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Abstract

Proof-carrying code and typed assembly languages aim to mini-
mize the trusted computing base by directly certifying the actual
machine code. Unfortunately, these systems cannot get rid of the
dependency on a trusted garbage collector. Indeed, constructing a
provably type-safe garbage collector is one of the major open prob-
lems in the area of certifying compilation.

Building on an idea by Wang and Appel, we present a series of
new techniques for writing type-safe stop-and-copy garbage collec-
tors. We show how to use intensional type analysis to capture the
contract between the mutator and the collector, and how the same
method can be applied to support forwarding pointers and gener-
ations. Unlike Wang and Appel (which requires whole-program
analysis), our new framework directly supports higher-order fun-
tions and is compatible with separate compilation; our collectors
are written in provably type-safe languages with rigorous seman-
tics and fully formalized soundness proofs.

1. Introduction

The correctness of most type-safe systems relies critically on
the correctness of an underlying garbage collector (GC). This also
holds for Proof-Carrying Code (PCC) [13] and Typed Assembly
Languages (TAL) [12]—both of which aim to minimize the trusted
computing base (TCB) by directly certifying the actual machine
code. Unfortunately, these systems cannot get rid of the depen-
dency on a trusted GC. Indeed, constructing a verifiably type-safe
GC is widely considered as one of the major open problems in the
area of certifying compilation [11, 3].

idea (at least to some people), however, none of the previ-
ous work [21, 15, 19] have succeeded in getting it to work.
Indeed, Wang and Appel [23] subsequently gave up on us-
ing ITA. We show why the problem is nontrivial (see Sec-
tion 2.2) and how to modify the basic ITA framework to solve
the problem.

Wang and Appel’s collector [23] relies on whole-program
analysis and code duplication to support higher-order and
polymorphic languages—this breaks separate compilation and
is impractical. We show how to use runtime type analysis
to write our GC as a library (thus no code duplication) and
how to directly support higher-order functions and polymor-
phism.

We expose in detail how to implement and certify efficient
forwarding pointers. Making them type-safe is surprisingly
subtle (see Section 7). Wang and Appel [23] also claim to
support forwarding pointers but their scheme is less efficient
and it is unclear whether it is sound.

We also show how to handle generations with a simple ex-
tension of our base calculus.

A garbage collector is type-safe only if it is written in a prov-
ably type-safe language. We have complete type-soundness
proofs for all our calculi (see Appendix).Wang and Appel’s
collectors [23, 22], on the other hand, are not fully formal-
ized.

Recently, Wang and Appel [23] proposed to tackle the problem  Ajthough our paper is theoretical in nature, we believe it will be
by building a tracing garbage collector on top of a region-based of great interests to the general audience, especially those who are
contributions: problems such as mobile-code safety and certifying compilation.
We have started implementing our type-safe GCs in the FLINT
system [16], however, making the implementation realistic still in-
volves solving the remaining problems (e.g., breadth-first copying,
remembered sets, and data structures with cycles, which we still
cannot support satisfactorily) thus is beyond the scope of this pa-
e Using ITA to typecheck GC may seem to be an obvious per. Nevertheless, we believe our current contributions constitute a
significant step towards the goal of providing a practical type-safe
rE;arbage collector.

e We show how to use intensional type analysis (ITA) [19, 8]
to accurately describe the contract between the mutator and
the collector and how the same framework can be applied to
construct various different type-safe GCs.

*This research was sponsored in part by the Defense Advanced Researc
Projects Agency ISO under the title “Scaling Proof-Carrying Code to Pro-
duction Compilers and Security Policies,” ARPA Order No. H559, issued
under Contract No. F30602-99-1-0519, and in part by NSF Grants CCR-
9901011 and CCR-0081590. The views and conclusions contained in this 2
document are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

Motivation and background

Why do we want a type-safe garbage collector?
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The explosive growth of the Internet has induced newfound in- ! ! !
terest in mobile computation as well as security. Increasingly, ap- | | |
plications are being developed at remote sites and then downloaded | | |
for execution. A robust mobile code system must allow code from / \ | | |
potentially untrusted sources to be executed. At the same time, the | ] | | ) |
system must detect and prevent the execution of malicious code. ! Int : | = L int : |

The safety of such a system depends not only on the properties of , e | | |
the code being downloaded, but also on the security of the host sys- | x ! ! !
tem itself, or more specifically, its trusted computing base (TCB). | / \ | | |

Proof-carrying code [13] and typed assembly languages [12] have | int int | | |
been proposed to reduce the size of this TCB by bundling the un- +--------------» o
trusted code with a mechanically checkable proof of safety, where
the safety is usually defined as type-safety. Such systems only need copy : VENVT Va.(a — «ofT/F])
to trust their verifier and runtime system rather than their whole GC = AF.Aa(w:a, k:Vp.alp/F] — 0)
compiler suite. let }egibn T.in’ e

But all these certifying-compiler projects (e.g., PCC, TAL) still let y = copy[F][T][e](z) in
crucially rely on the correctness of a tracing garbage collector for only T in k[T](y)
their safety. Recently, both Crary [3] and Morrisett [11] have char-
acterized type-safe garbage collection as one of the major OpenFigure 1: Stop-and-Copy from region F to region T.

problems in the area of certifying compilation. _ GC is written in continuation passing style (CPS). It takes the cur-
A type-safe GC is not only desirable for reducing the size of the ren region, the heap and a continuation and begins by allocating
TCB but also for making it possible to ship custom-tailored GC g new regionT with “let region T in ¢”. It then copies the heap
along with mobile code, or to choose between many more GC vari- jntg this new region and then frees the old region implicitly with
ants without risking the integrity of the system. Writing GC inside “only T in " which tells the region management that all regions but
a type-safe language itself also makes it possible to achieve princi-1 can be reclaimed. This way of freeing regions was introduced by

pled interoperation between garbage collection and other memory-\wang and Appel to circumvent problems linked to aliasing of re-
management mechanisms (e.g., those based on malloc-free and regions.

gions). Indeed, one major software-engineering benefit is that a

type-safe GC must make explicit the contract between the collector

and the mutator and it must make sure that it is always respected.

Without typechecking, such rules can prove difficult to implement monomorphization and defunctionalization (a form of closure con-

correctly and bugs can be very difficult to find. version due to Tolmach [18]) to simplify the problem to a monomor-
phic first order calculus. However, this approach suffers from sev-

2.1 The problem eral major drawbacks:

Recently, Wang and Appel [21] proposed to tackle the problem e Most importantly, it is not generally applicable and requires
by layering a stop-and-copy tracing garbage collector [24] on top of whole program analysis which rule out separate compilation.

a region based calculus, thus providing both type safety and com- ) o o
pletely automatic memory management. ¢ Itcanintroduce a significant code size increase and forces the

use of separate specializ&C and copyfunctions for each
type appearing in the program. Instead of the promised flex-
ibility to choose among various GC variants, this approach
locks you into a single 100% tailor made collector.

A region calculus [17] annotates the type of every heap object
with the region in which it is allocated (such as x” o2 wherep
is the region), and thus allows to safely reclaim memory by freeing
a whole region if that region does not appear in any of the currently

live types. o _ o _ e Finally, although their type-safe GC does properly formal-

The basic idea in building a type-safe GC is to concentrate on ize the interaction between the mutator and the collector, the
type-safety rather than correctness. Rather than try to prove that formalization is hidden inside the compiler and hence does
the copy function faithfully copies all the heap, we just need to not allow to bring out open the overly intimate relationship
show that it has a type looking somewhat like.(« — («[T/F])) between the GC and the compiler.

where(a[T/F]) stands for the type where the region annotatidn
is substituted foF (see Fig. 1). Assuming we have such a function They also try to preserve sharing using forwarding pointers. The
and we don't keep any reference to the regtothe region calculus rough sketch of the solution they propose is similar to the one we
will allow us to safely reclaint. developed (which is done independently). It relies mostly on a very
Clearly, there is no correctness guarantee in sight since the valuepowerful form ofcastwhich allows some amount of covariant sub-
returned by thatopy function might have a completely different  typing of references. Making sure that this cast is sufficiently con-
value or might not faithfully reproduce the original graph, but it strained to be safe is difficult. Their informal presentation is incom-
ensures type-safe execution of the whole mutator-collector systemplete and possibly incorrect, and leaves many important questions
and even offers a form of type-preservation guarantee. unanswered.
The main problem is clearly to write thisopy function which .
needs to trace through arbitrary heap structures at runtime. There-2'2 Our solution
fore, the language needs to support some form of runtime type in-  We want to do away with any form of whole program analysis
formation in order to do the actuebpy. so as to make the mutator and the collector independent in order to
In their followup paper [23], Wang and Appel suggest to cir- reap the promised benefits of more flexibility and clearer interac-
cumvent the problem of runtime type information using a mix of tion between mutator and GC.



In this paper, we present a different approach for writingctbygy it was already used in the work on intensional type analysis where
function, relying on runtime type analysis. The return typeaby tags were calle@¢onstructorg8, 5]. But here, tags take on more
(«[T/F], a form of Typerec) as well as the need to observe types significance since they correspond to a source-level notion of type
at runtime leads one very naturally to use intensional type analysis and will be mapped talifferent actual types with different type
(ITA). In fact, an early paper of Wang and Appel [21] was titled functionsM (formerly S) which are used to encapsulate all the
“safe garbage collection = regions + intensional type analysis;” but constraints that mutator data has to satisfy in order for the collec-
they failed to make it work, and they subsequently gave up on us- tor to do its job. As you will see in sections 7 and 8 we will use
ing ITA and ended up opting for the lower-tech solution mentioned a non-trivialM mapping to force the mutator to provide space for
above [23]. Saha et al. [15, 19] also tried to use ITA to write the forwarding pointers and to enforce the invariant that references do
copyfunction, but their attempt is missing crucial details and didn’t not point from the old generation to the new.
really work either.

2.2.1 A case for symmetry 3. Source |anguage\CLOS

So what is the problem? It seems that ITA provides us with just  For simplicity of the presentation, the source language we pro-
the right tools. We can for example write a simfigerec such pose to compile and garbage collect is the simply typeglculus.
asSr ¢ (o) which substituted for F and then use/pecase in the In order to be able to use our region calculus, we need to convert

body ofcopy. ) the source program into a continuation passing style form (CPS).
But that means that the type grows each time we go through aAnd we also need to close our code to make all data manipulation

the GC, fromo to St r(0) t0 S, 1(Srr(0)) ... . This may seem  explicit, so we turn all closures into existential packages.

unimportant sinc& should be reduced away anyway. Bt r(c) We won't go into the details of how to CPS convert that source

cannot be reduced further uniilis instantiated3a.Sr r(a) is a language [7]. Similarly, for the closure conversion using existen-
normal form. So the accumulation Sfoperators is areal problem,  iq15 [10, 9.

sinceS, r(a) is not equal t, (St r()).

We could arrange fo8, +(St(o)) to reduce tsS, (o). But
then all types becom®, (o) (whereF is the “initial region”) ex-
cept before the first collection. Also it is very ad-hoc and only
works as long a$ is a quasi-identity.

A better approach is to ensure that the input and output types are
symmetric. We first redefing, (o) which simply substitutep for
any region annotation (why bother with an initial region) and then
redefinecopyto have typevF.vT.Va.(Sg(a) — St(a)) which
gets us rid of the special case before the first collection and does not
require any special reduction rule f8rsinceGC does notincrease
the size of the type any more.

The language used after CPS conversion and closure conversion
is the language.c.os shown below.

