
ishment time), di,t = ri,t +Ti, as in Eq. (3). Then, each candi-
date is assigned a normalized weight ωi,t = ui,t

/∑
Πx∈LC

ux,t.
If the CPU can be idled, the option is assigned a weight of
1 − ∑Πx∈LC

ux,t. Then, the scheduler performs a weighted
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random selection based on the ωi,t values. This process can
be viewed as a type of lottery scheduling [31] with the ticket
allocation proportional to the remaining utilization.

Note that the weight reflects how urgent a partition is. That is,
the weight is higher if the remaining budget is larger and/or the
deadline is closer. The following theorem shows why assigning
weights inversely proportional to the remaining utilization can
actually increase the degree of temporal locality:

Theorem 1. Giving a higher weight to a partition with a lower
remaining utilization increases the degree of temporal locality.

Proof: Let us consider a 2-candidate situation, LC =
{Πj ,Πk}, for time t and assume that uj,t > uk,t. Suppose Πk,
who has a smaller remaining utilization, is selected and runs
until t+ 1. Hence, Bk(t+ 1) = Bk(t)− 1. Then, the difference
in the remaining utilization between the two grows:

uj,t+1 =
Bj(t+ 1)

dj,t − t− 1
=

Bj(t)

dj,t − t− 1
>

Bj(t)

dj,t − t
= uj,t,

uk,t+1 =
Bk(t+ 1)

dk,t − t− 1
=

Bk(t)− 1

dk,t − t− 1
<

Bk(t)

dk,t − t
= uk,t.

Because uj,t+1−uk,t+1 > uj,t−uk,t, the chance that Πk would
be selected again for time t+ 1 becomes larger.

Hence, higher weights should be given to those partitions
with larger remaining utilization. This is because the weight of
a partition decreases (resp. increases) if it is selected (resp. not
selected), which steers the weights of candidate partitions in
the direction towards being leveled as time proceeds. There-
fore, one’s budget consumption is likely to spread across a
wide range, and accordingly, the chance of premature budget
exhaustion, thus temporal locality, is reduced. As will be shown
in Sec. V, the weighted random selection further increases the
level of randomness in a partition schedule. The effect is more
profound especially when the system is lightly loaded, which
is when an adversary can achieve a higher communication
accuracy, as discussed in Sec. III.

B. Schedulability Analysis

The schedulability of real-time tasks is tightly dependent on
a particular choice of partition-local scheduling policy as well
as budget replenishment policy. Hence, we base our analysis
on the fixed-priority preemptive local task scheduling [32] on
which our implementation is based. Let us first consider the
case without TIMEDICE. The worst-case response time of each
task can be computed by the analysis in [33]. In a nutshell,
the worst-case situation for task τi,j of partition Πi happens
when (a) it arrives, with all the higher-priority tasks in the
same partition, when Πi’s budget has been depleted as soon as
possible; (b) their subsequent invocations arrive as frequently as
possible; and (c) Πi’s budget supply is delayed as maximally
as possible by higher-priority partitions. That is, the analysis
finds how many budget replenishments are needed to serve the
maximum workload from the local tasks.

Now, when partitions are scheduled by TIMEDICE, the worst-
case is when the partition is maximally delayed in the last part
towards the end of the period, as depicted in Fig. 11. It can be
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Fig. 11: The worst-case response time of τi,j when partition
schedule is randomized by TIMEDICE.

computed by the following iterative procedure:

rk+1 = Li,j(r
k) +

⌈
Li,j(r

k)

Bi

⌉
(Ti −Bi), (4)

where Li,j(rk) is the worst-case task load demanded by task
τi,j and those who have higher-priority than τi,j in the same
partition from time t (when they arrive together) until t+(Ti−
Bi) + rk, and it is calculated as follows [33]:

Li,j(r
k) = ei,j +

∑
τi,x∈hp(τi,j)

⌈
(Ti −Bi) + rk

pi,x

⌉
ei,x, (5)

where ei,∗ and pi,∗ are the worst-case execution time and
the minimum inter-arrival time of task τi,∗, respectively. r0 in
Eq. (4) can be initialized to ei,j . Simply speaking, Eq. (4) finds
how many budget replenishments of partition Πi are needed to
serve the workload of amount Li,j(rk). The worst-case response
time (WCRT) of task τi,j is wcrti,j = (Ti − Bi) + rk when
rk converges, and the task is schedulable if and only if it is
not greater than the deadline. Notice that the WCRT of a task
depends only on the parameters of the partition that it belongs
to. Thanks to this modularity, the partition developer can use
the WCRT analysis presented here to test in advance whether
the tasks will meet their deadlines when TIMEDICE is used.

