
Principled Scavenging ∗

Stefan Monnier Bratin Saha Zhong Shao

Department of Computer Science
Yale University

New Haven, CT 06520-8285

{monnier, saha, shao}@cs.yale.edu

YALEU/DCS/TR-1205 November 2000

Abstract
Proof-carrying code and typed assembly languages aim to mini-
mize the trusted computing base by directly certifying the actual
machine code. Unfortunately, these systems cannot get rid of the
dependency on a trusted garbage collector. Indeed, constructing a
provably type-safe garbage collector is one of the major open prob-
lems in the area of certifying compilation.

Building on an idea by Wang and Appel, we present a series of
new techniques for writing type-safe stop-and-copy garbage collec-
tors. We show how to use intensional type analysis to capture the
contract between the mutator and the collector, and how the same
method can be applied to support forwarding pointers and gener-
ations. Unlike Wang and Appel (which requires whole-program
analysis), our new framework directly supports higher-order fun-
tions and is compatible with separate compilation; our collectors
are written in provably type-safe languages with rigorous seman-
tics and fully formalized soundness proofs.

1. Introduction
The correctness of most type-safe systems relies critically on

the correctness of an underlying garbage collector (GC). This also
holds for Proof-Carrying Code (PCC) [13] and Typed Assembly
Languages (TAL) [12]—both of which aim to minimize the trusted
computing base (TCB) by directly certifying the actual machine
code. Unfortunately, these systems cannot get rid of the depen-
dency on a trusted GC. Indeed, constructing a verifiably type-safe
GC is widely considered as one of the major open problems in the
area of certifying compilation [11, 3].

Recently, Wang and Appel [23] proposed to tackle the problem
by building a tracing garbage collector on top of a region-based
calculus. Our work builds on theirs but makes the following new
contributions:

• We show how to use intensional type analysis (ITA) [19, 8]
to accurately describe the contract between the mutator and
the collector and how the same framework can be applied to
construct various different type-safe GCs.

• Using ITA to typecheck GC may seem to be an obvious
∗This research was sponsored in part by the Defense Advanced Research
Projects Agency ISO under the title “Scaling Proof-Carrying Code to Pro-
duction Compilers and Security Policies,” ARPA Order No. H559, issued
under Contract No. F30602-99-1-0519, and in part by NSF Grants CCR-
9901011 and CCR-0081590. The views and conclusions contained in this
document are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

idea (at least to some people), however, none of the previ-
ous work [21, 15, 19] have succeeded in getting it to work.
Indeed, Wang and Appel [23] subsequently gave up on us-
ing ITA. We show why the problem is nontrivial (see Sec-
tion 2.2) and how to modify the basic ITA framework to solve
the problem.

• Wang and Appel’s collector [23] relies on whole-program
analysis and code duplication to support higher-order and
polymorphic languages—this breaks separate compilation and
is impractical. We show how to use runtime type analysis
to write our GC as a library (thus no code duplication) and
how to directly support higher-order functions and polymor-
phism.

• We expose in detail how to implement and certify efficient
forwarding pointers. Making them type-safe is surprisingly
subtle (see Section 7). Wang and Appel [23] also claim to
support forwarding pointers but their scheme is less efficient
and it is unclear whether it is sound.

• We also show how to handle generations with a simple ex-
tension of our base calculus.

• A garbage collector is type-safe only if it is written in a prov-
ably type-safe language. We have complete type-soundness
proofs for all our calculi (see Appendix).Wang and Appel’s
collectors [23, 22], on the other hand, are not fully formal-
ized.

Although our paper is theoretical in nature, we believe it will be
of great interests to the general audience, especially those who are
looking to apply new language theory to solve important practical
problems such as mobile-code safety and certifying compilation.
We have started implementing our type-safe GCs in the FLINT
system [16], however, making the implementation realistic still in-
volves solving the remaining problems (e.g., breadth-first copying,
remembered sets, and data structures with cycles, which we still
cannot support satisfactorily) thus is beyond the scope of this pa-
per. Nevertheless, we believe our current contributions constitute a
significant step towards the goal of providing a practical type-safe
garbage collector.

2. Motivation and background
Why do we want a type-safe garbage collector?



The explosive growth of the Internet has induced newfound in-
terest in mobile computation as well as security. Increasingly, ap-
plications are being developed at remote sites and then downloaded
for execution. A robust mobile code system must allow code from
potentially untrusted sources to be executed. At the same time, the
system must detect and prevent the execution of malicious code.

The safety of such a system depends not only on the properties of
the code being downloaded, but also on the security of the host sys-
tem itself, or more specifically, its trusted computing base (TCB).

Proof-carrying code [13] and typed assembly languages [12] have
been proposed to reduce the size of this TCB by bundling the un-
trusted code with a mechanically checkable proof of safety, where
the safety is usually defined as type-safety. Such systems only need
to trust their verifier and runtime system rather than their whole
compiler suite.

But all these certifying-compiler projects (e.g., PCC, TAL) still
crucially rely on the correctness of a tracing garbage collector for
their safety. Recently, both Crary [3] and Morrisett [11] have char-
acterized type-safe garbage collection as one of the major open
problems in the area of certifying compilation.

A type-safe GC is not only desirable for reducing the size of the
TCB but also for making it possible to ship custom-tailored GC
along with mobile code, or to choose between many more GC vari-
ants without risking the integrity of the system. Writing GC inside
a type-safe language itself also makes it possible to achieve princi-
pled interoperation between garbage collection and other memory-
management mechanisms (e.g., those based on malloc-free and re-
gions). Indeed, one major software-engineering benefit is that a
type-safe GC must make explicit the contract between the collector
and the mutator and it must make sure that it is always respected.
Without typechecking, such rules can prove difficult to implement
correctly and bugs can be very difficult to find.

2.1 The problem
Recently, Wang and Appel [21] proposed to tackle the problem

by layering a stop-and-copy tracing garbage collector [24] on top of
a region based calculus, thus providing both type safety and com-
pletely automatic memory management.

A region calculus [17] annotates the type of every heap object
with the region in which it is allocated (such asσ1 ×ρ σ2 whereρ
is the region), and thus allows to safely reclaim memory by freeing
a whole region if that region does not appear in any of the currently
live types.

The basic idea in building a type-safe GC is to concentrate on
type-safety rather than correctness. Rather than try to prove that
the copy function faithfully copies all the heap, we just need to
show that it has a type looking somewhat like∀α.(α → (α[T/F]))
where(α[T/F]) stands for the typeα where the region annotationT
is substituted forF (see Fig. 1). Assuming we have such a function
and we don’t keep any reference to the regionF, the region calculus
will allow us to safely reclaimF.

Clearly, there is no correctness guarantee in sight since the value
returned by thatcopy function might have a completely different
value or might not faithfully reproduce the original graph, but it
ensures type-safe execution of the whole mutator-collector system
and even offers a form of type-preservation guarantee.

The main problem is clearly to write thiscopy function which
needs to trace through arbitrary heap structures at runtime. There-
fore, the language needs to support some form of runtime type in-
formation in order to do the actualcopy.

In their followup paper [23], Wang and Appel suggest to cir-
cumvent the problem of runtime type information using a mix of

F...

×F

@@
...

×F

@@
int

¡¡
int

¡¡
int ⇒

T...

×T

@@
...

×T

@@
int

¡¡
int

¡¡
int

copy : ∀F.∀T.∀α.(α −→ α[T/F])

GC = ΛF.Λα.λ(x :α, k :∀ρ.α[ρ/F] → 0)
let region T in
let y = copy[F][T][α](x) in
only T in k[T](y)

Figure 1: Stop-and-Copy from region F to region T.
GC is written in continuation passing style (CPS). It takes the cur-
rent region, the heap and a continuation and begins by allocating
a new regionT with “ let region T in e”. It then copies the heap
into this new region and then frees the old region implicitly with
“only T in e” which tells the region management that all regions but
T can be reclaimed. This way of freeing regions was introduced by
Wang and Appel to circumvent problems linked to aliasing of re-
gions.

monomorphization and defunctionalization (a form of closure con-
version due to Tolmach [18]) to simplify the problem to a monomor-
phic first order calculus. However, this approach suffers from sev-
eral major drawbacks:

• Most importantly, it is not generally applicable and requires
whole program analysis which rule out separate compilation.