(types Int|¢t|m xX72|7—0]3t7
(valueg s=nl flz|(vi,v2) | t=71,v:72)
(termg ex=letzx=vine|letz =muvine

| vi(v2) | openw as (¢, z) ine | haltv
(programg p ::=letrec f = A(z:7).eine

< 3
Il

Since functions are in CPS, they never return, which we repre-
sent with the arbitrary return type To represent closures, the lan-
guage includes existential packages constructedt byri, v: 12)
2.2.2 A case for tags and of type fit.72). Theopen v as (¢, x) in e construct takes an

) . ) . existential package, binds the witness type tband the value to

The above solution looks good until we try to copy an existential z, and then executes The complete program consists of a list
packageda: {F}.Se () to Ja: {T}.Sr(a). of mutually recursive closed function declarations followed by the

Type variables hide region annotations, so we need to annotatemain term to be executed.
their kinds with the relevant region information. We write it *

A” to mean thatx can only range over types that refer exclusively

to the regions i_ncluded |m _ 4. Target Ianguage)\gc

So, by opening the existential package, we can get the value . . )
of o and the value of typ&e (o), and a recursive call toopywill The language used to write the garbage-collector (and into which
returnSt (o), but how can we construct the new existential package We translatécLos programs) is shownin Fig. 2. It extendgLos.
? Reusingr as-is will not do since is not constrained t§T} but to with regions [17] and intensional type analysis [8, 19]. Functions
{F}. We would want to us&r (o) but that cannot work either; the ~ &€ also fully closed and use CPS but they can additionally be poly-
only correctly typed package we can producéds=Sr(o),v: ) morphic over tags and regions.

which has typea: {T}.a.

We are again pushing a neBvonto the type rather than replac- 4.1 ReanS
ing anS with another. So we can again arrange $a(Sg (o)) to Our region calculus uses “references” denaigf type (o at p)
reduce toSt(o), but we really do not want to tie our hands with  rather than annotations like x* o> (which is written(o1 x o2) at p
such an ad-hoc and restrictive scheme. instead). Similarly, object allocation and memory accesses are made
Instead, we can pay a bit more attention to what we do and ob- explicit with put andget. This was only preferred because of its
serve thatS, (o) makes region annotations encompletely use- orthogonality.

less, so instead of trying to get those annotations right only to  Region allocation and reclamation is done wiighregion and

see them substituted we can simply define a parallel set of non-only. Deallocation of a region is implicit sinamly lists the regions

annotated types (that we will calltagy. Since tags have no re-  that should be kept. This neatly works around aliasing problems,

gion annotations, we can hide them in tag variables without any at the cost of a more expensive deallocation operatioly(needs

A constraint, which side-steps the problem of copying existentials to go through the list of all regions to find which ones need to be

conveniently. reclaimed). In our case, we have very few regions and deallocate
Such a split between types and tags is not a new concept sincethem only occasionally, so it is a good tradeoff.
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ven I' v=-|Tz:0o
(renv) A x=-]Ap
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(regiontype$ Y = {l1:01,...,ln:0n} / /
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(regionsg R :={li—wvi,...,4n — vp} v
(memorie$ M = {cd— R.q,v1 — Ri,...,vn+ Ry} Fryv=1
(states P o= (Me) Fr, {t=T1,v:1) = put[r]{(t=71,v :M,(12))
(regionsg p u=v|r
(kindg) k=02 —Q
(tagy) T :::‘illnt||71XTz\T—>0|3t~T Flyv =v) Flyuv=vh Flyv=1
t.7 | T1T2 7 7 7
(types o w=int| oy x o5 | Vit K] [F(E) — 0 F e vi(va) = vi[][r](v3) F k. haltv = haltv
‘3tiﬁ'g|faft,p“v|;(72|a Free=¢€¢ Fr,v=1
[ VIFl(@) = 0] 3a: A0 F +.openwas (t,z)ine = open (getv’) as (¢, z) ine
(valueg v u=nlz|vl](v,v2)]| {t=7,v:0) | v][7] FrE "R E '
| (a: A=01,0:09) | At T][7](Z73).c e L
(operationg  op :=wv | muv | putfplv | getv Flreletz =vine=letz=v'ine
(termg e ==v[7T][p](V)|letz =opine|haltv
|ifgc p e1 e2 | Openwv as (t,x) ine F'_ee?e/ Fhyv= :
| open v as (o, z) in e | letregion r in e Fr.lete =muvine = letz = m;(getv’) in ¢’
|only Aiine
| typecase 7 of (ej; ex; tita.ex;te.€3)
(tagnf) T ou=tInt] T = 0|7 x 7o | It | AT’ Free=¢ (=F(f)

|7 Ftyp f=Xz:7).e = A][r](z:M,(7)).ifgc r (gc[7][r](cd.l, z)) €’

Figure 2: Syntax of A
g y Ge Fe{fimt,..} Fr;fi=Aazir)emfl Froe—¢

Fpletrec f = A(z:7).eine
= ({cd— {f1 — fi,...}},letregionrine’)

4.2 Intensional type analysis

As explained earlier, we have split the notion of type into two.
Tags represent the runtime type descriptors and map very directly
to source-level types without any region annotations. The only dif-
ferent betweem\cros types and\qc tags is the addition of tag
functions\t.T and tag applications; 2, which are needed for type
analysis of existentials [19]. To do the actual analysis of tags, terms
include arefining typecase construct, i.e. a more refined tag is  functions are placed into the region when translating code from
substituted for- in each arm of théypecase. Finally, instead of a Acros and never directly appear k¢ code.
full-blown Typerec construct we only provide a hard codkt to
keep the presentation simplévl,(7) is the type corresponding to
the tagr complemented with region annotatiops

Figure 3: Translation of Acros terms.

M, (Int) = int 5 T lati \ \

M, (71 X 72) == (M, (71) X M,(72)) at p . Translatin to

Mo(Ttr)  — (3t OM, (1)) at _ 9 Acros Ge

M, (T — 0) = V[][r](M.(r)) — 0 atcd The translation of terms froMicros t0 Agc shown in figure 3

is mostly directed by the type translatibh, presented earlier: each
This definition ofM forces the mutator to maintain the invariant ~ function takes the current region as an argument and begins by
that all objects are allocated in the same region, which is all our checking if a garbage collection is necessary. All operations on

garbage collector requires. data are slightly rewritten to account for the need to allocate them
) in the region or to fetch them from the region.
4.3 Functions and code For example a\¢os function like:

Since programs ifgc are completely closed, we can separate
code from data. The memory configuration enforces this by having
a separate dedicated regiod for code blocks. The indirection fix swap(z:int x int).
provided by memory references allows us to do away Vetrec. letzl = mainleta2 = mxinletz’ = (22, 21) inhalt 0
A value \[f][7](Z73).e is only an array of instructions (which can
contain references to other valuesil) and needs to bput into a
region to get a function pointer before one can call it. In practice, would turn into the following\¢¢ function (apart from some syn-



fix ge[t: Q[r1](f:V[|[r](Mr(2)) — 0, 2: My, (). collection. The size of this temporary region can be bounded by

let region r in _ the size of theo region since we can't allocate more than one con-
lety = COPZ/[t] [r1, r2](z) in tinuation per copied object, so it is still algorithmically efficient,
only {r2} in f[|[r2](y) although this memory overhead is a considerable shortcoming.
fix copy[t: Q[r1, r2](x: My (1)) : My, (8).
typfnctasetof 6. Acloserlook at ;¢
=
A =z Programs in\¢¢ use an allocation semantics which makes the
t1 X to = let x1 = copylt1][r1,7=2](m1(get z)) in allocation of data in memory explicit. The semantics, defined in
let xo = copy[ta][r1, r2] (m2(get z)) in Fig. 5, maps a machine stateto a new machine state’. A ma-
put[ra)(z1, z2) chine state is a paifM, e) of a memoryM and a terme being
Jt. = open (getz)as (t,y)in executed. A memory consists of a set of regions; hence, it is de-
let z = copyltet][r1,r2](y) in fined formally as a map between region namemd regionsk. A
PUt[ro] (t=t, z: My, (tet)) region, in turn, is a map from offsefso storable values. There-

fore, an address is given by a pair of a region and an offéetVe
assign a type to every location allocated in a regingenotes a
region type. Finally, the memory typg assigns a region type to
every region allocated in memory.

Figure 4: The garbage collector proper.

tactic conveniences): 6.1 Closure conversion andopy.
fix é’wap{} [r](z: (Int X Int) atr). Since the source language is monomorphic, closure conversion
ifge r (gefInt x Int][r] (swap, x)) need only rely on existentials. This simplicity is however broken by
letz = getz In the copy function in the garbage collector itself because this func-
letzl = mxin tion is (recursively) polymorphic. For that reason, we also need a

let 22 = mx in
let 2’ = put[r](z2,x1) in
halt 0

form of translucent type, namely[7][7](5) <+ 0. Closure con-
version of the CPS form afopy was also the only reason for intro-
ducing(a: A=01,v:02).

An important detail here is that the garbage collector receives the 6.2 Functions and code
tag rather than the type of the argument. The garbage collector
receives the tags for analysis as they were\in,os rather than Since function bodies can contain references to other functions
as they are translated ihgc. This maintains a clear distinction  in cdbut we do not have an easy way for the garbage collector to an-
between the types the programmer thinks he manipulates and thealyze a function body to trace through those referencggnjoys
real types they map to. a special status. It cannot be freed and can only contain functions,
Another interesting detail is that if the region is full, the function no other kind of data.
calls the garbage collector with itself as the return function. l.e.  Analternative would be to require all functions to be fully closed,
when the collection is finished, the collector will jump back to the but that would require the addition of recursive types for the envi-
function which will then redo the check. We could instead call the ronment containing pointers to all functions and passed around ev-
garbage collector with another function as argument. That would erywhere. It would save us from all thatl special casing, and
save us from redoing ttifgc but would require many tiny functions ~ would allow garbage collecting code, but on the other hand, it
which are just not worth bothering with. would be less realistic since it would amount to disallowing direct
The translation in figure 3 uses:c in a somewhat loose way  function calls.
to keep the presentation concise. More specifically, it will gen-
erate terms such dst x = m;(get v) in e instead oflet 2’ = 6.3 The type calculus
get v inlet z = m;2’ in e. Turning such code back into the strict The target language must be expressive enough to write a tracing
Acgc is immediate. garbage collector. Since the garbage collector needs to know the
On the other hand, the garbage collection code in figure 4 usestype of values at runtime, the languajec must support the run-
not only some syntactic sugar but even resorts to using a direct- time analysis of types. Therefore, conceptually, types need to play
style presentation of theopy function. This is only for clarity of adual role in this language. As in the source languegeo s, they
presentation, of course. As can be seen in figure 12 in the appendix,are used at compile time to type-check well formed terms. How-
the code after CPS and closure conversion is a lot more difficult ever, they are also used at runtime, as tags, to be inspected by the
to read, partly because of the need to do a form of typed closure garbage collector (and, in general, by any type analyzing function).

conversion [10]. To enforce this distinction, we split types into a tag language and a
The garbage collector itself is very simple: it first allocatestthe ~ type language. The tags correspond to the runtime entity, while the

region, askgopy to move everything into it and then free tirem types correspond to the compile time entity.

region before jumping to its continuation, using the new region. While translating from\cLos to Agc, the tag for a value must

The copy function is similarly straightforward, recursing over be constructed from its type. Therefore, the taga.dir, closely
the whole heap and copying in a depth-first way. Clearly, the direct resemble the type language in the source. To support the analysis
style here hides the stack. When the code is CPS converted andf these tags, we need to add tag level functiorisr) and tag level
closed (as shown in the appendix), we have to allocate that stackapplications t71). In turn, this requires a kind calculus to classify
of continuations in an additional temporary region and unless our the tags.
language is extended with some notion of stack, none of those con- Types are used to classify terms. The type language includes the
tinuations would be collected until the end of the whole garbage existential type for typing closures and the code typi#{7](s) —



(M, v.L[7[7)(7)
(M, v.L[7][p) (1))

whereM (v.£) =

, [TDIAA](9))
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M,open (a:A=01,v:02) as (a,z) ine)
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M, typecase Int of (ej; ex; titz.ex;te.€3))

M, typecase 7 — 0 0f (ej; ex; tita.ex;te.e3))
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M, typecase 3t.7 of (ej; ex; tila.ex;te.3))

= (M, vL[][p](7))

= (M, e[p, 7, T/7,t,T])

(M, v[7][p](V))

(M elv/z])

(M, elvi/x])

(M{v.L— v}, e[v.l/z]) wherel ¢ Dom(M(v))
(M,elv/z]) whereM(v.l) =

(M,open (t=7",v:0) as (t, x) ine)

(M, e[r',v/t, z])

(M, elo1,v/a, x])
(M,e1) if pisfull
(M, e2) if pisnotfull
(M{v — {}}, elv/r])
(M|a,e)

(M, typecase 7' of (ej; ex; tita.ex;te.€3))
(M, e:)

(M, ex)

(M, ex[11,T2/t1,t2])

(M, es[A\t.7/te])

wherev ¢ Dom(M)
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Figure 5: Operational semantics ofAgc.