V. EVALUATION

A. Implementation
TIMEDICE is implemented in the latest version of LITMUSRT

[19] with kernel version of 4.9.30. It is applied to the sporadic-
polling server of LITMUSRT which is a variant of the sporadic-
server algorithm [16]. In fact, TIMEDICE can also be ap-
plied to other priority-based server algorithms such as periodic
server [15] and deferrable server [34]. Meanwhile, TIMEDICE
does not affect the local scheduling policy.

The default global scheduler of LITMUSRT selects the
highest-priority partition among the active ones at every
scheduling decision, and it takes the CPU until the next schedul-
ing point that occurs upon task completion/arrival or budget
depletion. When TIMEDICE is enabled, a partition (which is
randomly selected) can use the CPU for the quantum size
(MIN INV SIZE in Algorithm 3, which is set to 1 ms in our
implementation) unless a certain event (e.g., task completion/ar-
rival, budget depletion) occurs before the end of the quantum.
Hence, the randomization happens approximately every 1 ms.
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The implementation is deployed to the 1/10th-scale self-
driving car platform explained in Sec. III. The system runs
on Intel NUC mini PC [35] with Core i5-7260U processor
operating at 2.20 GHz and a main memory of 8 GB.

B. Evaluation Results
We denote by NoRandom and TimeDice the default global

scheduler of LITMUSRT and TIMEDICE-enabled scheduler, re-
spectively. Additionally, TimeDiceW and TimeDiceU are used to
distinguish the weighted and uniform random selection of parti-
tion, respectively. By default, TimeDice indicates TimeDiceW.

1) Covert-channel accuracy: We extend the feasibility test
presented in Sec. III by measuring the accuracy of communica-
tion over the covert channel when TIMEDICE is used. Fig. 12
shows the impact of TIMEDICE on channel accuracy. The x-
axis is the number of monitoring windows used for profiling.
The results highlight the following: (i) TIMEDICE is more
effective when the system is more vulnerable to the covert
channel, which can be observed from the ‘Light load’ case
(bottom plots): TimeDiceW reduces the accuracy from 98.62%
and 98.99% to 57.49% and 60.32% for the response time-based
and execution vector-based approaches, respectively, indicating
that the communication over the channel is not significantly
better than a random guess (50%). This is mainly because
partitions have more room to allow priority inversion when
the system is lightly loaded, hence active partitions, including
CPU idling, are more likely to pass the candidacy test (as

NoRandom

TimeDiceW

TimeDiceU

Fig. 14: Probability distribution of the receiver’s response time
in the light load configuration.

presented in Sec. IV-A1); (ii) Although TimeDiceU can already
reduce the communication accuracy significantly, the weighted
random selection further enhances the effectiveness of the ran-
domization; (iii) the learning-based approach that uses execution
vectors achieves higher accuracy than the response time-based
approach even when partition schedule is randomized. This is
because, as discussed in Sec. III, it contains richer information
about the receiver’s execution timing. However, TIMEDICE can
still defend effectively against such a learning-based approach
because with TIMEDICE, the receiver’s execution is scattered
across a wider range as shown in Fig. 13. Unlike the cases in
Fig. 4(b), the sender’s varying signal (i.e., left vs right) does not
create distinctive patterns in the receiver’s execution vectors.

The effect of TIMEDICE can be explained best by the
probability distribution of the receiver’s response times shown
in Fig. 14. First of all, as can be seen from the middle plot,
TimeDiceU makes Pr(R|X = 0) and Pr(R|X = 1) similar to
each other, thus making it ambiguous to infer the most likely
signal X given a new measurement R. However, the temporal
locality, albeit reduced, still remains even with TimeDiceU. The
weighted-random selection (TimeDiceW) spreads the receiver’s
execution range, thus finally little to no information can be
gained from the probabilistic models.