• It can introduce a significant code size increase and forces the
use of separate specializedGC andcopy functions for each
type appearing in the program. Instead of the promised flex-
ibility to choose among various GC variants, this approach
locks you into a single 100% tailor made collector.

• Finally, although their type-safe GC does properly formal-
ize the interaction between the mutator and the collector, the
formalization is hidden inside the compiler and hence does
not allow to bring out open the overly intimate relationship
between the GC and the compiler.

They also try to preserve sharing using forwarding pointers. The
rough sketch of the solution they propose is similar to the one we
developed (which is done independently). It relies mostly on a very
powerful form ofcastwhich allows some amount of covariant sub-
typing of references. Making sure that this cast is sufficiently con-
strained to be safe is difficult. Their informal presentation is incom-
plete and possibly incorrect, and leaves many important questions
unanswered.

2.2 Our solution
We want to do away with any form of whole program analysis

so as to make the mutator and the collector independent in order to
reap the promised benefits of more flexibility and clearer interac-
tion between mutator and GC.

2



In this paper, we present a different approach for writing thecopy
function, relying on runtime type analysis. The return type ofcopy
(α[T/F], a form ofTyperec) as well as the need to observe types
at runtime leads one very naturally to use intensional type analysis
(ITA). In fact, an early paper of Wang and Appel [21] was titled
“safe garbage collection = regions + intensional type analysis;” but
they failed to make it work, and they subsequently gave up on us-
ing ITA and ended up opting for the lower-tech solution mentioned
above [23]. Saha et al. [15, 19] also tried to use ITA to write the
copyfunction, but their attempt is missing crucial details and didn’t
really work either.

2.2.1 A case for symmetry
So what is the problem? It seems that ITA provides us with just

the right tools. We can for example write a simpleTyperec such
asST,F(σ) which substitutesT for F and then usetypecase in the
body ofcopy.

But that means that the type grows each time we go through
the GC, fromσ to ST,F(σ) to Sρ,T(ST,F(σ)) . . . . This may seem
unimportant sinceS should be reduced away anyway. ButSρ,T(α)
cannot be reduced further untilα is instantiated:∃α.ST,F(α) is a
normal form. So the accumulation ofS operators is a real problem,
sinceSρ,F(α) is not equal toSρ,T(ST,F(α)).

We could arrange forSρ,T(ST,F(σ)) to reduce toSρ,F(σ). But
then all types becomeSρ,F(σ) (whereF is the “initial region”) ex-
cept before the first collection. Also it is very ad-hoc and only
works as long asS is a quasi-identity.

A better approach is to ensure that the input and output types are
symmetric. We first redefineSρ(σ) which simply substitutesρ for
any region annotation (why bother with an initial region) and then
redefinecopy to have type∀F.∀T.∀α.(SF(α) → ST(α)) which
gets us rid of the special case before the first collection and does not
require any special reduction rule forS sinceGC does not increase
the size of the type any more.

2.2.2 A case for tags
The above solution looks good until we try to copy an existential

package∃α :{F}.SF(α) to ∃α :{T}.ST(α).
Type variables hide region annotations, so we need to annotate

their kinds with the relevant region information. We write it “α :
∆” to mean thatα can only range over types that refer exclusively
to the regions included in∆.

So, by opening the existential package, we can get the valueσ
of α and the value of typeSF(σ), and a recursive call tocopywill
returnST(σ), but how can we construct the new existential package
? Reusingσ as-is will not do sinceσ is not constrained to{T} but to
{F}. We would want to useST(σ) but that cannot work either; the
only correctly typed package we can produce is〈α=ST(σ), v :α〉
which has type∃α :{T}.α.

We are again pushing a newS onto the type rather than replac-
ing anS with another. So we can again arrange forST(SF(σ)) to
reduce toST(σ), but we really do not want to tie our hands with
such an ad-hoc and restrictive scheme.

Instead, we can pay a bit more attention to what we do and ob-
serve thatSρ(σ) makes region annotations onσ completely use-
less, so instead of trying to get those annotations right only to
see them substituted we can simply define a parallel set of non-
annotated typesτ (that we will call tags). Since tags have no re-
gion annotations, we can hide them in tag variables without any
∆ constraint, which side-steps the problem of copying existentials
conveniently.

Such a split between types and tags is not a new concept since

it was already used in the work on intensional type analysis where
tags were calledconstructors[8, 5]. But here, tags take on more
significance since they correspond to a source-level notion of type
and will be mapped todifferent actual types with different type
functionsM (formerly S) which are used to encapsulate all the
constraints that mutator data has to satisfy in order for the collec-
tor to do its job. As you will see in sections 7 and 8 we will use
a non-trivialM mapping to force the mutator to provide space for
forwarding pointers and to enforce the invariant that references do
not point from the old generation to the new.

3. Source languageλCLOS

For simplicity of the presentation, the source language we pro-
pose to compile and garbage collect is the simply typedλ-calculus.

In order to be able to use our region calculus, we need to convert
the source program into a continuation passing style form (CPS).
And we also need to close our code to make all data manipulation
explicit, so we turn all closures into existential packages.

We won’t go into the details of how to CPS convert that source
language [7]. Similarly, for the closure conversion using existen-
tials [10, 9].

The language used after CPS conversion and closure conversion
is the languageλCLOS shown below.

(types) τ ::= Int | t | τ1 × τ2 | τ → 0 | ∃t.τ
(values) v ::= n | f | x | (v1, v2) | 〈t=τ1, v :τ2〉
(terms) e ::= let x = v in e | let x = πiv in e

| v1(v2) | open v as 〈t, x〉 in e | halt v

(programs) p ::= letrec
−−−−−−−−−→
f = λ(x :τ).e in e

Since functions are in CPS, they never return, which we repre-
sent with the arbitrary return type0. To represent closures, the lan-
guage includes existential packages constructed by〈t=τ1, v :τ2〉
and of type (∃t.τ2). Theopen v as 〈t, x〉 in e construct takes an
existential packagev, binds the witness type tot and the value to
x, and then executese. The complete program consists of a list
of mutually recursive closed function declarations followed by the
main term to be executed.

4. Target languageλGC

The language used to write the garbage-collector (and into which
we translateλCLOS programs) is shown in Fig. 2. It extendsλCLOS

with regions [17] and intensional type analysis [8, 19]. Functions
are also fully closed and use CPS but they can additionally be poly-
morphic over tags and regions.

4.1 Regions
Our region calculus uses “references” denotedν.` of type(σ at ρ)

rather than annotations likeσ1×ρσ2 (which is written(σ1 × σ2) at ρ
instead). Similarly, object allocation and memory accesses are made
explicit with put andget. This was only preferred because of its
orthogonality.

Region allocation and reclamation is done withlet region and
only. Deallocation of a region is implicit sinceonly lists the regions
that should be kept. This neatly works around aliasing problems,
at the cost of a more expensive deallocation operation (only needs
to go through the list of all regions to find which ones need to be
reclaimed). In our case, we have very few regions and deallocate
them only occasionally, so it is a good tradeoff.