0 for fully closed functions. Moreover, types in the target language code region. Similarly, the other environmends éndT") are re-
must include the region in which the corresponding value resides. stricted to be well formed undek’ (®|,, andT'|a-). At runtime,

Therefore, we use the notatierat p for the type of a value of type

o inregionp.

an implementation would treat the set of regiong\ihas live and
reclaim other regions. Since the reclamation works on whole re-

To reason about the safety of programs in this language, we will gions, the cost is proportional to the number of regions. Since this
often need to assume that a value resides in a particular region onlynumber is usually small, it entails an insignificant runtime penalty.

For example, after theopy function is finished, we must be able

The dynamic check takes care of aliasing. This makes our system

to assume that all the data is contained only in the new region; so significantly simpler since we can avoid the heavy type machinery
that the old region can be safely freed. Therefore, to ensure typerequired to detect aliasing statically.

safety, we must be able to enforce this invariant at the type level.

For this, we use the built in type operatdr The typeM, () can
only contain values that are in regipnNotice that it is a restricted
form of the fully reflexiveTyperec operator [19]. Essentially, it is
aTyperec that has been hard-wired into the language.

6.4 The term calculus

The term language must support region based memory manage-
ment and runtime type analysis. New regions are created through

the let region r in e construct which allocates a new regiorat
runtime and binds: to it. A term of the formput[p]v allocates a
valuew in the regionp. Data is read from a region in two ways.
Functions are read implicitly through a function call. Data may
also be read through thget v construct. Operationally, thget
construct takes a memory addreséand dereferences it.
Deallocation is handled implicitly through ttomly A in e con-
struct [21]. It asserts statically that the expressioran be eval-
uated using the set of regions boundAd and the code region,
which is a subset of the region variables currently in scope.

Ula; Aed; ©;8|aTarFe A'CA
U A;0;8: T Fonly A'ine

The memory is restricted to the set of region&ih(¥|A+) and the

The runtime type analysis is handled througtypecase con-
struct. Depending on the head of the type being analyzed, the
typecase chooses one of the branches for execution. When an-
alyzing a type variablé, we refine types containingn each of the
branches [6].

OFt:Q
U; A; ©; ©; T'int/t] - e;int/t]

U; A;0; O;T - typecase t Of (e; ex; tita.ex;te.ea)

In the e; branch, we know that the type varialilés bound tolnt
and can therefore substitute it away. A similar rule is applied to the
other cases.

6.5 Formal properties of the language

In this section, we prove that type checkingiin¢ is decidable
and that the calculus is sound. We omit the proofs due to space
constraints. The reader may refer to the companion technical report
for details.

6.5.1 Type checking is decidable

Proposition 6.1 Reduction of well formed types is strongly nor-
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Figure 6: Static semantics of\gc.
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malizing. U:A;0;0: T F o My(7)

. l. . ,: . /
Proof Since the tag language is a simply typed lambda calcu- Vled: € 2 P55 Llppri2:Cppr(T) F e

lus, reduction of well formed tags is strongly normalizing and con- U;A;0;9;T F let x = widen[p'][7](v) ine
fluent. The termination oM, (7) follows from a straightforward
induction on the size of the tag [

Figure 8: Static semantics forAgc forw-

Proposition 6.2 Reduction of well formed types is confluent.

incurring a significant memory costwe want instead to represent
objects as a surfv + fwd &), which requires a single bit per object
and corresponds much more closely to traditional implementations.

Proof  Since the reduction of well formed types is strongly nor-
malizing, confluence of the reduction follows from local conflu-

;ahnecsl. (‘I’Th)l_:,;sllogs easily from a case analysis of the reduction of To this end\ac forw extendshce with new types and terms for
P ) tag bits and sum types as well as memory assignment. We do not
6.5.2 Soundness need a newwd or ref type since we can use the region calculus’
references for that purpose.
Another requirement for a realistic GC is that the mutator should

Definition 6.3 The machine state\/, e) is well formed iff not need to constantly check for the presence of forwarding pointers
since such a read-barrier would only be justified for an incremental
FM:v ¥; Dom(¥); -5 +5-F e GC. In other words, the type as seen by the mutator should not be

F(M,e) a sum, although it should still contain the single-bit tag that the

GC will use to distinguish between forwarding pointers. Also there
Contrary to the other environments,is not explicitly constructed should be a way to switch from the mutator’s view of the type of
in any of the static rules, since it reflects dynamic information. In- an object to the one of the collector. So we also need to add a form
stead, the soundness proof, or more specifically the type preservaof cast that we calviden which we will use at the beginning of a
tion proof, needs to construct some witnassfor the new state collection to give the collector access to the forwarding pointers:
(M', ") based on thé of the initial state( M, e).

Proposition 6.4 (Type Preservation)If - (M, ¢) and g | :ﬁrt g ‘ir:Irght o |leftor +right oz | C, o ()
(M,e) — (M, ) thent (M, ¢'). LT { Smg'l) v
Proof  See the appendix A. e n=...|ifleftz =ve e, |setvii=v2; e

N ) | let z = widen[p][7](v) ine
Proposition 6.5 (Progress)If - (M, e) then eithere = halt v or
there exists 4 M, e) such that(M, e) = (M’, €’). inl andinr (and their type-level counterparsft andright) can
Proof See the appendix A. be thought of as adding a single tag bit to an object wkitg
gets back the untagged object aifidft checks the tag bit. The
. . idea is to represent objects @sft o) to the mutator (without the
7. Forwardlng pointers (right o) alternative to avoid the need for checks) and cast them

The base algorithm presented before is unrealistic in a number of With thewiden operator to(left o + right( at t0)) when entering

ways. The firstis the fact that thepy function does not preserve 1 This additional word is not unheard of, since replicating garbage

sharing and thus turns any DAG into a tree. _ collectors [14, 1] incur a similar overhead, justified by the desire
We hence need to add some fornfofwarding pointers Wang to provide concurrent collection while avoiding the cost of a read-
and Appel suggest to pair up every object with its forwarding pointer, barrier.




the garbage collector (here “to” denotes the region variable for the
to space).

Since a single source-level type now maps to two different possi-
ble types, we need two type operatoks; () to map source types
to the mutator’s view of the data ai@, - (7) to map source types
to the collector’s view (which adds forwarding pointers), (1) is

the same as before for base types and for code types, but is changed

for existentials and pairs by adding theft constructor that con-
strains the mutator to provide the tag bit needed to distinguish the
forwarded pointer from the non-forwarded data.

M, (Int) = int

My(1 — 0) = V[|[r](M.(7)) — Oatcd

M, (3t.7) = (left(3t.M,(7))) at p

My(m1 X 12) = (left(M,(71) X M,(72))) at p

C,, (Int) = int

C,p(T—0) = M,y(t —0)

C,,(3tr) = (left(3t.C, (7)) +right(M,/(3t.7))) at p

left(C, , (11) X C, 0 (72))

CP,P/ (Tl X TQ) - (+r|ght(Mp/ (7_1 % 7_2))

)atp

It is worth noting again here how thd type operators cleanly

encapsulate the invariants imposed on the mutator by the collector.

In this case, it forces the mutator to provide the collector with free
bit that the collector can then use to distinguish forwarding pointers

from non-forwarded data. And we also see how the same mecha-
nism can be used to express the difference between the restricted

view offered to the mutator and the full blown access to internal
data that the collector needs.
The operational semantics of the new operations is straightfor-

fix ge[t: Qr1](f:Mr (A(2)), z: My, (2)).
let region r5 in
let w = widen[r2][(A(t) x t)](put[r](inl (f,z))) in
ifleft w = get w then
let w = strip w in
lety = copylt][ri, r2](maw) in
only {rz}in (mw)[][r2](y)
else

halt 0

fix copy[t: Q[r1,r2](x:Cry .y (1)) =
typecase t of

M., ().

int ==z
A =z
t1 X to = lety = getzin
ifleft y = y then
let z1 = copy(ti][r1,r2](m1(strip y)) in
let z2 = copylta][r1, r2](m2(strip y)) in
let z = put[r2](inl (z1,z2)) in
setx:=inrz; z
else
strip y
Jte =lety =getzxin
ifleft y = y then
open (strip y) as (¢, y) in
lety = copyltct]ry, r2](y) in
let z = put[rz](inl (t=t,y: My, (1)) in
setx:=inrz; z
else

strip y

Figure 9: GC with forwarding pointers.

ward, especially since we can implement the assignment operator

by reusing the indirection through the memory:

(M,letz = strip (inlv)ine) = (M,e[v/z])
(M,letz = strip (inrv)ine) = (M,efv/z])

(M, ifleftz = (inl v) e; e,) = (M, eifinl v/z])
(M, ifleft z = (inr v) e; e,) = (M, ei]inr v/z])
(M,setv.l:=wv; e) = (M{vLl— v} e)
(M, let z = widen[p][7](v) in e) = (M, e[v/x])

The translation from\cros t0 thiSAgc forw IS NOt shown since
itis basically the same as before except for the insertion of alhthe
andstrip. The garbage collector can be seen in figure 9. Compared
to the original algorithm, the only difference in tlge function it-
self is the widening of the heap froM,; to C,; ,2 and the fact
that we have to bundle théandx arguments into a pair in order to
pass it through theviden operator and unbundle it afterwards. The
copy function also needed to be changed of course: when copying
a heap object such as a pair, it now has to check ifléft whether
the object was forwarded, if so it just returns the forwarded object,
otherwise it does the copy as before and has to overwrite (8sig
the original object with the forwarding pointer before returning the
copied object.

7.1 How to widen safely

The only non-trivial extension iwiden which allows the garbage
collector to have a different view of the existing memory, provided
the two views are somehoeompatible It seems difficult to solve
the problem of allowing two views on the same data without such
a form of cast. At first, it seems we are just applying a form of sub-
typing, but this form of subtyping is very powerful since it allows

covariant subtyping of references. This means that aliasing issues
have to be handled with extreme care.

When faced with the same problem, Wang and Appel came up
independently with a similar idea. But their suggestadt leaves
many questions open and might need more work to be made type-
safe. Also its operational semantics actually does a complete copy
of the heap from one region to the other. This might make it easier
to prove soundness but makes it unclear whether it can really be
implemented as a nop. In contrast, the operational semantics of
widen is a nop and we have a proof of its soundness.

In order to handle the problem of aliasing mentioned above, it
might be possible to rely on some form of linear typing or alias
types [20], but given the inherent generality of a garbage collector,
it seems difficult. Our approach is to rely on the consistent ap-
plication of the same cast over the whole heap, so that aliases are
guaranteed to be cast in the same way.

Rather than an ad-hagiden we could provide a more general
cast that can consistently apply iteratively some type transforma-
tions (as long as it obeys the notion of subtyping extended with
covariant subtyping of references) to any particular set of regions,
but the complexity of such an operator is out of the scope of this
paper.