Although TIMEDICE increases the uncertainty in the
partition-level schedule by construction, we quantitatively eval-
uate its impact from an information-theoretic view. In particular,
we measure the channel capacity [36], which is defined by
C = maxp(X)(H(X) − H(X|R)), where p(X) is the input
distribution, and H(X), which is the entropy of channel input
X , is maximized when p(X) is a uniform distribution. It rep-
resents the average reduction in uncertainty about the channel
input X after observing a response time R. Here, H(X|R) is
the channel noise and can be calculated by

H(X|R) =
∑
R

∑
X

Pr(X,R) log
Pr(R)

Pr(X,R)
. (6)

Now, to measure the channel capacity, we consider a binary
signal X = 0, 1 that follows a uniform distribution. Fig. 15
compares the channel capacity calculated from 10,000 samples.
It is upper-bounded by H(X) = 1 as X is a binary signal
following a uniform distribution, which is when the uncertainty
about the input signal X is completely removed once observing
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R, i.e., H(X|R) = 0. As the other extreme, it is lower-bounded
by 0, which is achieved when H(X) = H(X|R); that is, no
information about the input X is conveyed by an observation
R (e.g., when using a static partitioning such as TDMA). The
unit is in the bits per monitoring window. The actual ‘bits
per second’ depends on the execution frequency of the sender
and the receiver. If the frequency of the monitoring window is
f Hz and a single bit is transmitted per window, the results
in Fig. 15 can be interpreted that about 0.8f–0.9f bits can
be sent over 1 second under NoRandom and about 0.1f–0.2f
bits per second under TIMEDICE. As can be seen from these
results, TIMEDICE significantly reduces the channel capacity
by introducing high noise H(X|R) into the channel. This can
be explained by H(X|R) =

∑
r∈R Pr(R = r)H(X|R = r)

that rewrites Eq. (6); TIMEDICE makes (i) the set of possible
response times, i.e., R, larger and (ii) the difference between
Pr(X = 0|R = r) and Pr(X = 1|R = r) smaller for each
particular r, i.e., H(X|R = r) increases.

We also performed the same experiment on the 1/10th-
scale self-driving car platform explained in Sec. III, but with
TIMEDICE enabled. It was able to drop the accuracy of the
covert channel between the path planning partition and the
logging partition to 56.30% (from 95.23%).

2) Task responsiveness: We evaluate the cost of TIMEDICE
on task responsiveness by measuring task response times from
the 5-partition system shown in Table I. Task priorities follow
Rate Monotonic policy [32], i.e., a task with a shorter period
is assigned a higher priority, and we assume implicit deadline
(=minimum inter-arrival time). The real-time tasks are generated
by the rtspin tool of LITMUSRT. We run the system for 10
hours for NoRandom and TimeDice, respectively.

The box plots in Fig. 16 show the spreads and centers of the
response time measurements. We can first see that the range
of response times is likely to extend with TIMEDICE, which
indicates increased uncertainties in partition executions. The
trend stands out more clearly in the high-priority partitions.

TABLE I: Partition replenishment period (Ti) and task’s min-
imum inter-arrival time (pi,j) for the evaluation of response
times. Partition budget Bi and task’s worst-case execution time
ei,j are proportional to Ti and pi,j , respectively: Bi = αTi,
ei,j = βpi,j . By default, α = 16% and β = 3%. Pri(Πi) >
Pri(Πi+1) and Pri(τi,j) > Pri(τi,j+1).

τi,1 τi,2 τi,3 τi,4 τi,5

Π1 (20 ms) 40 ms 80 ms 160 ms 320 ms 640 ms
Π2 (30 ms) 60 ms 120 ms 240 ms 480 ms 960 ms
Π3 (40 ms) 80 ms 160 ms 320 ms 640 ms 1280 ms
Π4 (50 ms) 100 ms 200 ms 400 ms 800 ms 1600 ms
Π5 (60 ms) 120 ms 240 ms 480 ms 960 ms 1920 ms
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Fig. 16: Task response times when partitions are not randomized
(NR) or randomized by TIMEDICE (TD).

TABLE II: Analytic and empirical worst-case response times
(in ms). The tasks are schedulable because WCRT≤ Deadline.