3



(tenv) Θ ::= · | Θ, t :κ
(venv) Γ ::= · | Γ, x :σ
(renv) ∆ ::= · |∆, ρ
(α env) Φ ::= · | Φ, α :∆

(region types) Υ ::= {`1 :σ1, . . . , `n :σn}
(mem types) Ψ ::= {cd :Υcd, ν1 :Υ1, . . . , νn :Υn}
(regions) R ::= {`1 7→ v1, . . . , `n 7→ vn}
(memories) M ::= {cd 7→ Rcd, ν1 7→ R1, . . . , νn 7→ Rn}
(states) P ::= (M, e)

(regions) ρ ::= ν | r
(kinds) κ ::= Ω | Ω −→ Ω
(tags) τ ::= t | Int | τ1 × τ2 | τ → 0 | ∃t.τ

| λt.τ | τ1τ2

(types) σ ::= int | σ1 × σ2 | ∀[ ~t :κ][~r](~σ) → 0
| ∃t :κ.σ | σ at ρ | Mρ(τ) | α
| ∀J~τK[~r](~σ)

ρ−→ 0 | ∃α :∆.σ

(values) v ::= n | x | ν.` | (v1, v2) | 〈t=τ, v :σ〉 | vJ~τK
| 〈α :∆=σ1, v :σ2〉 | λ[ ~t :κ][~r](−−→x :σ).e

(operations) op ::= v | πiv | put[ρ]v | get v
(terms) e ::= v[~τ ][~ρ](~v) | let x = op in e | halt v

| ifgc ρ e1 e2 | open v as 〈t, x〉 in e
| open v as 〈α, x〉 in e | let region r in e
| only ∆ in e
| typecase τ of (ei; eλ; t1t2.e×; te.e∃)

(tagnf) τ ′ ::= t| Int| τ ′ → 0 | τ ′1 × τ ′2 | ∃t.τ ′ | λt.τ ′

| tτ ′

Figure 2: Syntax ofλGC

4.2 Intensional type analysis
As explained earlier, we have split the notion of type into two.

Tags represent the runtime type descriptors and map very directly
to source-level types without any region annotations. The only dif-
ferent betweenλCLOS types andλGC tags is the addition of tag
functionsλt.τ and tag applicationsτ1τ2, which are needed for type
analysis of existentials [19]. To do the actual analysis of tags, terms
include arefining typecase construct, i.e. a more refined tag is
substituted forτ in each arm of thetypecase. Finally, instead of a
full-blown Typerec construct we only provide a hard codedM, to
keep the presentation simpler.Mρ(τ) is the type corresponding to
the tagτ complemented with region annotationsρ:

Mρ(Int) =⇒ int
Mρ(τ1 × τ2) =⇒ (Mρ(τ1)×Mρ(τ2)) at ρ
Mρ(∃t.τ) =⇒ (∃t :Ω.Mρ(τ)) at ρ
Mρ(τ → 0) =⇒ ∀[][r](Mr(τ)) → 0 at cd

This definition ofM forces the mutator to maintain the invariant
that all objects are allocated in the same region, which is all our
garbage collector requires.

4.3 Functions and code
Since programs inλGC are completely closed, we can separate

code from data. The memory configuration enforces this by having
a separate dedicated regioncd for code blocks. The indirection
provided by memory references allows us to do away withletrec.
A valueλ[~t][~r](−−→x :σ).e is only an array of instructions (which can
contain references to other values incd) and needs to beput into a
region to get a function pointer before one can call it. In practice,

¤
£

¡
¢F ` λCLOS ⇒ λGC

F `v n ⇒ n F `v f ⇒ cd.F (f) F `v x ⇒ x

F `v v1 ⇒ v′1 F `v v2 ⇒ v′2
F `v (v1, v2) ⇒ put[r](v′1, v

′
2)

F `v v ⇒ v′

F `v 〈t=τ1, v :τ2〉 ⇒ put[r]〈t=τ1, v
′ :Mr(τ2)〉

F `v v1 ⇒ v′1 F `v v2 ⇒ v′2
F `e v1(v2) ⇒ v′1[][r](v

′
2)

F `v v ⇒ v′

F `e halt v ⇒ halt v′

F `e e ⇒ e′ F `v v ⇒ v′

F `e open v as 〈t, x〉 in e ⇒ open (get v′) as 〈t, x〉 in e′

F `e e ⇒ e′ F `v v ⇒ v′

F `e let x = v in e ⇒ let x = v′ in e′

F `e e ⇒ e′ F `v v ⇒ v′

F `e let x = πiv in e ⇒ let x = πi(get v′) in e′

F `e e ⇒ e′ ` = F (f)

F `f f = λ(x :τ).e ⇒ λ[][r](x :Mr(τ)).ifgc r (gc[τ ][r](cd.`, x)) e′

F = {fi 7→ `1, . . .} F `f fi = λ(x :τ).e ⇒ f ′i F `e e ⇒ e′

`p letrec
−−−−−−−−−→
f = λ(x :τ).e in e

⇒ ({cd 7→ {`1 7→ f ′1, . . .}}, let region r in e′)

Figure 3: Translation of λCLOS terms.

functions are placed into thecd region when translating code from
λCLOS and never directly appear inλGC code.

5. Translating λCLOS to λGC

The translation of terms fromλCLOS to λGC shown in figure 3
is mostly directed by the type translationMρ presented earlier: each
function takes the current region as an argument and begins by
checking if a garbage collection is necessary. All operations on
data are slightly rewritten to account for the need to allocate them
in the region or to fetch them from the region.

For example aλCLOS function like:

fix swap(x : int× int).
let x1 = π1x in let x2 = π2x in let x′ = (x2, x1) in halt 0

would turn into the followingλGC function (apart from some syn-

4



fix gc[t :Ω][r1](f :∀[][r](Mr(t)) → 0, x :Mr1(t)).
let region r2 in
let y = copy[t][r1, r2](x) in
only {r2} in f [][r2](y)

fix copy[t :Ω][r1, r2](x :Mr1(t)) : Mr2(t).
typecase t of

int ⇒ x
λ ⇒ x

t1 × t2 ⇒ let x1 = copy[t1][r1, r2](π1(get x)) in
let x2 = copy[t2][r1, r2](π2(get x)) in
put[r2](x1, x2)

∃te ⇒ open (get x) as 〈t, y〉 in
let z = copy[tet][r1, r2](y) in
put[r2]〈t= t, z :Mr2(tet)〉

Figure 4: The garbage collector proper.

tactic conveniences):

fix swap[][r](x : (Int× Int) at r).
ifgc r (gc[Int× Int][r](swap, x))

let x = get x in
let x1 = π1x in
let x2 = π2x in
let x′ = put[r](x2, x1) in
halt 0

An important detail here is that the garbage collector receives the
tagτ rather than the typeσ of the argument. The garbage collector
receives the tags for analysis as they were inλCLOS rather than
as they are translated inλGC . This maintains a clear distinction
between the types the programmer thinks he manipulates and the
real types they map to.

Another interesting detail is that if the region is full, the function
calls the garbage collector with itself as the return function. I.e.
when the collection is finished, the collector will jump back to the
function which will then redo the check. We could instead call the
garbage collector with another function as argument. That would
save us from redoing theifgc but would require many tiny functions
which are just not worth bothering with.

The translation in figure 3 usesλGC in a somewhat loose way
to keep the presentation concise. More specifically, it will gen-
erate terms such aslet x = πi(get v) in e instead oflet x′ =
get v in let x = πix

′ in e. Turning such code back into the strict
λGC is immediate.

On the other hand, the garbage collection code in figure 4 uses
not only some syntactic sugar but even resorts to using a direct-
style presentation of thecopy function. This is only for clarity of
presentation, of course. As can be seen in figure 12 in the appendix,
the code after CPS and closure conversion is a lot more difficult
to read, partly because of the need to do a form of typed closure
conversion [10].

The garbage collector itself is very simple: it first allocates theto
region, askscopy to move everything into it and then free thefrom
region before jumping to its continuation, using the new region.

The copy function is similarly straightforward, recursing over
the whole heap and copying in a depth-first way. Clearly, the direct
style here hides the stack. When the code is CPS converted and
closed (as shown in the appendix), we have to allocate that stack
of continuations in an additional temporary region and unless our
language is extended with some notion of stack, none of those con-
tinuations would be collected until the end of the whole garbage

collection. The size of this temporary region can be bounded by
the size of theto region since we can’t allocate more than one con-
tinuation per copied object, so it is still algorithmically efficient,
although this memory overhead is a considerable shortcoming.