In Figure 8, the typing rule fowiden shows that the expression
e is typed in an environment that only containsin essence rep-
resents the entire heap. Furtheis obtained from the value that
has typeM, (7). Looking at the definition oM, we can see that
all values reachable from will have a type of the fornM,,(7").
Since bothM andC are iterators, we can now define a casting op-
eration from one type to the other as an iterator. This iterator will



traverse the entire heap and systematically convert from one type to[A; 0;dF o U:A;0;0;TFw: o U;A;0;0;T e]
the other; this systematic conversion is necessary to avoid ending
up with a value that has a particular type along one path, but has a ANCA ArOdkFo
different type along another path. e
The proof of soundness @fiden is rather intricate. It starts by
ignoring all the dead objects from the heap, so that only objects of
type M, (7) are left, which get cast t€, /(7). For that reason,
we needed to loosen our notion of a well formed machine state to
allow restricting the considered memofy to just a well-typed

OFT:Q p1€A pQEA
A;0;0 - 3IreA (oatr) A;0; D = My, p, (T)

U:A;0;8:THv:olp/rlatp pe A’ A'CA

sufficient subse, where “sufficient” means that no object out- U A;0; 0T (re A =p,vi0) : IreA (oatr)
side of M is needed to complete execution. This safely permits
ill-typed garbage. U:A;0;;TFv: IreA’(oatr)
U A, r;0;0: T x:0atrte
Definition 7.1 The machine statéM, ) is well formed iff U;A;0;9; T Fopenvas (r,z)ine
McM +M:¥ V;Dom(¥);-;-Fe U; Alr,r/r1,re]; ©;®[r, r/r1,r2); Tlr, v /r1, r2] b ex[r,r/r1, ra]
H (M, e) U A;0;0; T+ eo ré¢ A

U A;0;9;T I ifreg (7“1 = ’I“Q) e1 €2
Proposition 7.2 (Type Preservation)If - (M, e) and
(M,e) = (M',€') thent (M’ €’). U; Alv/r]; ©; @[v/r]; Tv/r] Feiv/r] U;A;0;9;T  eo
Proof See the appendix C. U, A;0;0;T Fifreg (r=v) er ez

U;A;0; ;T Hifreg (v =r) er ez

Proposition 7.3 (Progress)If - (M, e) then eithere = halt v or
there exists dM’, e’) such that(M, e) = (M, ¢’). U A;0; ;1 - eg
Proof See the appendix C. U;A;0;9;T Fifreg (11 = 12) €1 €2

. . U:A;0; 9T F ey
8. Generational collection T A O BT - ifreg (v = 1) e1 s
Another important aspect of a modern GC is the support for gen-
erational garbage collection. If we first restrict ourselves to a side-
effect free language, then we can collect a single generation at a
time so long as we can express the fact that an object in the old
generation cannot point to an object in the young generation. ) . )
To that end we need to extend:« with existential quantification . Although the o_peratlonal semantics do not tak(_e advantagg of it
over regions, so that the mutator does not need to care whether an(.In order to S|_mpllfy the soundness proof), we defmed the existen-
object is allocated in the young or the old region. We also need tials over regions in such a way that they can be implemented as
to add some way to check in which region an object is allocated nop since the_ encapsulated _reference usually already encodes the
so that GC can detect when an object is in the old generation (andreglon in its bit-pattern (gr 'n_ |ts.£): ) . o
hence does not need copying): The new term translation is again not shovyn since itis so similar
to the original one. The new type constraint is trivially always sat-
isfied as long as the mutator only allocates from the younger gener-

Figure 10: Static semantics of\ccgen.

ou=...|3dreA(oatr) ation and as long as the memory is immutable. If side-effects were
vi=...|[(reA=p, U?U} ) to be necessary, it should be possible to extend this scheme with
enx=...|openvas (r,z)ine]ifreg (p1 = p2) e1 e2 one mutable region (keeping all others immutable) which would

be considered similarly to the older generation but scanned at each

sented in figure 10), thiel type operator also needs to be modified collection. .Obviously, this would first require gdding some way to
to reflect the new invariant imposed on the mutator. It is now in- SC2N @ egion, but should not present any serious difficulty.

dexed by two regions (the old and the new) and has to enforce the 1€ GC itself can be seen in figure 11. The main difference with
fact that objects in the old region cannot have references to the new!€ basic GC of figure 4 is that it does not copy to a new region

Apart from those new constructs (whose static semantics is pre-

region: but to an existing one and stops travers?ng the tree as soon as we
encounter a reference to the old generation.
Mo, .0, (INt) = int When hitting such an external reference, we have to repack it
My, o0 (T — 0) = V[|[ry,70](My, r, (7)) — O atcd just to help the type-system understand that this reference is of type
Mo, .00 (3t.7) = 3Ir€{py, po}.((3t-Mrp, (7)) atr) M,, .0, (7). But those operations are free anyway.
Moy oo (T2 X 72) = 31 €{py, po}.(Mr . (11) X My, (72)) @t 1) Note that another function needs to be written to garbage collect
By using the sefr, p, } we make sure that if is the old genera- Lhneeold generation, but that one is the same as the non-generational

tion, pointers underneath it cannot point back to the new generation. A. . iaht. thex | db
The operational semantics are again rather simple: tirst SIg Lt EAccgen laNGgUage may seem unsound because
we allow existentials over regions. However, these types are not

(M,open (r e A =v,v:0)as (r,z)ine) = (M, e[v,v/r, z]) existentials in a real sense since they do not hide a region within a
(M, ifreg (v = v) e1 e2) = (M, e1) type. Rather, in the typ8r € A.(c at r), the setA is an upper
(M, ifreg (11 = 12) €1 e2) = (M, e2) bound on the regions that the variablenay range over. In this

10



fix gclt:Q[ry, o] (f :Mry,r, (VJ[I(£) — 0), 2:My, 1, (2)).
let y = copy[t][ry,7o](x) in
only {r,} inlet region r, in f[][ry, o] (y)

fix copy[t: Q[ry, 7o) (x : Mz, r, (1)) : Mr, 1, (1).
typecase t of
int =«
A =z
t1 X ta = openzas (r,z) in
ifreg r = r, then (r € {ro} =r,,2) else
let z1 = copyl[t1][ry, o] (m1(get z)) in
let zo = copylta][ry, o] (m2(get z)) in
(r € {ro} = ro, put[r](z1, z2))
= openzas (r,z) in
ifreg r = ro then (r € {ro} =r,,x) else
open (get x) as (¢, y) in
let z = copyltet][ry, ro](y) in
(r € {ro} =ro, put[r]{t=t, z:M, . (tet)))

It

Figure 11: Generational GC.

sense, our existential is closer to a bounded quantification.

Proposition 8.1 (Type Preservation)If - (M, e) and
(M,e) = (M',€') thent (M’ €’).
Proof See the appendix D.

Proposition 8.2 (Progress)If - (M, e) then eithere = halt v or
there exists 4 M, ¢) such that(M, e) = (M’, €’).
Proof See the appendix D.

9. Related work

Wang and Appel [21] proposed to build a tracing garbage col-
lector on top of a region-based calculus, thus providing both type
safety and completely automatic memory management. The main
weakness of their proposal is that it relies on a closure conversion

algorithm due to Tolmach [18] that represents closures as datatypes.

This makes closures transparent, making it easier for the copy func-
tion to analyze, but it requires whole program analysis and has ma-
jor drawbacks in the presence of separate compilation. We believe
it is more natural to represent closures as existentials [10, 9] and we
show how to use intentional type analysis (on quantified types [19])
to typecheck the GC-copy function.

The idea of intensional type analysis was first proposed by Harper
and Morrisett [8]. They introduced the idea of having explicit type
analysis operators which inductively traverse the structure of types.
However, to retain decidability of type checking, they restrict the
analysis to a predicative subset of the type language. Crary et al. [5]
propose a very powerful type analysis framework. They define
a rich kind calculus that includes sum kinds and inductive kinds.
They also provide primitive recursion at the type level. Therefore,
they can define new kinds within their calculus and directly en-
code type analysis operators within their language. They also in-
clude a novel refinement operation at the term level. Saha et al [19]
shows how to handle polymorphic functions that analyze the quan-
tified type variable—this allows the type analysis to handle arbi-
trary quantified types. The typerec operators (€\f},) used in this
paper do not require the full power of what is provided in [19] be-
cause our source language is only a simply typed lambda calculus.

Tofte and Talpin [17] proposed to use region calculus to type
check memory management for higher-order functional languages.
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Crary et al [4] presented a low-level typed intermediate language
that can express explicit region allocation and deallocation. Our
Acc language borrows the basic organization of memories and re-
gions from Crary et al [4]. The main difference is that we don't re-
quire explicit capabilities—region deallocation is handled through
theonly primitive.

Necula [13] proposed the idea of a certifying compiler and showed
the construction of a certifying compiler for a type-safe subset of
C. Morrisett et al. [12] showed that a fully type preserving com-
piler generating type safe assembly code is a practical basis for a
certifying compiler. This paper shows that low-level runtime ser-
vices such as garbage collection can also be expressed in a type
safe language.

10. Conclusion and future work

We have presented a type-safe intermediate language with re-
gions and intensional type analysis and show how it can be used
to provide a simple and provably type-safe stop-and-copy tracing
garbage collector. Our key idea is to use intensional type analy-
sis on quantified types (i.e., existentials) to express the garbage-
collection invariants on the mutator data objects. We show how
this same idea can be used to express more realistic scavengers
with efficient forwarding pointers and generations. Because in-
tensional type analysis is also applicable to polymorphic lambda
calculus [19], we believe our type safe collector can be extended to
handle polymorphic languages as well.

We intend to extend our collector with the following features,
which a modern garbage collector should be able to provide:

e Polymorphism. Intensional type analysis is a powerful frame-
work. Adding support for polymorphism is straightforward
but tedious because the type-system becomes a lot heavier.

e Cyclic data structures. It might be possible to extend the
current depth-first copying approach to properly handle cy-
cles, but we are more interested in a Cheney-style breadth-
first copy [2].

Side-effects and generations. A first approach could be to ex-
tend our current generation scheme with a third region con-
taining all the mutable data. But ultimately we will need to
use either card-marking or remembered-sets [25].

Explicit tag storage. Since tags exist at run time, we need to
garbage collect them as well. The most promising approach
is to reify them into special terms as was done by Cetry

al [6, 5]. This will also allow us to use a simpler closure
conversion algorithm for polymorphic code, eliminating the
need for translucent types.
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Appendix
A. Soundness of\q¢
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Throughout this section, we assume unique variable names. Our
environments are sets with no duplicate occurrences and no order-
ing. It is easy to show by induction over judgments that extending
environments with additional bindings is safe. We will assume this
in the rest of the section.

The code regiomed is always implicitly part of the environment.
We treat it as a constant region. Even when the environment is
restricted to a particular set, s&§ja, the code region is included
in the restricted set. Therefor&|,, ..., is equivalent to{cd :
Tegsvi : Yoy s o} And ¥4 is equivalent to{cd :

Teglt

LemmaA.l If A',r;0;® F o, thenAlv/r]; ©; ®[v/r] - olv/r]
whereA’, r = A.

Proof The proof is a straightforward induction over the structure
ofe. O

LemmaA.2 (®[v/r])|a,y = (®|a,r)[v/r] and
(Llv/mDlaw = Tlar)v/7]

Proof The lemma is proved by considering the structurebof
andI" respectively, and comparing the results in the two cases.

LemmaA3 If U; A’ r:0;®;:T F op : o, then
W Aly/r]; ©; @[v/r;Tlv/r] b oplv/r] : olv/r]
whereA’,r = A.