NoRandom(NR) TimeDice(TD) TD− NR

Deadline Anal. Empr. Anal. Empr. Anal. Empr.
τ1,1 40.00 18.00 18.09 34.80 33.63 16.80 15.54
τ1,2 80.00 37.20 37.36 55.20 50.11 18.00 12.75
τ1,3 160.00 60.00 60.01 76.80 75.67 16.80 15.66
τ1,4 320.00 158.40 157.11 235.20 165.98 76.80 8.87
τ1,5 640.00 598.80 455.08 616.80 469.95 18.00 14.87

τ2,1 60.00 30.20 30.36 52.20 46.14 22.00 15.78
τ2,2 120.00 59.00 58.35 82.80 69.61 23.80 11.26
τ2,3 240.00 93.20 92.23 115.20 110.87 22.00 18.64
τ2,4 480.00 330.80 232.81 352.80 235.01 22.00 2.20
τ2,5 960.00 903.20 655.69 925.20 624.29 22.00 -31.40

τ3,1 80.00 44.00 43.98 69.60 58.96 25.60 14.98
τ3,2 160.00 84.80 79.55 110.40 84.77 25.60 5.22
τ3,3 320.00 128.00 126.01 153.60 147.90 25.60 21.89
τ3,4 640.00 444.80 284.35 470.40 299.19 25.60 14.84
τ3,5 1280.00 1208.00 735.69 1233.60 823.93 25.60 88.24

τ4,1 100.00 59.40 59.44 87.00 72.29 27.60 12.85
τ4,2 200.00 110.40 105.21 138.00 101.02 27.60 -4.19
τ4,3 400.00 167.60 163.24 192.00 177.71 24.40 14.47
τ4,4 800.00 560.40 354.82 588.00 358.25 27.60 3.43
τ4,5 1600.00 1517.60 812.75 1542.00 819.43 24.40 6.68

τ5,1 120.00 79.60 79.20 104.40 66.94 24.80 -12.26
τ5,2 240.00 145.60 128.33 165.60 110.18 20.00 -18.15
τ5,3 480.00 210.40 196.74 230.40 196.10 20.00 -0.64
τ5,4 960.00 685.60 436.94 705.60 422.19 20.00 -14.75
τ5,5 1920.00 1830.40 911.86 1850.40 983.67 20.00 71.81

Without any randomization, the high-priority partitions tend to
experience little or no delay when they have budget and tasks
to run. Hence, their tasks are likely to be served quickly. With
the randomization by TIMEDICE, those partitions experience
increased delays even when there are no other partitions, and so
do their tasks. For the same reason, the average-case response
times also increase in most cases, and the largest increase is
34.03% which is observed from τ5,2.

Table II compares the worst-case response times (WCRTs)
that are analytically computed (columns labeled as Anal.) and
experimentally measured (columns labeled as Empr.). The
real-time requirement states that the WCRT of a task must



TABLE III: Impact of TIMEDICE on the responsiveness of the
prototype self-driving applications. Units are in ms.

NoRandom TimeDice

Deadline avg std max avg std max

Behavior control 20 0.91 2.51 10.04 2.45 2.51 18.03
Vision-based steering 50 10.55 3.85 33.92 23.20 3.69 34.69
Path planning 50 0.62 0.79 6.35 1.06 2.29 19.83

TABLE IV: End-to-end latency of TIMEDICE’s randomization.

Percentile 25% 50% 75% 99% 100%
|Π| = 5 0.609 us 0.938 us 1.430 us 6.917 us 38.726 us
|Π| = 10 1.156 us 2.079 us 3.266 us 20.500 us 54.915 us
|Π| = 20 3.602 us 5.691 us 9.052 us 52.673 us 73.217 us

not exceed the deadline. The system designer can perform a
schedulability test before deploying the system by calculating
the analytic WCRT and checking if it meets the deadline. The
analytic WCRTs for NoRandom cases are calculated by the
analysis in [33] while those for TimeDice are calculated by
the analysis presented in Sec. IV-B. Notice first that because
the analyses assume zero kernel-overhead, the empirical WCRT
can be slightly higher than what is numerically computed, albeit
in rare cases (e.g., τ1,1). The results first highlight that all tasks
are schedulable in both cases. Note, however, that this does not
mean that TIMEDICE always preserves the task schedulability.
Depending on partition and task configurations, some tasks may
be unschedulable in the worst-case due to the additional delay in
the randomized partition-level schedule. Nevertheless, in most
cases, the difference in the analytic WCRT did not exceed one
replenishment period of the partition that each task belongs to.
As explained in Fig. 11 in Sec. IV-B, this follows the worst-
case assumption that the last part of task execution is maximally
delayed by Ti −Bi, whereas this delay can be as short as zero
when partitions are not randomized. Hence, the difference is
unlikely to exceed Ti as a rough bound unless a substantially
large amount of load is added due to the extended busy interval.