6. A closer look atλGC

Programs inλGC use an allocation semantics which makes the
allocation of data in memory explicit. The semantics, defined in
Fig. 5, maps a machine stateP to a new machine stateP ′. A ma-
chine state is a pair(M, e) of a memoryM and a terme being
executed. A memory consists of a set of regions; hence, it is de-
fined formally as a map between region namesν and regionsR. A
region, in turn, is a map from offsets` to storable valuesv. There-
fore, an address is given by a pair of a region and an offsetν.`. We
assign a type to every location allocated in a region;Υ denotes a
region type. Finally, the memory typeΨ assigns a region type to
every region allocated in memory.

6.1 Closure conversion andcopy.
Since the source language is monomorphic, closure conversion

need only rely on existentials. This simplicity is however broken by
thecopy function in the garbage collector itself because this func-
tion is (recursively) polymorphic. For that reason, we also need a
form of translucent type, namely∀J~τK[~r](~σ)

ρ−→ 0. Closure con-
version of the CPS form ofcopy was also the only reason for intro-
ducing〈α :∆=σ1, v :σ2〉.

6.2 Functions and code
Since function bodies can contain references to other functions

in cdbut we do not have an easy way for the garbage collector to an-
alyze a function body to trace through those references,cd enjoys
a special status. It cannot be freed and can only contain functions,
no other kind of data.

An alternative would be to require all functions to be fully closed,
but that would require the addition of recursive types for the envi-
ronment containing pointers to all functions and passed around ev-
erywhere. It would save us from all thatcd special casing, and
would allow garbage collecting code, but on the other hand, it
would be less realistic since it would amount to disallowing direct
function calls.

6.3 The type calculus
The target language must be expressive enough to write a tracing

garbage collector. Since the garbage collector needs to know the
type of values at runtime, the languageλGC must support the run-
time analysis of types. Therefore, conceptually, types need to play
a dual role in this language. As in the source languageλCLOS , they
are used at compile time to type-check well formed terms. How-
ever, they are also used at runtime, as tags, to be inspected by the
garbage collector (and, in general, by any type analyzing function).
To enforce this distinction, we split types into a tag language and a
type language. The tags correspond to the runtime entity, while the
types correspond to the compile time entity.

While translating fromλCLOS to λGC , the tag for a value must
be constructed from its type. Therefore, the tags inλGC , closely
resemble the type language in the source. To support the analysis
of these tags, we need to add tag level functions (λt.τ ) and tag level
applications (ττ1). In turn, this requires a kind calculus to classify
the tags.

Types are used to classify terms. The type language includes the
existential type for typing closures and the code type∀[~t][~r](~σ) →

5



(M, ν.`[~τ ][~ρ](~v)) =⇒ (M, ν.`[~τ ′][~ρ](~v))

(M, ν.`[~τ ′][~ρ](~v))

whereM(ν.`) = (λ[ ~t :κ][~r](~x :~σ).e)
=⇒ (M, e[~ρ, ~τ ′, ~v/~r,~t, ~x])

(M, (vJ~τK)[~τ ][~ρ](~v)) =⇒ (M, v[~τ ][~ρ](~v))

(M, let x = v in e) =⇒ (M, e[v/x])

(M, let x = πi(v1, v2) in e) =⇒ (M, e[vi/x])

(M, let x = put[ν]v in e) =⇒ (M{ν.` 7→ v}, e[ν.`/x]) where` /∈ Dom(M(ν))

(M, let x = get ν.` in e) =⇒ (M, e[v/x]) whereM(ν.`) = v

(M, open 〈t=τ, v :σ〉 as 〈t, x〉 in e) =⇒ (M, open 〈t=τ ′, v :σ〉 as 〈t, x〉 in e)

(M, open 〈t=τ ′, v :σ〉 as 〈t, x〉 in e) =⇒ (M, e[τ ′, v/t, x])

(M, open 〈α :∆=σ1, v :σ2〉 as 〈α, x〉 in e) =⇒ (M, e[σ1, v/α, x])

(M, ifgc ρ e1 e2) =⇒ (M, e1) if ρ is full

(M, ifgc ρ e1 e2) =⇒ (M, e2) if ρ is not full

(M, let region r in e) =⇒ (M{ν 7→ {}}, e[ν/r]) whereν 6∈ Dom(M)

(M, only ∆ in e) =⇒ (M |∆, e)

(M, typecase τ of (ei; eλ; t1t2.e×; te.e∃)) =⇒ (M, typecase τ ′ of (ei; eλ; t1t2.e×; te.e∃))

(M, typecase Int of (ei; eλ; t1t2.e×; te.e∃)) =⇒ (M, ei)

(M, typecase τ → 0 of (ei; eλ; t1t2.e×; te.e∃)) =⇒ (M, eλ)

(M, typecase τ1 × τ2 of (ei; eλ; t1t2.e×; te.e∃)) =⇒ (M, e×[τ1, τ2/t1, t2])

(M, typecase ∃t.τ of (ei; eλ; t1t2.e×; te.e∃)) =⇒ (M, e∃[λt.τ/te])

Figure 5: Operational semantics ofλGC .

0 for fully closed functions. Moreover, types in the target language
must include the region in which the corresponding value resides.
Therefore, we use the notationσ at ρ for the type of a value of type
σ in regionρ.

To reason about the safety of programs in this language, we will
often need to assume that a value resides in a particular region only.
For example, after thecopy function is finished, we must be able
to assume that all the data is contained only in the new region; so
that the old region can be safely freed. Therefore, to ensure type
safety, we must be able to enforce this invariant at the type level.
For this, we use the built in type operatorM. The typeMρ(τ) can
only contain values that are in regionρ. Notice that it is a restricted
form of the fully reflexiveTyperec operator [19]. Essentially, it is
aTyperec that has been hard-wired into the language.

6.4 The term calculus
The term language must support region based memory manage-

ment and runtime type analysis. New regions are created through
the let region r in e construct which allocates a new regionν at
runtime and bindsr to it. A term of the formput[ρ]v allocates a
valuev in the regionρ. Data is read from a region in two ways.
Functions are read implicitly through a function call. Data may
also be read through theget v construct. Operationally, theget
construct takes a memory addressν.` and dereferences it.

Deallocation is handled implicitly through theonly ∆ in e con-
struct [21]. It asserts statically that the expressione can be eval-
uated using the set of regions bound to∆′ and the code region,
which is a subset of the region variables currently in scope.

Ψ|∆′ ;∆′, cd; Θ;Φ|∆′ ; Γ|∆′ ` e ∆′ ⊂ ∆

Ψ;∆;Θ;Φ; Γ ` only ∆′ in e

The memory is restricted to the set of regions in∆′ (Ψ|∆′ ) and the

code region. Similarly, the other environments (Φ andΓ) are re-
stricted to be well formed under∆′ (Φ|∆′ andΓ|∆′ ). At runtime,
an implementation would treat the set of regions in∆′ as live and
reclaim other regions. Since the reclamation works on whole re-
gions, the cost is proportional to the number of regions. Since this
number is usually small, it entails an insignificant runtime penalty.
The dynamic check takes care of aliasing. This makes our system
significantly simpler since we can avoid the heavy type machinery
required to detect aliasing statically.

The runtime type analysis is handled through atypecase con-
struct. Depending on the head of the type being analyzed, the
typecase chooses one of the branches for execution. When an-
alyzing a type variablet, we refine types containingt in each of the
branches [6].

Θ ` t : Ω
Ψ;∆;Θ;Φ; Γ[int/t] ` ei[int/t]
. . .

Ψ;∆;Θ;Φ; Γ ` typecase t of (ei; eλ; t1t2.e×; te.e∃)

In the ei branch, we know that the type variablet is bound toInt
and can therefore substitute it away. A similar rule is applied to the
other cases.

6.5 Formal properties of the language
In this section, we prove that type checking inλGC is decidable

and that the calculus is sound. We omit the proofs due to space
constraints. The reader may refer to the companion technical report
for details.