Proof The proofis by induction over the structureqf. Most of
the cases follow directly by induction. We will show only the case
for type packages.

case{a: A1 =01, v:02): We know that

U:A'r; 0,0 T+ (a:A1=01,v:02) : Ja:A1.02
This implies thatA;; ©; ®|a, F o1 and
U: A" r;0;8;T v : o2fo1/q]

Suppose: ¢ A;. Thenr does not occur free ia;. Then applying
the inductive hypothesis to the derivation tgrwe get that

5 Alv/r]; ©; @[v/r]; Ty /r] Folv/r] : (o2[v/r])on/a]

SupposeP; = ®|a,. Then we have thab[v/r]|a, = D1, P2
andDom/(®1) N Dom(®3) = 0. Therefore, we have that

A1;®;‘I"A17(I>2 FO'l

This implies thatA:; ©; ®[v/r]|a, F o1, which leads to the re-
quired result.
Consider now that € A;. Suppose\; = A,,r. Then

A2, 7;0;®|a,,r F o1

Applying lemmas A.1 and A.2 we get that

Aalw/r]; ©; (Rlv/r])|as, - o[v/7]
But Az, v = Aq[v/r]. The second subderivation now becomes

UA r;0;0:T Fo: ogfo1/a]

By applying the inductive hypothesis we get that
s Aly/r]; ©; @[v/r|;Llv/r] Folv/r] : (o2[v/r]]olv/r]/e]
This leads to the required result(]

LemmaA4 If U; A’ r;0;®;T | e, then
U: Alv/r]); ©;®[v/r];T[v/r] F elv/r] whereA' ) r = A



Proof The proof is by induction over the derivation ef Most
of the cases follow directly from the inductive hypothesis. We will
consider only one case here.
caseonly A; in e: We get that
U: A 7r;0;9;THonlyAjine

This implies that

Ula,;A1,¢d;0; @45 A, Fe
andA; C A, r. Suppose ¢ A;. Thenr does not occur free ia.
Also A1[v/r] = A1. Supposé’|a, = I'1. Then we have that
[[v/r]|a, = T1,T2 and Dom(T'1) N Dom(T2) = 0. Since we
can extend environments, we get that

Ula,;Ar,cd; ©; 81, P9;T1, T2 F e, where®, and ®, are con-
structed similar td*; andT's. This implies that

Ula,; AL, cd; ©; 81, P9; T, T2 e
Also Ay C (A, r)[v/r]. This leads to the required result.

Suppose now that € A;. Suppose thaf\; = A, r. Then
Ai[v/r] = Ag,v. Then we have that

Ulay,r; A2, 7, €d; O; @|ay r; Ula,,r F e

Applying the inductive hypothesis we get that

Was,r Ar[v/r], ed; ©; @y o [v/r]; Tlag o [v/r] = elv/r]
Applying lemma A.2 we get that

Ulayr; Ar[v/r],ed; ©; @[v/r]|as i Tlv/r]laz .0 Felv/r]
But we have thal |a,,» = ¥|a,. Moreover¥|a,,, = ¥|a,, ¥’
Therefore, we get that

Ulaz,v; Arlr/r], ed; ©; @ /r][az,u; Ty /r]|as,u = elv/r]
We also have that\[v/r] C Alv/r]. This leads to the required
result. [

LemmaAS5 If©,t:x' -7 : kandO® - 7/
O/t K

: k', then
Proof The proof is a straightforward induction over the structure
ofr. O

Lemma A6 If A;0,t:k; P+ ocandO F 7 : k, then
A;0;D F o[/t

U5 A;0; O; I'[Int/¢] F ei[Int/¢t]
By definition, we know that
U3 A;0,t:Q; @; T[Int/t] - e;[Int/¢]

Sincet is being substituted away, this leads to the required result.
For a code type we need to prove that

U A;0;8; (7" — 0/t]
(typecase ¢ of (ej; ex; tita.ex; te.e3))[r" — 0/

This implies that we need to prove that
U:A;0;9;T[r" — 0/t] Fex[r’ — 0/1]

By definition, we get thatl; A; ©,¢: Q; ®; T - ey. Substituting
for t and applying the inductive hypothesis leads to the result.
For the pair type we need to prove that

U5 A;0; 0 T[(11 x 73)/t] -
(typecase t of (ej; ex; tita.ex;te.€3))[(T1 X 73)/1]

This implies that we need to prove that

U A;0;9;T[(1 X 1) /t] Fex[(T1 X 73), 71, Ta/t, t1, t2]
By definition, we know that

U A0, t:Q,t1:Q,t2:Q; ®; Tty X ta/t] F ex[tr X ta2/t]

Note that the variables andt, do not occur free separately Ih
Substitutingry for t1, 75 for to, and7 x 75 for t; x to leads to
the required result.

For the existential type we need to prove that

Ui A;0;®; T[3tq.7" /]
(typecase t Of (ej; ex; tita.ex; te.e3))[3t1.7' /1]

This implies that we need to prove that
U A; ©; &; (3.7 /] - es[Fta. 7/, Ma. 7' /L, te]
By definition we know that
U;A;0,6:Q,te:Q — Q; @; T[Ttq.tetr /] b ea[Ttr.tet1 /1]
Substituting(At;.7") for ¢t. and applying the inductive hypothesis

Proof ~ The proofis again a straighforward induction over the struc- \ye get that

ture ofo. [

Lemma A7 If U;A;0,t:x;®; T Fop: cand® - 7 : k then
U A;©; 9;T[r/t] - op[T/t] : o[T/t]

Proof The proof is a straightforward induction over the structure
of op. The only unusual case is whep = v.Z. In this case,
U(v.£) = o andDom(¥); ;- - o. Therefore, the variabledoes
not occur freeiro atv. [

Lemma A8 If U;A;0,t:k;P; T Feand- -7’
U A;0; 9 T[r' /t] F e[t /1]

: k then

Proof The proof is a straightforward induction over the structure
of e. The only interesting case is fotypecase when the substi-
tuted variable is being analyzed.

casetypecase t of (ej; ex; tit2.ex;te.e3): Suppose we substitute
the typer’ for the variablet. Then7’ can only be one ofnt, 7/ —

0, 11 x 74, or3t.r”. For alnt, we need to prove that

U; A; ©; @; T'[Int/t] = (typecase t of (ej; ex; titz.ex; te.e3))[Int/t]

This implies that we need to prove that
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U:A;0,t:Q;&;T[3t1.7' /] - ea[Ftr.7', A7 /¢, te]

Sincet is being substituted away, we can remove it from the type
environment. This leads to the required resultl

LemmaA9 If A;0;®, a: A’ - oandA’;0;d F o', then
A;0;9 - olo’ /a]

Proof The proof is a straighforward induction over the structure
of o. In the case of c'ode types, we use the fact that the argument
typesa are fully closed. [

LemmaA.10 If U; A;0;®,a:A";T' - op: candA’;0;d - o’
then

U; A; ©;8; [0 /a] - oplo’/a] : olo’/a]

Proof The proof is again by induction over the typing derivation
for op. We will consider only the case for packages.

case(3: A’ =01, v:02): By definition,

U:A;0;P, a: AT H{(B:A'=01,v:02) : AB:A".02



There are two possible casesAf c A’, then we get that
A 0;®|a, i Ay Foq and
U A 0P, 0:A; T H ot o2][o1/0]
By lemma A.9,
A 0;®8|a0 o1’ /a]
Applying the inductive hypothesis on the typing rule foleads to
the result.
In the other case, we get thaAt'; ©; ®| A/ - o1 and
U A;0;P, a: AT F o ozfo1/f]
This implies thain does not occur free in;. Therefore, we need
to prove that

U:A;0;9;T[0' /o] -
(B:A"=01,v[0" /o] 03[0 /a]) : AB: A .o2]0’ /a]

This follows from applying the inductive hypothesis to the judg-
ment forv. [

LemmaA.11 If A;0;® I o[o’ /a] and« occurs free ino, then
A;0;0 o’

Proof The proof is by induction over the structuresaf []

LemmaA.12 If U; A;0;®,a:A';T FeandA’;0;® - ¢’ then
U;A;0;9; [0’ /a] F e[o’ /a]

Proof The proof is again by induction over the derivation. The
only non-trivial case is thenly construct.

caseonly A, in e: By definition,

U;A;0;®,0:A”;THonly Arine

andA’; ©;® I ¢’. Suppose\’ C A;. Then we get that

Ula,; AL, cd; ©;P|a,,a: AT A, Fe
Applying the inductive hypothesis we get that
U|a,; A1, cd; ©;®[a;3 T a, [0"/a] - e[o’ /o]

But we also have thdf|a, [0’ /a] = T'[o’/a]|a,. From here we
can conclude that

U; A;0;®; [0’ /a] - only Ay inefo’ /a]
If A; C A/, then we get that
Ula,;A1,cd;0;P|a,;0 A, Fe

This implies thate does not occur free ia. We also have that
A';0;® - ¢'. Using lemma A.11, we can show tHo’ /a]|a, =
I'|a,. Therefore, we get that

U|a,;A1,cd;©;@[a,3T[0"/a][a, Fe
This implies that
U:A;0;9; [0’ /a] Fonly Ajine
[
LemmaA.13 If U;A;0;®;,z:0' - op : o and

U;A;0;; T ' : o’ then
U:A;0;9; T op[v'/z] : o

Proof  The proof is a straightforward induction over the typing
derivation for op. [

LemmaA.14 If U;A;0; ;T F v : ocandAy;0;®|a, Foand
Ay C A thenTla,;A1;0;@|a,; 0 a, Fo:o

14

Proof The proof is by induction over the derivation for Most

of the cases follow directly from the inductive hypothesis. We will
consider only one case here.

casev./: We have that

U;A;0;9; T F vl : oatv. This implies that¥ (v.¢) = o and
Dom(¥); ;- F o at v. However, by assumption we also know
thatA1; ©; ®|a, F o atv. Thisimplies that € A;. This implies
that¥|a, (v.£) = o. Moreover, we also get thadky; ;- - o at v.
Therefore, we get thaDom(¥|a,); ;- F o at v. From here we
getthat¥|a,; A1;0;®|a;0|a, Frl:ocatv. O

LemmaA.15 If U; A;0;®; T, z:0 F eand
U:A;0;9;T' v : othen
U;A;0;9; T F efv/x]

Proof The proof is again a straightforward induction over the
structure of e. We will only show the proof for a couple of cases,
the rest of them follow similarly.
caseonly A in e: We have that
U;A;0;9; T, x:0 F only Ay in e. This implies that
Ula,;A1;0;®@|a,; (T, z:0)|a, F e. If we have that
Ay1;0; ®|a, F o, then we get that
U|a,;A1;0;P|a,; A, z:0 F e. By lemma A.14 we get that
U|a,;A1;0;P|a,; A, F v : o. Applying the inductive hypoth-
esis gives us that
\I}|A1 ; A1;0; cI>|A1 ; F|A1 F e[v/x]'
In the other case, we get that
U|a,;A1;0;®|a,; A, F e. This implies thatc does not occur
free ine. The required result follows from here.
casetypecase t Of (ej; ex; titz.ex; Le.e3): By assumption, we get
thato -t : Q
U; A; ©; @; I'[Int/¢], z:o[Int/t] F e;[Int/¢]
U:A;0;9; T z:0F ey
Ui A;0,81:Q,t2:Q; @; Tt X to/t],z:0ft1 X t2/t] F
€x [tl X tz/t]
U A;0,te:Q — Q; ;1[I tet1 /], z:0[Ttrtet1/t] F
63[3t1.tet1/t]
By lemma A.7, we know that if; A; ©; &;T' v : o, then
U A;0;®;[7/t] - v : o[r/t]. Now substitutev[Int/¢] in the
e; branch, substitute in the ey branch, substitute[t; x t2/t]
in the e, branch, and substitute[3¢:.t.t1/t] in the es branch.
The required result follows from the inductive hypothesis on each
branch. [

Proposition A.16 (Type Preservation)If - (M, e) and

(M,e) = (M',€’) thent (M’ €’).