Meanwhile, the empirical WCRTs of some tasks (e.g., τ2,5)
are smaller with TIMEDICE than with NoRandom. This is simply
because the true worst cases were not captured although we
allowed tasks to vary the execution times and inter-arrival times
for added variations and also ran the system for long hours.
As analyzed earlier, tasks cannot have shorter WCRTs when
partition schedule is randomized by TIMEDICE. If the system
was run indefinitely, the difference in the empirical WCRTs (the
last column in Table II) would have been non-negative.

Lastly, we evaluate the impact of TIMEDICE on the respon-
siveness of the tasks running on the prototype platform (Fig. 5).
Note that the data logger is a collection of callback functions for
logging data received from the others. Hence, we do not mea-
sure its response time. Similar to the benchmark results above,
Table III shows that the average-case and (empirical) worst-
case response times increase under TIMEDICE. Nevertheless,
the tasks still meet their real-time requirements.

3) Scheduling overhead: TIMEDICE incurs overhead on
the partition scheduler as it performs a candidate search with
schedulability test at each scheduling decision. Hence, we
measure the associated cost using the system in Table I.
In addition to the 5-partition configuration, we double and

𝚷 = 5

𝚷 = 10

𝚷 = 20

Fig. 17: Overhead of TIMEDICE operations (measured every
second) for different number of partitions (|Π| = 5, 10, 20).

TABLE V: Number of scheduling decisions and partition-
switches for different number of partitions (|Π| = 5, 10, 20).

# Decisions/sec # Switches/sec
NoRandom TimeDice NoRandom TimeDice

|Π| = 5 441.50 1333.69 247.55 911.86
|Π| = 10 821.59 1725.93 467.85 1243.38
|Π| = 20 1592.71 2594.09 907.59 1986.96

quadruple the number of partitions by duplicating the partitions
while adjusting the partition budgets and task execution times
accordingly so that the total system utilization remains the same.

Table IV summarizes the end-to-end latency of Algorithm 1,
that is, the time taken to pick a partition from the active ones.
The results can be interpreted better by taking into account the
frequency of scheduling decisions. Hence, we measured time
spent by the TIMEDICE operations over every second. Fig. 17
shows that the scheduler spends about 1.7 ms in total over 1000
ms (thus overhead of 0.170%) on randomizing the schedules of
5 partitions. Similarly, the overhead for |Π| = 10 and |Π| = 20
are around 0.535% and 2.338%, respectively.

The randomization also causes more frequent scheduling
decisions and partition switches than the no-randomization
case. Table V shows the numbers of scheduling decisions
and partition switches per unit time measured by running
the 5, 10, 20-partition systems. One thing to notice from
the results is that while the rate of decisions proportionally
increases with the system size under NoRandom, it does not with
TimeDice. This is due to the quantum-based randomization
(i.e., MIN INV SIZE = 1 ms in Algorithm 3). Recall that
scheduling decisions are also made upon certain events such
as task arrival/completion and budget depletion. In theory,
TimeDice may demand 1000 additional scheduling points,
which matches the trend shown in the results in Table V.

C. Comparison to BLINDER

BLINDER [11] cannot defend against the type of covert
channel presented in this paper because it requires a rather
strong assumption that every precise time source must be
eliminated. Otherwise, as demonstrated in Sec. III, partitions
can directly perceive (from the physical time) interference from
other partitions. Even a networking operation (e.g., the data
logging partition in Fig. 5 performing a remote logging) can
serve as an external time source. Unlike BLINDER, TIMEDICE
can be applied to such a system.

Although the result is self-evident, we implemented the
BLINDER algorithm and performed the feasibility test in Sec. III
again. For the base configuration and 10,000 samples for profil-
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(a) Without TimeDice, X=0 (b) Without TimeDice, X=1

(c) With TimeDice, X=0 (d) With TimeDice, X=1

Fig. 18: The covert channel scenario from BLINDER [11]. The
sender τS,1 varies its length to signal X = 0 or 1. The receiver’s
inference is based on the order between τR,1 and τR,2.

ing, the accuracy is 95.67% and 97.73% for the response time-
based and learning-based approaches, respectively, which are
the same as what NoRandom achieved, indicating that BLINDER
cannot defend against the covert channel presented in this paper.