6.5.1 Type checking is decidable

Proposition 6.1 Reduction of well formed types is strongly nor-

6



¤
£

¡
¢Θ ` τ : κ

· ` Int : Ω

Θ(t) = κ

Θ ` t : κ

Θ ` τ1 : Ω Θ ` τ2 : Ω

Θ ` τ1 × τ2 : Ω

Θ ` τi : Ω

Θ ` ~τ → 0 : Ω

Θ, t :Ω ` τ : Ω

Θ ` ∃t.τ : Ω

Θ, t :Ω ` τ : Ω

Θ ` λt.τ : Ω −→ Ω

Θ ` τ1 : Ω −→ Ω Θ ` τ2 : Ω

Θ ` τ1τ2 : Ω

¤
£

¡
¢∆;Θ;Φ ` σ

∆;Θ;Φ ` int
∆;Θ;Φ ` σ1 ∆;Θ;Φ ` σ2

∆;Θ;Φ ` σ1 × σ2

{~r}; ~t :κ; · ` σi

∆;Θ;Φ ` ∀[ ~t :κ][~r](~σ) → 0

∆;Θ, t :κ; Φ ` σ

∆;Θ; Φ ` ∃t :κ.σ

∆;Θ; Φ ` σ ρ ∈ ∆

∆;Θ;Φ ` σ at ρ

Θ ` τ : Ω ρ ∈ ∆

∆;Θ; Φ ` Mρ(τ)

Φ(α) = ∆′ ∆′ ⊂ ∆

∆;Θ; Φ ` α

∆;Θ; Φ, α :∆′ ` σ ∆′ ⊂ ∆

∆;Θ;Φ ` ∃α :∆′.σ

{~r}; Θ; · ` σi Θ ` τi : κi ρ ∈ ∆

∆;Θ;Φ ` ∀J~τK[~r](~σ)
ρ−→ 0

¤
£

¡
¢Ψ;∆;Θ;Φ; Γ ` v : σ Ψ;∆;Θ;Φ; Γ ` op : σ

Ψ;∆;Θ;Φ; Γ ` n : int
Γ(x) = σ

Ψ;∆;Θ;Φ; Γ ` x : σ

Ψ(ν.`) = σ Dom(Ψ); ·; · ` σ at ν

Ψ;∆;Θ;Φ; Γ ` ν.` : σ at ν

cd, ~r;~t; · ` σi Ψ|cd; cd, ~r;
−→
t :κ; ·;−−→x :σ ` e

Ψ;∆;Θ;Φ; Γ ` λ[ ~t :κ][~r](−−→x :σ).e : ∀[ ~t :κ][~r](~σ) → 0

Ψ;∆;Θ;Φ; Γ ` v : ∀[ ~t :κ][~r](~σ) → 0 at ρ Θ ` τi : κi

Ψ;∆;Θ; Φ; Γ ` vJ~τK : ∀J~τK[~r](~σ[~τ/~t])
ρ−→ 0

Ψ;∆;Θ; Φ; Γ ` v1 : σ1 Ψ;∆; Θ;Φ; Γ ` v2 : σ2

Ψ;∆;Θ; Φ; Γ ` (v1, v2) : σ1 × σ2

Ψ;∆; Θ;Φ; Γ ` v : σ1 × σ2

Ψ;∆;Θ;Φ; Γ ` πiv : σi

Ψ;∆; Θ;Φ; Γ ` v : σ at ρ

Ψ;∆;Θ;Φ; Γ ` get v : σ

Θ ` τ : κ Ψ;∆;Θ; Φ; Γ ` v : σ[τ/t]

Ψ;∆;Θ;Φ; Γ ` 〈t=τ, v :σ〉 : ∃t :κ.σ

∆′; Θ;Φ|∆′ ` σ1 Ψ;∆; Θ;Φ; Γ ` v : σ2[σ1/α]

Ψ;∆; Θ;Φ; Γ ` 〈α :∆′=σ1, v :σ2〉 : ∃α :∆′.σ2

Ψ;∆; Θ;Φ; Γ ` v : σ ρ ∈ ∆

Ψ;∆;Θ;Φ; Γ ` put[ρ]v : σ at ρ

¤
£

¡
¢Ψ;∆;Θ;Φ; Γ ` e

Ψ;∆;Θ;Φ; Γ ` v : ∀[ ~t :κ][~r](~σ) → 0 at ρ

Ψ;∆;Θ; Φ; Γ ` vi : σi[~ρ, ~τ/~r,~t] Θ ` τi : κi ρi ∈ ∆

Ψ;∆;Θ;Φ; Γ ` v[~τ ][~ρ](~v)

Ψ;∆; Θ;Φ; Γ ` v : ∀J~τK[~r](~σ)
ρ−→ 0

Ψ;∆;Θ;Φ; Γ ` vi : σi[~ρ/~r] ρi ∈ ∆

Ψ;∆;Θ;Φ; Γ ` v[~τ ][~ρ](~v)

Ψ;∆; Θ;Φ; Γ ` op : σ Ψ;∆;Θ; Φ; Γ, x :σ ` e

Ψ;∆; Θ;Φ; Γ ` let x = op in e

Ψ;∆;Θ; Φ; Γ ` v : ∃t′ :κ.σ Ψ;∆;Θ, t :κ; Φ; Γ, x :σ[t/t′] ` e

Ψ;∆;Θ;Φ; Γ ` open v as 〈t, x〉 in e

Ψ;∆;Θ; Φ; Γ ` v : ∃α′ :∆′.σ Ψ;∆;Θ; Φ, α :∆′; Γ, x :σ[α/α′] ` e

Ψ;∆; Θ;Φ; Γ ` open v as 〈α, x〉 in e

Ψ;∆;Θ;Φ; Γ ` e1 Ψ;∆;Θ; Φ; Γ ` e2 ρ ∈ ∆

Ψ;∆; Θ; Φ; Γ ` ifgc ρ e1 e2

Ψ;∆, r; Θ;Φ; Γ ` e

Ψ;∆; Θ;Φ; Γ ` let region r in e

Ψ;∆; Θ;Φ; Γ ` v : int
Ψ;∆;Θ; Φ; Γ ` halt v

Ψ|∆′ ;∆′, cd; Θ; Φ|∆′ ; Γ|∆′ ` e ∆′ ⊂ ∆

Ψ;∆;Θ; Φ; Γ ` only ∆′ in e

Ψ;∆; Θ;Φ; Γ ` ei
Ψ;∆;Θ; Φ; Γ ` typecase Int of (ei; eλ; t1t2.e×; te.e∃)

Ψ;∆;Θ; Φ; Γ ` eλ

Ψ;∆; Θ;Φ; Γ ` typecase ~τ → 0 of (ei; eλ; t1t2.e×; te.e∃)

Ψ;∆; Θ;Φ; Γ ` e×[τ1, τ2/t1, t2]

Ψ;∆;Θ;Φ; Γ ` typecase (τ1 × τ2) of (ei; eλ; t1t2.e×; te.e∃)

Ψ;∆; Θ;Φ; Γ ` e∃[λt.τ/te]

Ψ;∆; Θ;Φ; Γ ` typecase ∃t.τ of (ei; eλ; t1t2.e×; te.e∃)

Θ ` t : Ω
Ψ;∆;Θ;Φ; Γ[int/t] ` ei[int/t]
Ψ;∆;Θ;Φ; Γ ` eλ

Ψ;∆;Θ, t1 :Ω, t2 :Ω;Φ; Γ[t1 × t2/t] ` e×[t1 × t2/t]
Ψ;∆;Θ, te :Ω −→ Ω;Φ; Γ[∃t.tet/t] ` e∃[∃t.tet/t]

Ψ;∆;Θ; Φ; Γ ` typecase t of (ei; eλ; t1t2.e×; te.e∃)

Figure 6: Static semantics ofλGC .