Proof The proof is by induction over the evaluation relation. We
will consider only the cases that do not follow directly from the
inductive hypothesis and the substitution lemmas.
casev./[T][7](¥): The lemma follows from the fact that tag reduc-
tion is strongly normalizing and confluent, and that tag reduction
preserves kind.

casev.[7'][7](¥): By definition,

W; Dom(W); -5 -5 - = v L[7][7)(7)
SinceM (v.£) = (A[tk][7](Z:5).e), we have that
U; Dom(W); ;- F vl : V]t x][F(F) — Oatv
This implies that
V| g;cd, 75 Tk, ToFe
By the typing rule, we get that



U; Dom(W); ;- F i : ou[F, 7 /7, 1)
: k;. From lemma A.4 we get that

V| g;cd, 7; ©; ~;:E:Ur17/f] F e[/
From lemma A.8 we get that

and- - 7/

Wloqi Cd, ;5 s 2o, 7 /7, 1] & e[, 7 /7, 1]

Since¥|.q C ¥ andcd, 7 C Dom(¥), we can extend the envi-
ronment for deriving:. Applying lemma A.15 we get that

U; Dom(W); ;-5 e[, 7, 17/7:',75_;;%']
which leads to the result.
case(v[7])[7][#¥](¥): By definition,
; Dom(¥); -5+ - B ([T)[7] [ (V)
From the typing rules
U; Dom(0); 5+ - - (v[7]) : V[7][F](&) = 0 for somer and
W; Dom(W); -5+ - F v; : 0;[F/7). Again from the typing rules we
get that .
U; Dom(W); ;- v : V[t:x][F](0’) — 0 at v where
oi[7/t] = 0; and- - 7; : k;. We need to prove that

U; Dom(V); -+ - - o[7][7](7)

This is true if

U: Dom(¥); ;- - F v : o}[F, 7/7,1]. But we already know that
this holds.

caselet z = put[v]v in e: By definition,

W; Dom(¥); ;- letz = putjy]vine
From the typing rules,
U: Dom(¥); ;- - putv]v : ocatv
for some typer, andv € Dom(¥). This implies that
U; Dom(¥); - Fv:o
Again, from the typing rules,
V. vl:o; Dom(¥);--Fvl:oatv

The required result now follows from lemma A.15.
caselet x = get v.£ in e: By definition,

U; Dom(¥); ;- Fletx =getvline
From the typing rules we get that
U; Dom(¥); - Fvl:oatv

for some typer Again from the typing rules, we get thét(v.0) =
o. This implies that ifM (v.£) = v, then

U Dom(¥); 5 -Fv:o

The required result follows from lemma A.15.

caseopen (a:A=o1,v:02) as («,z) in e: The twoopen con-
structs are proved similarly. We will show the proof for only one of
them. By definition,

¥; Dom(¥);-;-;- Fopen (a: A=01,v:02) as (o, x) ine
This implies that
U Dom(¥);sa:Ajz:oa ke
The required result follows from lemmas A.15 and A.12.
caselet region r in e: By definition,

W; Dom(¥);-;-;- F letregion rine
This implies that

15

W; Dom(¥),r;-;-;-Fe
By lemma A.4,
U5 Dom(V), v+ - Felv/r]

Sincev is a newly introduced region, we can extebdvith it. This
implies that

U, v — {}; Dom(¥),v;;+;- Felv/r]

This is the required result.
caseonly A in e: By definition,

U; Dom(¥);;+;-Fonly Aine
This implies that
Plascd, A Fe
Butcd, A = Dom(¥|a). This implies that
U|a; Dom(¥|a); - Fe

which is the required result.
For all of thetypecases, the required result follows directly
from the typing rules since the value environment is empty.

Lemma A.17 (Canonical forms)

1. fU;A; - Fo:intthenv = n.

2. fU;A; - Fwv: oatvthenv = vl

3. WA+ F w01 X o2 thenv = (v1, v2).

4. fU;As - F o Ftiko theno = (t=T1,0":0).

5. fU: Ao Ja:Alothenv = (a: A'=01,v 1 02).
6. IFW;A; - F o V[F][F(F) 2 0 thenv = v/[7].

7. 8T A; - o V[EK][F(E) — 0

thenv = [t k][F](zT0).e.

Proof The proof follows from the inspection of the typing rules
for values. [

Proposition A.18 (Progress)If - (M, e) then eithere = halt v

or there exists ¢ M’, ¢') such that( M, e) = (M, €’).

Proof The proof is again by induction over the structureeof
By definition, U'; Dom(¥); -; ;- F e. The proof for the individual
cases start from this point.

casev[7][7](¥): From the typing rules, either

v:V[t k] [F(F) — 0atv or v:V[7F][7](5) =0

In the first case by lemma A.1%,= v.¢. From the typing rules
M (v.£) = At x][F](z70).e This implies that we have a reduction.
In the second case, by lemma A.27 +'[7]. In this case also
we have a reduction to'[7][7] (7).
caselet x = op ine: If op = v, then we have a reduction. If
op = m;v, then from the typing rules,
W; Dom(¥);-;+;- F v : 01 X o2. Therequired result follows from
lemma A.17. In the case gut[v]v, the result follows directly. The
constrainty € A ensures that € Dom(¥). In the case foget v,
by the typing rules we know that = v.£ for somev./. Again
from the typing rule we know tha¥ (v.£) = o. This implies that
M (v.£) = ' for some valuey'.
For the other cases ef the proposition follows directly from the
operational semantics.[]



— Syntactic type shorthands for notational convenience: —
tet] = V[t to, te][r1, 72, 73] (Miy (), ) 2 0 X e — Basic type of the continuations obpy—
te[t] = (3t1:Q.3t2: 2.3t :Q — Q. 3ac:{r1,r2,r3}.tc[t]) atrs — Same ag. but closed with existential packages —

— The mainGC entry point —
fix geft : Q[r](f : V[ [r](M-(£)) — 0,2:Mr, (£)).
let region r in
let region r3 in
let ¢ = (gcend][t,int, At.t], f) in
let k = put[rs](t1 =t, ta =int, te = At.t, ac: {r1, 2,73} = V[][r](M:(¢)) — 0, c:tc[t]) in
copylt][r1,re, r3](z, k)

— The second half o&C, passed as a continuationdopy—
fix gcend[tlz_Q,tg 1 te:Q — Q)[r1,r2, m3](y: My (81), f:V]][r](My(t1)) — 0).
only {ra} in f[|[r2](y)

— The maincopyentry point —
fix copy[t: Q[r1, 2, r3](z: My, (t), k:ti[t]).
typecase t of
int = open (get k) as (t1, ta, te, ac, c) I (T1c)[t1, ta, te][r1, 72, 73] (@, T2c)
A = open (getk) as (t1,ta, te, e, €) In (m10)[t1, t2, te][r1, 72, T3] (T, T2C)
t1 X to = let ¢ = (copypairl[ti, t2, At.t], (m2(get z), k)) in
letk = put[rg}(tl :tl, to :tg, te :)\t.t, Qe {Tl, T2, 7”3} = Mrl (tz) X tk[t], Cltc[tlb in
COpy[tl] [Tlv T2, T3](7T1 (QEt x)v k)
Jte = open (getz) as (tz,y) in
let ¢ = (copyexistl[ts,int, t.], k) in
letk = pUt[TgKtl =1z, 12 :int, te=te, ¢ {7"17 T2, 7’3} = tk[t}, Citc[tetﬂ) in
COpy[tetx} [7‘17 T2, T3](y7 k)

— First continuation when copying a pair —
fix copypairllt::Q,t2:Q, te:Q — Q)[r1,72, r3](x1: My (1), ¢: My, (E2) X ti[t1 X t2]).
let ¢’ = (copypair2[ta,t1, At.t], (z1,m2c,)) in
letk = pUt[Ts} <t1 =t1,t2=12, e I)\t.t7 Qe {’I“1, r2, 7”3} = Mr2 (tl) X tg [tl X tz}, c: tc[t2]> in
copy[ta][ri, 2, r3](mic, k)
— Second continuation when copying a pair —
fix copypair2[t::Q,t2:Q, te: Q — Q)[r1,72, r3](x2: My, (t2), c: My, (81) X ti[t1 X t2]).
open (get (71'20)) as <t1, ta, te, Qc, Cl> in (71'10/)[t1, ta, te} [7“1, T2, Tg](put[Tg](ﬂ'lC, 1‘2), 71'26,)

— Continuation when copying an existential package —
fix copyexistl[t1:Q, ta: Q,te:Q — Q)[r1, r2, r3](z: My, (tetr), citr[teta]).
open (getc) as (t),th, te, ae, ') in (mic)[t, th, to][r1, T2, ra](PuUt[ra]{t=t1, 2: My, (tct)), mac')

Figure 12: The basic GC code after CPS and closure conversion.

B. Closed CPS garbage collector existential package.
Figure 12 presents the code of the basic collector after CPS and 3. Since copying a pair requires two recursive calls, we need
closure conversion (the direct-style code is shown in Fig. 4). The bothcopypairlfor the continuation of the first call armbpy-

presence of free tag variables in the continuations requires the use ~ pair2 for the continuation of the second.
of a form of translucent types for the typed closure conversion [10].  gjnce the code has to be closed, all the free variables need to
In the general case typed closure conversion also requires exis-g passed explicitly via the continuation objéctvhose type is

tential quantification over kinds, but in the present case, we can gppreviated ag[] but is really a big existential wrapper around
avoid it by using a superset of all possible kinds: since some con- the real data whose type is abbreviated 4.

tinuations require , t2 of kind 2, 2 while others only need, t.
or kind Q, (2 — ), we unify the two intot1, t2, t. where some
of the arguments are simply left unused. C. Soundness Oﬁ\GCforw

The verbose type annotations make it look more scary than it pq before, We use the usual exchange and weakening proper-
really is. Four new functions were .intrO(.juced because of CPS con-jjes of environments without proving them. The code regidris
version. They are all used as continuations to caltsjoy. always implicitly part of the environment. Even when the environ-
ment is restricted to a particular set, s&ya, the code region is
included in the restricted set.

We will show the proofs only for the extensions. The only non-
trivial extension is theviden construct. The proofs of the propo-

2. copyexistlis the continuation of the recursive call to copy an sitions for the other constructs follow in a straightforward way by

1. gcendis the code executed at the end of the toplevel call to
copyand just finishes the garbage collection by freeing the
from space and calling back the mutator.
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induction over the derivations.
Because of thaviden operator, the notion of a well formed ma-
chine state has to be slightly adjusted to allow non-well-formed

memory elements as long as they can be shown not to influence the

execution:

Definition C.1 The machine statéM, e) is well formed iff

McM FM:U W; Dom(¥); ;- Fe

F(M,e)

Note that to show well-formedness we now need to find not only
a witnessV but also a propeM subset.

The reason is thaviden casts the whole live heap from one
type to the other but cannot cast any arbitrafybecause it might
include existential packages of the foam: A =01, v:02) where
castinga would require an update af/, which goes against the
idea thatwiden is a nop.

This problem appears when we try to prove type preservation,

which is the main obstacle to show soundness ofitlten opera-
tor, whose proof uses two lemmas for the following two steps:

1. First, we construct &7 which only contains elements that we
can cast (i.e. of typ#,(7)) and we show that the state is

3. fU;A;0;8,a:A;TFop:oandA’;0;8 o’
thenU; A; ©; ®;T'[o’/a] - op[o’ /o] : olo’/a]

4, f¥;A;0;®,a:A";T'FeandA’;0;® o’
then¥; A; ©; ®; [0’ /a] - elo’ /a]

Proof
applied directly. [

Lemma C.4 (Value Substitution)

1 fU;A;0;9;T,2:0F0p: o’
and¥; A;0;9;THwv: o
then¥; A; ©; ®; T+ op[v/x] : o’

2. fU;A;0;9; T z:0F ¢
and¥; A;0;9;THwv: o
then¥; A; ©; O; T+ e[v/x].

Proof  The proof is by induction over the derivation of the type

judgment. Most of the cases follow directly from the induction

hypothesis. Exceptions are:

widen We need to show that the substitutione®has no effect,

which is easy since the variable we are substituting cannot
occur freely ine.

still well-formed. This is the case because when we reach a ]

widen, all the live data if of such a type.

2. Then we show that when everything has a type of the form Definition C.5 LetW| \, be the restriction of? to pieces of code

M, (7), we can cast every single type consistently t€its, ()
equivalent and the result is still properly typed. This relies on
the subsumption rule on sum types and the fact @atpes
only differs fromM types by adding branches to sum types.

Lemma C.2 (Region Substitution)

1. fU; A r0;0;THop: o

then®; A v; ©; @[v/r|;T[v/r] - oplv/r] : olv/7].
2. fU; A r;0;9;T Fe

thenU; A, v; ©; ®[v/r]; T{v/r] - e[v/r].