Conversely, can TIMEDICE defend against the type of covert
channel considered in [11]? The covert channel that BLINDER
defends against uses the order between two local tasks, τR,1 and
τR,2, in the receiver partition as shown in Fig. 18(a) and (b).
The order between τR,1 and τR,2 is influenced by the length of
the sender’s preemption. With TIMEDICE, a long preemption by
the sender (i.e., X=1) is likely to be split in a random manner
as shown in Fig. 18(d); hence the receiver is likely to make a
wrong prediction on the sender’s signal.

Even if every source of precise time were eliminated,
BLINDER requires each partition to faithfully implement the
BLINDER’s local-schedule transformation algorithm. Hence,
partition-local schedulers should be trustworthy. Therefore,
BLINDER cannot be applied to systems where local schedulers
are not modifiable (e.g., partition supplied as a binary exe-
cutable). On the other hand, TIMEDICE can be applied to such
systems because it is a global-schedule transformation tech-
nique; hence, only the system integrator needs to be trustworthy.

As TIMEDICE allows the existence of physical time sources,
it cannot reduce the channel capacity to zero (as shown in
Fig. 15). This implies that communication over covert timing
channel is still possible but at a slow rate. Hence, TIMEDICE is
useful when the value of information leaked through a channel
is transient – i.e., it diminishes faster than communication speed.

VI. RELATED WORK

Real-time hierarchical scheduling has been studied mostly
by means of isolation mechanism for temporal reasoning, i.e.,
modular schedulability analysis [15], [33], [37], whereas little
to no attention has been paid to the security implication of time-
partitioning schemes. Yoon et al. [11] address an algorithmic
timing channel through hierarchical scheduling that exploits
changes in the order of partition-local tasks. As explained in
detail in Sec. V-C, BLINDER can be used only when no precise
time sources are available. Fuzzy-time [12], [13] and Virtual
time [38], [39] make system clocks imprecise, which may
degrade the usability of applications. In contrast, TIMEDICE
adds noise to the execution timing, not to the time source.

Scheduler timing channels have been studied mainly at the
task levels. Son et al. [40] showed that the rate monotonic
scheduling is exposed to covert timing channel due to its
scheduling timing constraints. Völp et al. [41] close such

a channel by making the task executions deterministic: e.g.,
switching to an idle thread if a task stops early. Chen et
al. [42] demonstrated a different type of threat against fixed-
priority scheduling; an observer task infers the timings (e.g.,
future arrival times) of certain tasks by observing its own
execution intervals. Such an attack is possible because of the
timing determinism of real-time systems [7], [43]. However,
such timing predictability can also help improve the security of
real-time systems. For instance, one can fingerprint electronic
control units using periodic Controller Area Network (CAN)
messages to detect intrusion into in-vehicle network such as
message replay and injection attacks [9], [44], [45].

Covert timing channels have been studied extensively in the
network domain. A covert network timing channel leaks infor-
mation by modulating intervals between packets [46], [47]. A
straightforward solution is to control the network traffic by, for
example, adding random delays to network packets [48], [49].
Randomization is in fact a critical ingredient for moving target
defense (MTD) techniques [50], [51]. Davi et al. [52] used
address space layout randomization (ASLR) [53] to randomize
program code on the fly for each run to deter code-reuse attacks.
Crane et al. [54] improved code randomization by enforcing
execute-only memory to eliminate code leakage that allows an
attacker to learn about the address space layout. Kc et al. [55]
took a finer-grained approach that creates a process-specific
instruction set that is hard to be inferred by an adversary.
Zhang et al. [56] addressed the problem of information leakage
through cache side-channels by randomly evicting cache lines
and permuting memory-to-cache mappings. Jafarian et al. [57]
considered MTD in software-defined networking (SDN), in
which the controller randomly assigns (virtual) IP addresses to
hosts in order to hinder adversaries from discovering targets.

VII. CONCLUSION

In this paper, we have demonstrated techniques that exploit
a priority-based time-partitioning to create a covert timing
channel between real-time partitions. As a solution, we have
presented TIMEDICE, an online algorithm that reduces observ-
able determinism in partition schedules by randomly allowing
priority inversions while guaranteeing CPU budgets allocated to
partitions. We have shown that TIMEDICE significantly raises
the bar against the timing-based algorithmic covert channel and
that it is more effective when the system is configured in a
favorable way to an adversary. TIMEDICE will allow modern
real-time systems to employ advanced functionalities enabled
by a rich software ecosystem by increasing the level of security
in the integration of real-time applications.
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