7



¤
£

¡
¢∆ ` Υ ` Ψ

∆; ·; · ` σi

∆ ` {`1 :σ1, . . . , `n :σn}
{ν1, . . . , νn} ` Υi

` {ν1 :Υ1, . . . , νn :Υn}

Υcd = {`1 :∀[~τ1][~r1](−−−→v1 :σ1) → 0, . . . , `n :∀[ ~τn][ ~rn](−−−→vn :σn) → 0}
¤
£

¡
¢Ψ ` R : Υ ` M : Ψ

Ψ; Dom(Ψ); ·; ·; · ` vi : σi

Ψ ` {`1 7→ v1, . . . , `n 7→ vn} : {`1 :σ1, . . . , `n :σn}

` {ν1 :Υ1, . . . , νn :Υn} {ν1 :Υ1, . . . , νn :Υn} ` Ri : Υi

` {ν1 7→ R1, . . . , νn 7→ Rn} : {ν1 :Υ1, . . . , νn :Υn}

Figure 7: Environment formation rules.

malizing.

Proof Since the tag language is a simply typed lambda calcu-
lus, reduction of well formed tags is strongly normalizing and con-
fluent. The termination ofMρ(τ) follows from a straightforward
induction on the size of the tagτ .

Proposition 6.2 Reduction of well formed types is confluent.

Proof Since the reduction of well formed types is strongly nor-
malizing, confluence of the reduction follows from local conflu-
ence. This follows easily from a case analysis of the reduction of
theMρ(τ) tag.

6.5.2 Soundness

Definition 6.3 The machine state(M, e) is well formed iff

` M :Ψ Ψ; Dom(Ψ); ·; ·; · ` e

` (M, e)

Contrary to the other environments,Ψ is not explicitly constructed
in any of the static rules, since it reflects dynamic information. In-
stead, the soundness proof, or more specifically the type preserva-
tion proof, needs to construct some witnessΨ′ for the new state
(M ′, e′) based on theΨ of the initial state(M, e).

Proposition 6.4 (Type Preservation)If ` (M, e) and
(M, e) =⇒ (M ′, e′) then` (M ′, e′).
Proof See the appendix A.

Proposition 6.5 (Progress)If ` (M, e) then eithere = halt v or
there exists a(M ′, e′) such that(M, e) =⇒ (M ′, e′).
Proof See the appendix A.

7. Forwarding pointers
The base algorithm presented before is unrealistic in a number of

ways. The first is the fact that thecopy function does not preserve
sharing and thus turns any DAG into a tree.

We hence need to add some form offorwarding pointers. Wang
and Appel suggest to pair up every object with its forwarding pointer,

¤
£

¡
¢Ψ;∆;Θ; Φ; Γ ` v : σ Ψ;∆;Θ;Φ; Γ ` e

Ψ;∆; Θ;Φ; Γ ` v : left σ

Ψ;∆;Θ; Φ; Γ ` strip v : σ

Ψ;∆;Θ; Φ; Γ ` v : right σ

Ψ;∆;Θ; Φ; Γ ` strip v : σ

Ψ;∆; Θ;Φ; Γ ` v : σ

Ψ;∆; Θ;Φ; Γ ` inl v : left σ

Ψ;∆; Θ;Φ; Γ ` v : σ

Ψ;∆;Θ;Φ; Γ ` inr v : right σ

Ψ;∆;Θ; Φ; Γ ` v : σ1

Ψ;∆; Θ;Φ; Γ ` v : σ1 + σ2

Ψ;∆;Θ; Φ; Γ ` v : σ2

Ψ;∆;Θ; Φ; Γ ` v : σ1 + σ2

Ψ;∆;Θ;Φ; Γ ` v : σ1 + σ2

Ψ;∆;Θ; Φ; Γ, x :σ1 ` el Ψ;∆; Θ; Φ; Γ, x :σ2 ` er

Ψ;∆; Θ; Φ; Γ ` ifleft x = v el er

Ψ;∆; Θ;Φ; Γ ` e
Ψ;∆;Θ;Φ; Γ ` v1 : σ at ρ Ψ;∆; Θ;Φ; Γ ` v2 : σ

Ψ;∆;Θ; Φ; Γ ` set v1 := v2 ; e

Ψ;∆; Θ;Φ; Γ ` v : Mρ(τ)
Ψ|cd; cd, ρ, ρ′; Θ;Φ|ρρ′ ; x :Cρ,ρ′(τ) ` e

Ψ;∆;Θ;Φ; Γ ` let x = widen[ρ′][τ ](v) in e

Figure 8: Static semantics forλGCforw.

incurring a significant memory cost.1 We want instead to represent
objects as a sum(σ+ fwd σ), which requires a single bit per object
and corresponds much more closely to traditional implementations.
To this end,λGCforw extendsλGC with new types and terms for
tag bits and sum types as well as memory assignment. We do not
need a newfwd or ref type since we can use the region calculus’
references for that purpose.

Another requirement for a realistic GC is that the mutator should
not need to constantly check for the presence of forwarding pointers
since such a read-barrier would only be justified for an incremental
GC. In other words, the type as seen by the mutator should not be
a sum, although it should still contain the single-bit tag that the
GC will use to distinguish between forwarding pointers. Also there
should be a way to switch from the mutator’s view of the type of
an object to the one of the collector. So we also need to add a form
of cast that we callwiden which we will use at the beginning of a
collection to give the collector access to the forwarding pointers:

σ ::= . . . | left σ | right σ | left σ1 + right σ2 | Cρ,ρ′(τ)
v ::= . . . | inl v | inr v
op ::= . . . | strip v
e ::= . . . | ifleft x = v el er | set v1 := v2 ; e

| let x = widen[ρ][τ ](v) in e

inl and inr (and their type-level counterpartsleft andright) can
be thought of as adding a single tag bit to an object whilestrip
gets back the untagged object andifleft checks the tag bit. The
idea is to represent objects as(left σ) to the mutator (without the
(right σ) alternative to avoid the need for checks) and cast them
with thewiden operator to(left σ + right(σ at to)) when entering

1This additional word is not unheard of, since replicating garbage
collectors [14, 1] incur a similar overhead, justified by the desire
to provide concurrent collection while avoiding the cost of a read-
barrier.

8



the garbage collector (here “to” denotes the region variable for the
to space).

Since a single source-level type now maps to two different possi-
ble types, we need two type operators:Mρ(τ) to map source types
to the mutator’s view of the data andCρ,ρ′(τ) to map source types
to the collector’s view (which adds forwarding pointers).Mρ(τ) is
the same as before for base types and for code types, but is changed
for existentials and pairs by adding theleft constructor that con-
strains the mutator to provide the tag bit needed to distinguish the
forwarded pointer from the non-forwarded data.

Mρ(Int) =⇒ int
Mρ(τ → 0) =⇒ ∀[][r](Mr(τ)) → 0 at cd
Mρ(∃t.τ) =⇒ (left(∃t.Mρ(τ))) at ρ
Mρ(τ1 × τ2) =⇒ (left(Mρ(τ1)×Mρ(τ2))) at ρ

Cρ,ρ′(Int) =⇒ int
Cρ,ρ′(τ → 0) =⇒ Mρ(τ → 0)
Cρ,ρ′(∃t.τ) =⇒ (left(∃t.Cρ,ρ′(τ)) + right(Mρ′(∃t.τ))) at ρ

Cρ,ρ′(τ1 × τ2) =⇒ (+
left(Cρ,ρ′(τ1)× Cρ,ρ′(τ2))
right(Mρ′(τ1 × τ2))

) at ρ

It is worth noting again here how theM type operators cleanly
encapsulate the invariants imposed on the mutator by the collector.
In this case, it forces the mutator to provide the collector with free
bit that the collector can then use to distinguish forwarding pointers
from non-forwarded data. And we also see how the same mecha-
nism can be used to express the difference between the restricted
view offered to the mutator and the full blown access to internal
data that the collector needs.