Proof  Straightforward proof via induction over the derivation of
the typing judgment. Note that € ¥ is not required here.

caselet z = widen[p'][7](v) in e: We have that

U A,r;0;®;T I let z = widen[p'][7](v) in e. This implies

U; A, 0;®;TFo: My(r) and

Uleg;¢d, p, p's0; @,52:C, (1) F e. Applying lemma C.2.1
to the derivation fow we get that

U A v;0;@[v/r]; T[v/r] Folv/r] :
M, (T)[v/r] = Molw /v (7).

If either p = r or p’ = r then the inductive hypothesis on the
derivation ofe and lemma A.2 and the fact tha, , (7)[v/r] =
C(p.p") v/ () leads to the required result.

In the other caseb(v/r]|,,, = ®|,,7, " whereDom(®|,,) N
Dom(®’) is empty. Moreoverr does not occur free in. Since
we can extend environments with new bindings we get that
Uleg;¢d, p, p';©; @0, 5 2:C, v (7) F e. This leads to the re-
quired result. [J

M, /-1 (T) since

Lemma C.3 (Type Substitution)
1. fU;A;0,t:k;9;TFop:cand® -7 : &k
thenW; A; ©; &; T'[7/t] - op[r/t] : o[ /t].

2. fU;A;0,t:5;P;TFeandO 7 : K
then¥; A; ©; ©; [ /t] - e[7/t].
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or elements of typM,, (7):

o = V[7][f](v:3) — 0

Y|, =l | U@l = oA (v I (0 aty — M, (T))>}

Note that sinced only contains functions¥| , will preserve all
its contents.

Lemma C.6 If U; Dom(¥); ;-;- v : My(7) then
Ul m; Dom(¥l); 55 Fv s My(7)

Proof By the definition of theM type, v is either of typent or of
typeo at v. The lemma follows trivially ifv is of typeint. Consider
the other cases.
caseM, (7 — 0): In this casev = cd.£. Therefore
¥(cd.£) = V[][r](Mr(7)) — 0. Therefore
M (cd.t) = X[][r](z=d).e. The lemma now follows since the body
e is typed only under the code regidr|.4 and the region environ-
mentcd, r.
caseM, (11 x 72): We again have that = v.£. Therefore,
U(v.l) = left(M,(m1) x My (72)). This implies thatM (v.£)
inl v'. We know that

U: Dom(¥); ;- Finlv' : left(M, (1) x M, (12))
This implies that

U Dom(¥); - F o'+ (My(11) X My(12))

This implies that’ = (v1, vy). From the typing rules we get that
U: Dom(¥); ;- F vy : My(71) and
U: Dom(¥);-; ;- F vh : M, (72). Applying the inductive hypoth-
esis to the derivations far; andv5, we get that
|, M Dom(¥ly); - =i 2 My (1) and
Ul s Dom(¥lu); -5 F vy : M, (72). The required result fol-
lows from this.
caseM, (3¢.7): We again have that = v.£. Therefore,
U(v.l) = left(3t.M, (7)). This implies thatV (v.£) = inl v’. We
know that

Same thing here, the induction hypothesis can always be



U; Dom(¥); 55 Finl v’ : left(3t.M, (1))
This implies that
U: Dom(¥); ;- F o' : It.M, (1)

This implies that

v = {t=7',v":M,(7)). From here we get that

U; Dom(W); 55 = o + (My(7))[r’/t]. But we have that

(M, (T)[7'/t] = M, (7[7' /t]). Therefore, applying the inductive
hypothesis to the derivation faf’, we get that

Wl M Dom(¥|,); -5 - 0"« My(7[7'/t]). The required result
follows from this. [

Definition C.7 LetT, ,» be the type operator that turns a type of
the formM,(7) into a type of the fornC, ,/(7) and keeps code
pointer types unchanged:

Tp,p’(Mp(T)) = CP»P'(T)
T (V7 [71(79) — 0 at p) = V7 (779) — 0at p

We also use this operator ol where it is defined as:
T, () ={vlic | U(vl) =0 AT, (0 atp) = o atp}

Note that the two parts of the definition @, , (o) overlap but
are consistent sinckl,(7) andC,, ,/(7) are identical in the case
whenr is an arrow type. Also, sinced only contains functions,
T, (V) does not change the typead. Finally since botiM and
C are iterators, the T type operator can be defined as an iterator.

Lemma C.8 If \II|VM;Dom(\II|V); - F o My(7), then
Ty (O], \); Dom(¥],), V55 v Cupr(7)

Proof Whenw is of typeint, the lemma follows trivially.

caseM, (7 — 0): In this casey = cd.¢ and

M (cd.t) = A[][r](z=@).e. This implies that

Ul.q;cd, 7355770 Fe. SinceM, (7" — 0) = C,/ (7" — 0)

the type operatof’ is the identity for code types. Therefore, the
cast will leave the type of the code region unchanged. Therefore
Vleg = (T, (¥], M))lcg- This leads to the required result.

caseM, (1 x 72): We again have that = v.£. Therefore,
U (v.0) = left(M, (71) x My (72)). This implies thatM (v.£)
inl v’". We know that

U Dom(¥); -+ - Finlv’ : left(M, (1) x M, (12))

This implies that

U: Dom(¥); ;- F v+ (My(71) X M, (72))

This implies that’ = (v1, vy). From the typing rules we get that
U: Dom(¥);-; ;- F v : My(m1) and
U: Dom(¥); -+ F vy : My (72). Applying lemma C.6 to the deriva-
tions forv] andvh, we get that
\I/|V7M; Dom(¥|,); ;- Fv] : My(m1) and
|, M Dom(¥ly); 55 vy : My (72). Applying the inductive
hypothesis to the derivations fof andv) we get that
T,/J// (W|U<M); DO’I’I’L(\IJ|U)7 l//; e b Ui : nyl(Tl) and
T, (\II|V;M); Dom(%¥|,),v ;- F vy : Cpr(72). From here we
can conclude that

T (U], \); Dom (W), 555

inlv’ : |eft(Cl,,,/(T1) X C,,,/(Tz))

By the subtyping rule we can conclude that
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Tu,u’ (\I’|VM)7 DO’fI’L(\Illl,)7 ]/,; BN |7
, Ieft(CW/(n) x C,,r (7'2))

" (Hright(My, (75 x 72))

)
This is the required result.
caseM, (3t.7): The proof proceeds exactly as in the previous case.
We only need to use the factth&@, ,/ (7))[7'/t| = C, ,(r[7'/t])
U

Proposition C.9 (Type Preservation)

If - (M,e) and(M,e) = (M’, ") then (M, €’).

Proof The proofis by cases on the structureofor each possi-

ble case, we use the typing derivation together with the evaluation
step to get the derivation of the new typing judgment. This mostly
relies on the substitution lemmas. We only show the more interest-
ing cases.

o (M,letx =vine) = (M, e[v/z])
Fromk (M, let z = v in ) we get that- M : ¥ and
U: Dom(¥);; ;- - letz = vin e. The derivation in turns
tells us thatl; Dom(¥);+;+;-+ v : o and
U; Dom(¥);-;-; -, x:0+ e. Atthis point, we can apply
value substitution to ge¥; Dom(¥); -; -; - - e[v/z].

(M,only Aine) = (M|a,e)

Here we getl; Dom(¥); -; -; - - only A in e which gives us
U|a;A; ;- F e SinceM C M, we have that

M|a C M|a. Moreover, we know that C Dom(¥).
Therefore,Dom(¥|a) = A.

(M, let x = widen[v/][7](v) ine) = (M, e[v/x])

We know that ifM : ¥, then we have that

U; Dom(%¥);-; ;- F let z = widen[v'][7](v) in e. This
implies that¥; Dom(¥);-;-;- F v : M, (7) and

WUleg;€d, v, v'5+ 5, 2:Cppr (1) F e for somer andy’
belonging toDom(¥). By lemma C.6 we have that
‘I"V,M3 Dom(¥|,); ;- F v : My(r). By lemma C.8 we
have thatT,, (W|U,M); Dom(¥|,); 55 Fv: Cuu(r).
But we have that,,, (9], \) = ¥l¢q» U’ for some¥’
since the cast leaves the code type unchanged. Also
U= Tw/(‘llly,M) Since we can extend the environment,
we have thatt| 4, ¥';cd, v, v -5+, 2:Cpu (7) F e,
Applying lemma C.4.2 we get that

Ulegs U'sed, v, v's 55 F e[v/z]. This implies that

Ul ¥, v = {};ed, v, 055 Fefv/x). I

M: V|, V', — {}, then clearlyM C M. This leads to
the required result.

O

Lemma C.10 (Canonical forms)

1. fU;A; - Fo:intthenv = n.

2. fU;A; - Fo:oatpthenv = v.l.

3. fT; A+ - F ot o1 X o2 thenv = (v1, v2).

4. fU;A; - F o Ftothenv = (t=7,v":0).

5 ;A - Fo: JarAo theny = (a: A=01,v" 1 02).
6. IfU; A5 Fo: V[F][F(G) £, 0thenv = V'[7].

7.8 A; - o Y[EK][F(E) — 0

thenv = [t k][F](zT0).e.



Proof The proof follows from the inspection of the typing rules Proof The proof is by induction over the derivation ef Note

for values. [ that A,v = (A,r)[v/r]. We will consider only the extra cases
here.

Proposition C.11 (Progress)If - (M, e) then eithere = halt v caseopen v as (r’, ) in e: We have that

or there exists dM’, e') such that(M,e) = (M’,€’). U:Ar;0;®;T openvas (r,z)ine

Proof The proof is again by cases on the structure.oft uses

This implies that
WA r,r;0;0; T, z:0atr’ Fe

and¥; A r;0;®; T v : Ir' € A'.(o atr’). Applying lemma D.4
D. Soundness Oﬁ\GC’gen to the derivation fow we get that

In this section, we prove the soundness)efcgen. We will
prove soundness in the same way — with the subject reduction and; A, v; ©; ®[v/r]; T[v/r] F vv/r] : Ir' € A'[v/r].(c[v/r] atr’)
progress lemmas. SinCezcgen IS just an extension okgc, we
will prove the required lemmas only for the new cases. As usual
we will use the exchange and widening lemmas for environments
throughout the section.

lemma C.10. (OJ

Applying the inductive hypothesis to the derivation fomwe get
that

U:A v, r';0;®[v/r);Tv/r],z:olv/r] atr’ F e[v/r]
LemmaD.1 If A;0;® + o, thenA[v/r]; ©; ®[v/r] F o[v/7]. From this we get that
U; A, v;0;®[v/r]; T[v/r] F openvlv/r] as (r',z) in e[v/r]
caseifreg (r1 = r2) e1 e2: We have that
U (A, )[r', 7" [r1,re]; ©; @[ 7 Jra, m2); D’y 1 Jra, 2]

Proof  The proof is by induction over the derivationef [

LemmaD.2 (®[v/7])|a = (®|a,-)[v/r] and

/ /
(Clv/rDlaw = (Clar) /7] erlr’sr'/ri, ]
and¥; A r;0;®;T + ex andr’ ¢ A, r. Applying the inductive
Proof Same aslemmaA.2.[] hypothesis to the derivation fer leads to

U A v; ©; @[v/r]; Tlv/r] F ey /7]

’ _ /
Lemma D.3 (My, p, (7))[7"/t] = M,y . (7[7'/1]) and Applying the inductive hypothesis to the derivation grand using

Mor02 (M) /7] = Moy 10 /1) a1 (T) the fact that- is different fromr; andr, we get that

Proof Proved by considering the different possible reductions of W (A, ), 7! [y, r2]; ©;

Mpi oo (7). T (@[ /rDl,r" fro,ra]; (Clv /D ' fri,r] B
(ex[v/m)[r’, 7" [r1, 2]

LemmaD.4 If U; A, 7;0;9;T F op : o, then This leads to the required result.