The operational semantics of the new operations is straightfor-
ward, especially since we can implement the assignment operator
by reusing the indirection through the memory:

(M, let x = strip (inl v) in e) =⇒ (M, e[v/x])
(M, let x = strip (inr v) in e) =⇒ (M, e[v/x])
(M, ifleft x = (inl v) el er) =⇒ (M, el[inl v/x])
(M, ifleft x = (inr v) el er) =⇒ (M, el[inr v/x])
(M, set ν.` := v ; e) =⇒ (M{ν.` 7→ v}, e)
(M, let x = widen[ρ][τ ](v) in e) =⇒ (M, e[v/x])

The translation fromλCLOS to thisλGCforw is not shown since
it is basically the same as before except for the insertion of all theinl
andstrip. The garbage collector can be seen in figure 9. Compared
to the original algorithm, the only difference in thegc function it-
self is the widening of the heap fromMr1 to Cr1,r2 and the fact
that we have to bundle thef andx arguments into a pair in order to
pass it through thewiden operator and unbundle it afterwards. The
copy function also needed to be changed of course: when copying
a heap object such as a pair, it now has to check withifleft whether
the object was forwarded, if so it just returns the forwarded object,
otherwise it does the copy as before and has to overwrite (usingset)
the original object with the forwarding pointer before returning the
copied object.

7.1 How to widen safely
The only non-trivial extension iswiden which allows the garbage

collector to have a different view of the existing memory, provided
the two views are somehowcompatible. It seems difficult to solve
the problem of allowing two views on the same data without such
a form of cast. At first, it seems we are just applying a form of sub-
typing, but this form of subtyping is very powerful since it allows

fix gc[t :Ω][r1](f :Mr1(λ(t)), x :Mr1(t)).
let region r2 in
let w = widen[r2][(λ(t)× t)](put[r1](inl (f, x))) in
ifleft w = get w then

let w = strip w in
let y = copy[t][r1, r2](π2w) in
only {r2} in (π1w)[][r2](y)

else
halt 0

fix copy[t :Ω][r1, r2](x :Cr1,r2(t)) : Mr2(t).
typecase t of

int ⇒ x
λ ⇒ x

t1 × t2 ⇒ let y = get x in
ifleft y = y then

let x1 = copy[t1][r1, r2](π1(strip y)) in
let x2 = copy[t2][r1, r2](π2(strip y)) in
let z = put[r2](inl (x1, x2)) in
set x := inr z ; z

else
strip y

∃te ⇒ let y = get x in
ifleft y = y then

open (strip y) as 〈t, y〉 in
let y = copy[tet][r1, r2](y) in
let z = put[r2](inl 〈t= t, y :Mr2(tet)〉) in
set x := inr z ; z

else
strip y

Figure 9: GC with forwarding pointers.

covariant subtyping of references. This means that aliasing issues
have to be handled with extreme care.

When faced with the same problem, Wang and Appel came up
independently with a similar idea. But their suggestedcast leaves
many questions open and might need more work to be made type-
safe. Also its operational semantics actually does a complete copy
of the heap from one region to the other. This might make it easier
to prove soundness but makes it unclear whether it can really be
implemented as a nop. In contrast, the operational semantics of
widen is a nop and we have a proof of its soundness.

In order to handle the problem of aliasing mentioned above, it
might be possible to rely on some form of linear typing or alias
types [20], but given the inherent generality of a garbage collector,
it seems difficult. Our approach is to rely on the consistent ap-
plication of the same cast over the whole heap, so that aliases are
guaranteed to be cast in the same way.

Rather than an ad-hocwiden we could provide a more general
cast that can consistently apply iteratively some type transforma-
tions (as long as it obeys the notion of subtyping extended with
covariant subtyping of references) to any particular set of regions,
but the complexity of such an operator is out of the scope of this
paper.

In Figure 8, the typing rule forwiden shows that the expression
e is typed in an environment that only containsx. In essencex rep-
resents the entire heap. Further,x is obtained from the valuev that
has typeMρ(τ). Looking at the definition ofM, we can see that
all values reachable fromv will have a type of the formMρ(τ

′).
Since bothM andC are iterators, we can now define a casting op-
eration from one type to the other as an iterator. This iterator will

9



traverse the entire heap and systematically convert from one type to
the other; this systematic conversion is necessary to avoid ending
up with a value that has a particular type along one path, but has a
different type along another path.

The proof of soundness ofwiden is rather intricate. It starts by
ignoring all the dead objects from the heap, so that only objects of
type Mρ(τ) are left, which get cast toCρ,ρ′(τ). For that reason,
we needed to loosen our notion of a well formed machine state to
allow restricting the considered memoryM to just a well-typed
sufficient subsetM , where “sufficient” means that no object out-
side ofM is needed to complete execution. This safely permits
ill-typed garbage.

Definition 7.1 The machine state(M, e) is well formed iff

M ⊂ M ` M :Ψ Ψ; Dom(Ψ); ·; ·; · ` e

` (M, e)

Proposition 7.2 (Type Preservation)If ` (M, e) and
(M, e) =⇒ (M ′, e′) then` (M ′, e′).
Proof See the appendix C.

Proposition 7.3 (Progress)If ` (M, e) then eithere = halt v or
there exists a(M ′, e′) such that(M, e) =⇒ (M ′, e′).
Proof See the appendix C.

8. Generational collection
Another important aspect of a modern GC is the support for gen-

erational garbage collection. If we first restrict ourselves to a side-
effect free language, then we can collect a single generation at a
time so long as we can express the fact that an object in the old
generation cannot point to an object in the young generation.

To that end we need to extendλGC with existential quantification
over regions, so that the mutator does not need to care whether an
object is allocated in the young or the old region. We also need
to add some way to check in which region an object is allocated
so that GC can detect when an object is in the old generation (and
hence does not need copying):

σ ::= . . . | ∃r∈∆.(σ at r)
v ::= . . . | 〈r ∈ ∆ = ρ, v :σ〉
e ::= . . . | open v as 〈r, x〉 in e | ifreg (ρ1 = ρ2) e1 e2

Apart from those new constructs (whose static semantics is pre-
sented in figure 10), theM type operator also needs to be modified
to reflect the new invariant imposed on the mutator. It is now in-
dexed by two regions (the old and the new) and has to enforce the
fact that objects in the old region cannot have references to the new
region:

Mρy,ρo(Int) =⇒ int
Mρy,ρo(τ → 0) =⇒ ∀[][ry, ro](Mry,ro(τ)) → 0 at cd
Mρy,ρo(∃t.τ) =⇒ ∃r∈{ρy, ρo}.((∃t.Mr,ρo(τ)) at r)
Mρy,ρo(τ1 × τ2) =⇒ ∃r∈{ρy, ρo}.((Mr,ρo(τ1)×Mr,ρo(τ2)) at r)

By using the set{r, ρo} we make sure that ifr is the old genera-
tion, pointers underneath it cannot point back to the new generation.