U A, v;0;@v/r);Tv/r] Foplv/r] : olv/r] caseifreg (r = r2) e1 e2: We have that

U, A r;0;9; T Fifreg (r =12) e1 e2

Proof The proof is a straightforward induction over the deriva- L
This implies that

tion for op. Note thatA, v = (A, r)[v/r]. It uses lemma D.3 for

the case involving subtyping with thd,, ., (7) type. U (A, r)[r', v [, re]; ©; @', v' fryra]; T[r 7' Jryma] B
case (r' € A’ = p,v): We have that ex[r’,r’ /1,2
U A, 7 0; 0T F (' € A =p,v) : I e (o atr) and¥; A, r; ©; &; T I e2. We must prove that
This implies that \I.l; -A, 1/.; O; ®lv/r;T[v/r] kifreg (v = 12) e1[v /7] e2v/r]
;A7 0;8; T Fov:olp/r'latpandp € A" andA’ C A,r. This implies that we must prove that
Applying the inductive hypothesis we get that U; A, v;0; @[v/r; v /7] F e2[v/r] and
‘A O . . / U3 (A, v)[v/ra]; ©; (R[v/r])[v/ra]; (v /r])[v/re]
U A v;0;@v/r]; Tv/r] Folv/r] : (alp/r'])v/r] at plv/r
B3Ol Tlv/r] vl < olp/ ] at o] Bl
This implies that This implies that we must prove that
U A v;0;@[v/r]; Tv/r] + U; (A, r)[v,v/r,r2]; ©; v, v/r, ra]; Ty, v/r re]
v[p/r] : (alv/rDl(plv/r])/r'] at plv/r] ev,v/r,ro]
Moreover,A'[v/r] C A,v andplv/r] € A'[v/r]. This implies Applying the inductive hypothesis to the derivation fr leads
that to the required result for this derivation. In the case doy we

substitute for” and applying the inductive hypothesis and the fact
thatr’ ¢ A, r leads to the required result.
VA, v,6; @[y /r];Llv/r] F ) , .. caseifreg (' = r2) e1 ex: This case follows directly from the
(r' € Allv/r] = ply/r],vlv/r]) : Ir e {A'v/r]}.(olv/r] atr’) inductive hypothesis on the derivationseafande> and using the
fact thatv’ # v andr # rs.

U caseifreg (v = r2) e1 e2: This case follows directly from the
inductive hypothesis on the derivationseafandes and using the

LemmaD.5 If U; A)r; ©; ;T | e, then fact thatr # ro.

U A, v;0;@v/r;Tv/r] F elv/r] caseifreg (v = r) e1 e2: We have that
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U:A 0,8 T Fifreg (V' =7) e ea
This means that we know that
WA 70,0, T F e
We have to prove that
U A v; 0; ®[v/r);T[v/r] - ifreg (V' = v) e1[v/7] eav/7]
This implies that we have to prove that
WA, v;0;@v/r;Tv/r] F ealv/r]

Applying the inductive hypothesis to the derivation orleads to
the result.
caseifreg (v = r) e1 e2: We have that

U; A r;0;0; T Hifreg (v =7)e1 e
This means that we know that
U A v; ©;®[v/r]; T[v/r] = erv/7]
We have to prove that
U A, v;0; @v/r]; v /r] Fifreg (v = v) er|v/r] ealv /7]
This implies that we have to prove that
U A v;0;@[v/r]; Tv/r] F ev/r]

But we already know this. [

LemmaD.6 If©,t:x' -7 : kand® - 7/
OkFT[r/t] kK

: ¥/, then

Proof The proof is a straightforward induction over the structure

ofr. O

LemmaD.7 If A;0,t:k;®Focand® + 7 : k, then
A;0;D F o7/t

Proof The proofis again a straighforward induction over the struc-

ture ofc. O

LemmaD.8 If U; A;0,¢:k;P; T Fop: candO® + 7 : k then
U A;©; QT [7/t] - op[r/t] : o1/t

Proof The proof is by induction over the derivation fav. []

LemmaD.9 If U;A;0,t:x;P; T eand- -7’
U A;0; ;[ /t] F [T’ /1]

: k then

Proof
e. I

LemmaD.10 If A;0;P,a: A’ o andA’;0;® - ¢/, then
A;0;9 - ofo’ /a]

Proof
ofoc. [

LemmaD.11 f ¥; A;0;®,a: AT - op : candA’;0;® - o’
then

U A;©;8; [0’ /a] - oplo’/a] : o]’ /a]
Proof
for op. We will consider only the case for region packages.
case (r € A’ = p,v): We have that

U A;0;®,0: AT H(re A'=p,v) : IreA'.(catr)

The proof is again by induction over the derivation for

The proof is a straighforward induction over the structure

The proof is again by induction over the typing derivation

andA’; ©; ® I~ ¢’. This implies that
U A;0;®,a: AT o ofp/r]atpandp € A" andA’ C A.
Applying the inductive hypothesis we get that

U; A;0;®; [0’ /a] F vl /a] : (a]p/r])[o’ /o] at p

Sincer does not occur im\, andA’ C A, thereforer does not
occur free ino’. Therefore we have that

U; A;0;9;T[o’ /o] - vlo’ /] : (o]0’ /al)[p/r] atp
This leads to the lemma.[]
LemmaD.12 If U;A;0;®,a:A';T - eandA’;0;® - o’ then
U; A;0; ;[0 /a] - e[o’ /o]
Proof The proof is by induction over the derivation af
caseopen v as (r, z) in e: We have that
U:A;0;P,a: AT o :3IreA.(oatr)
and¥; A, 7;0;P,a:A';T,xz:0 atr - e. Applying lemma D.11
to the derivation fow we get that
U:A;0;9; [0’ /a] Fv[o’/a] : Ir€Ar.(o]0’ /a] atrT)
Applying the inductive hypothesis to the derivation fowe get
that
U A,7;0; 8,0’ /a],z: 00’ /a] atr - e[o’ /o]
This leads to the required result.

caseifreg (r1 = r2) e1 e2: We have that
U;A;0;®,0:A';T ez and

U Alr,r/r1,7m1]; 05
®[r,r/r1,m1),a: A'[r,r/ri,r1]; Tlr,r/r1, ra]
61[7‘, T/Tl, TQ]

Applying the inductive hypothesis to the derivationegfleads to
U; A;0;®; [0’ /a] F e2]o’/a]
By lemma D.1 we have that
A'[r,r/r1,72);©; ®[r, v /r1,7m2] F o' [r, /71, 72]
Substitutes’[r, 7 /1, 2] in the derivation fore; and by applying
the inductive hypothesis we get that
U; Alr,r/r1,71];0; ®[r,7/r1,7m1]; (Lo’ /a])[r,r/71,72] -
(exlo’/a])[r,r/r1,72]
This leads to the required result.
caseifreg (r = v) e1 e2: We have that
U;A;0;®,0: AT - ez and
U Alv/r]; ©; @[v/r],a: A'lv/r);Tlv/r] F eiv/7]
Applying the inductive hypothesis to the derivationegfleads to
U A;©;0; [0 /a] ezl /a]
By lemma D.1 we have that
A'v/r];0;®v/r| = o'[v/r]
Substitutinge’[v/7] in the derivation fore; and applying the in-
ductive hypothesis gives us that
U5 Aly/r); ©; @[v/r]; (T’ fe])[v/r] = (ex]o” /a]) [v /7]
which leads to the required result]

LemmaD.13 If U; A;©;®;T,x2:0' - op : o and
U:A;0;8; T - : ¢ then
U:A;0;9:T Foplv'/z] : o



Proof The proof is by induction over the typing derivation for
op. The new cases follow in a straightforward way.]

LemmaD.14 If ¥; A;0; ;T F v : 0 andAq; ©; @|a, F o and
A1 C A, then¥|a,;A1;0;P|a,; 0 A, Fv:io

Proof  The proof is by induction over the derivation for We

will show only the extra case here.

case(r € Ay = p,v): We have that

U, A;0;0; Tk (r € Ay =p,v) : IreAq.(oatr). Thisimplies

that

U;A;0;9; o ofp/rlatpandp € Az andA; C A, We

also have that

A1;0;®|a, F3IreAqg.(oatr). This implies thatA, C A;.

Moreover,

A1,7;0;®|a, F o. Bylemma D.1 we get that

A1, p;0;(®|a,)[p/r] F olp/r]. Butsincep € A andr does not

occur free in®| A, , we get that

A1;0;®|a, F o[p/r]. Applying the inductive hypothesis to the

derivation forv we get that

Ula,;A1;0;@|a,; A, F vt olp/r] at p. This implies that

Ula;A1;0;Pa,; A, F(r € Ay =p,v) : IreAs.(oatr)
U

LemmaD.15If U; A;0;®; T, z:0 F e and
U:A;0;0;:T'Hw: othen
U A;0; ;T F efv/z]
Proof The proof is by induction over the derivationaf\We will
only consider the case fareg.
caseifreg (r = v) e1 e2: By definition we have that
U Alv/r];©; @[v/r|;Clv/r],z:olv/r] - er[v/r]

and¥; A;0;®; T,z : 0 - ea. Applying the inductive hypothesis
to the derivation ot,, we get that
U; A;©; ®; T F ex[v/z]. By lemma D.4 we know that

U Alv/r]; ©; ®[v/r]; Tv/r] Eolv/r] : olv/r]
Substituting[v/r] for z in the derivation foe; leads to the lemma.
caseifreg (r1 = r2) e1 e2: By definition we have that

W Alr,r/r1,72]; ©;

D[r,r/r1,r2); T, r/r1, 2], xo[r,r/r1, 2] b
61[7’7 T/Tlv T2}

and¥; A;0;®;T',z:0 - e2. By lemma D.4 we know that

W Alr,r/r1,r2]; ©; @[r, /11, m2]; T, r/r1,r2] F
vlr,r/r1,r2] @ ofr,r/ri, 2]

Substitutingv[r, r/r1,72] and v in the derivation ofe; and e

respectively, and applying the inductive hypothesis leads to the

lemma. [

Proposition D.16 (Type Preservation)If - (M, e) and
(M,e) = (M',€’) thent (M’ ¢").
Proof The proof is by induction over the evaluation relation. We
will consider only the additional cases here. The lemma follows in
a straightforward way for thdreg cases.
caseopen (r € A = v,v) as (r,z) in e We know that
U; Dom(¥);-;+;--open(r € A=v,v)as(r,z)ine
This implies that

¥; Dom(¥); 5 -F({re A=v,v): IreA.(catr)
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whereA C Dom(¥). By the typing rule for region packages, we
have thaty € Dom/(¥) and that
W; Dom(¥); ;- F v : o[v/r] at v. We also have that
W; Dom(¥),r;-;;x:0atr e By lemma D.5 and since <
Dom/(¥) we get that

W; Dom(¥); - z:olv/r]atv F e[v/r]

Applying lemma D.15 leads to the result[]

Lemma D.17 (Canonical forms)

1. fU; A - Fo o intthenv = n.

2. fU;A; - Fwv:oatvtheny = v.l.

3. WA - F o o1 X oz thenv = (v1, v2).

4, fU; A; - F o Jtiko thenv = (t=7,v":0).

5. W A; - Fo: Ja:Allothenv = (a: A =01,v :02).
6. fU:A; ;- Fov:3IreA’.(oatr)then

v=(reA =p).
7. FW; A - F o V[F][A(G) £ 0 thenv = o'[7].
8. IFW;A; - v V[EK][A(F) — 0

thenv = A[t:&][](z70).e.

Proof The proof follows from the inspection of the typing rules
for values. [J

Proposition D.18 (Progress)If - (M, e) then eithere = halt v

or there exists ¢ M’, ') such that(M,e) = (M, €’).

Proof  The proof is by induction over the structure @f The
ifreg cases follow in a straightforward way. We will consider only
the region open construct.

caseopen v as (r,z) in e: We know that

W; Dom(¥);-;+;- - openwvas (r,z)ine
This means that
¥; Dom(¥); ;- -Fv:3IreA(ocatr)

By lemma D.17 we get that = (r € A = p,v’). By the typing
rule for region packages, we get thate Dom (V). This means
thatp = v for somev. Therefore, we have that

U; Dom(%¥);-;-;-Fopen(r e A =v,v')as (r,z)ine

But by the operational semantics this goeét6, e[v, v’ /r, z]). [