The operational semantics are again rather simple:

(M, open 〈r ∈ ∆ = ν, v :σ〉 as 〈r, x〉 in e) =⇒ (M, e[ν, v/r, x])
(M, ifreg (ν = ν) e1 e2) =⇒ (M, e1)
(M, ifreg (ν1 = ν2) e1 e2) =⇒ (M, e2)

¤
£

¡
¢∆;Θ;Φ ` σ Ψ;∆;Θ; Φ; Γ ` v : σ Ψ;∆;Θ; Φ; Γ ` e

∆′ ⊂ ∆ ∆, r; Θ;Φ ` σ

∆;Θ;Φ ` ∃r∈∆′.(σ at r)

Θ ` τ : Ω ρ1 ∈ ∆ ρ2 ∈ ∆

∆;Θ; Φ ` Mρ1,ρ2(τ)

Ψ;∆;Θ; Φ; Γ ` v : σ[ρ/r] at ρ ρ ∈ ∆′ ∆′ ⊂ ∆

Ψ;∆;Θ;Φ; Γ ` 〈r ∈ ∆′ = ρ, v :σ〉 : ∃r∈∆′.(σ at r)

Ψ;∆;Θ;Φ; Γ ` v : ∃r∈∆′.(σ at r)
Ψ;∆, r; Θ;Φ; Γ, x :σ at r ` e

Ψ;∆;Θ; Φ; Γ ` open v as 〈r, x〉 in e

Ψ;∆[r, r/r1, r2]; Θ;Φ[r, r/r1, r2]; Γ[r, r/r1, r2] ` e1[r, r/r1, r2]
Ψ;∆; Θ;Φ; Γ ` e2 r /∈ ∆

Ψ;∆;Θ;Φ; Γ ` ifreg (r1 = r2) e1 e2

Ψ;∆[ν/r]; Θ;Φ[ν/r]; Γ[ν/r] ` e1[ν/r] Ψ;∆;Θ;Φ; Γ ` e2

Ψ;∆;Θ;Φ; Γ ` ifreg (r = ν) e1 e2

Ψ;∆;Θ;Φ; Γ ` ifreg (ν = r) e1 e2

Ψ;∆; Θ;Φ; Γ ` e2

Ψ;∆;Θ; Φ; Γ ` ifreg (ν1 = ν2) e1 e2

Ψ;∆; Θ;Φ; Γ ` e1

Ψ;∆;Θ; Φ; Γ ` ifreg (ν1 = ν1) e1 e2

Figure 10: Static semantics ofλGCgen.

Although the operational semantics do not take advantage of it
(in order to simplify the soundness proof), we defined the existen-
tials over regions in such a way that they can be implemented as
nop since the encapsulated reference usually already encodes the
region in its bit-pattern (or in itsν.`).

The new term translation is again not shown since it is so similar
to the original one. The new type constraint is trivially always sat-
isfied as long as the mutator only allocates from the younger gener-
ation and as long as the memory is immutable. If side-effects were
to be necessary, it should be possible to extend this scheme with
one mutable region (keeping all others immutable) which would
be considered similarly to the older generation but scanned at each
collection. Obviously, this would first require adding some way to
scan a region, but should not present any serious difficulty.

The GC itself can be seen in figure 11. The main difference with
the basic GC of figure 4 is that it does not copy to a new region
but to an existing one and stops traversing the tree as soon as we
encounter a reference to the old generation.

When hitting such an external reference, we have to repack it
just to help the type-system understand that this reference is of type
Mρy,ρo(τ). But those operations are free anyway.

Note that another function needs to be written to garbage collect
the old generation, but that one is the same as the non-generational
one.

At first sight, theλGCgen language may seem unsound because
we allow existentials over regions. However, these types are not
existentials in a real sense since they do not hide a region within a
type. Rather, in the type∃r ∈ ∆.(σ at r), the set∆ is an upper
bound on the regions that the variabler may range over. In this

10



fix gc[t :Ω][ry, ro](f :Mry,ro(∀[][](t) → 0), x :Mry ,ro(t)).
let y = copy[t][ry, ro](x) in
only {ro} in let region ry in f [][ry, ro](y)

fix copy[t :Ω][ry, ro](x :Mry,ro(t)) : Mro,ro(t).
typecase t of

int ⇒ x
λ ⇒ x

t1 × t2 ⇒ open x as 〈r, x〉 in
ifreg r = ro then 〈r ∈ {ro} = ro, x〉 else

let x1 = copy[t1][ry, ro](π1(get x)) in
let x2 = copy[t2][ry, ro](π2(get x)) in
〈r ∈ {ro} = ro, put[r](x1, x2)〉

∃te ⇒ open x as 〈r, x〉 in
ifreg r = ro then 〈r ∈ {ro} = ro, x〉 else

open (get x) as 〈t, y〉 in
let z = copy[tet][ry, ro](y) in
〈r ∈ {ro} = ro, put[r]〈t= t, z :Mr,ro(tet)〉〉

Figure 11: Generational GC.

sense, our existential is closer to a bounded quantification.

Proposition 8.1 (Type Preservation)If ` (M, e) and
(M, e) =⇒ (M ′, e′) then` (M ′, e′).
Proof See the appendix D.

Proposition 8.2 (Progress)If ` (M, e) then eithere = halt v or
there exists a(M ′, e′) such that(M, e) =⇒ (M ′, e′).
Proof See the appendix D.

9. Related work
Wang and Appel [21] proposed to build a tracing garbage col-

lector on top of a region-based calculus, thus providing both type
safety and completely automatic memory management. The main
weakness of their proposal is that it relies on a closure conversion
algorithm due to Tolmach [18] that represents closures as datatypes.
This makes closures transparent, making it easier for the copy func-
tion to analyze, but it requires whole program analysis and has ma-
jor drawbacks in the presence of separate compilation. We believe
it is more natural to represent closures as existentials [10, 9] and we
show how to use intentional type analysis (on quantified types [19])
to typecheck the GC-copy function.

The idea of intensional type analysis was first proposed by Harper
and Morrisett [8]. They introduced the idea of having explicit type
analysis operators which inductively traverse the structure of types.
However, to retain decidability of type checking, they restrict the
analysis to a predicative subset of the type language. Crary et al. [5]
propose a very powerful type analysis framework. They define
a rich kind calculus that includes sum kinds and inductive kinds.
They also provide primitive recursion at the type level. Therefore,
they can define new kinds within their calculus and directly en-
code type analysis operators within their language. They also in-
clude a novel refinement operation at the term level. Saha et al [19]
shows how to handle polymorphic functions that analyze the quan-
tified type variable—this allows the type analysis to handle arbi-
trary quantified types. The typerec operators (e.g.,Mρ) used in this
paper do not require the full power of what is provided in [19] be-
cause our source language is only a simply typed lambda calculus.

Tofte and Talpin [17] proposed to use region calculus to type
check memory management for higher-order functional languages.

Crary et al [4] presented a low-level typed intermediate language
that can express explicit region allocation and deallocation. Our
λGC language borrows the basic organization of memories and re-
gions from Crary et al [4]. The main difference is that we don’t re-
quire explicit capabilities—region deallocation is handled through
theonly primitive.

Necula [13] proposed the idea of a certifying compiler and showed
the construction of a certifying compiler for a type-safe subset of
C. Morrisett et al. [12] showed that a fully type preserving com-
piler generating type safe assembly code is a practical basis for a
certifying compiler. This paper shows that low-level runtime ser-
vices such as garbage collection can also be expressed in a type
safe language.

10. Conclusion and future work
We have presented a type-safe intermediate language with re-

gions and intensional type analysis and show how it can be used
to provide a simple and provably type-safe stop-and-copy tracing
garbage collector. Our key idea is to use intensional type analy-
sis on quantified types (i.e., existentials) to express the garbage-
collection invariants on the mutator data objects. We show how
this same idea can be used to express more realistic scavengers
with efficient forwarding pointers and generations. Because in-
tensional type analysis is also applicable to polymorphic lambda
calculus [19], we believe our type safe collector can be extended to
handle polymorphic languages as well.

We intend to extend our collector with the following features,
which a modern garbage collector should be able to provide:

• Polymorphism. Intensional type analysis is a powerful frame-
work. Adding support for polymorphism is straightforward
but tedious because the type-system becomes a lot heavier.

• Cyclic data structures. It might be possible to extend the
current depth-first copying approach to properly handle cy-
cles, but we are more interested in a Cheney-style breadth-
first copy [2].

• Side-effects and generations. A first approach could be to ex-
tend our current generation scheme with a third region con-
taining all the mutable data. But ultimately we will need to
use either card-marking or remembered-sets [25].

• Explicit tag storage. Since tags exist at run time, we need to
garbage collect them as well. The most promising approach
is to reify them into special terms as was done by Craryet
al [6, 5]. This will also allow us to use a simpler closure
conversion algorithm for polymorphic code, eliminating the
need for translucent types.

References
[1] G. Blelloch and P. Cheng. On bounding time and space for

multiprocessor garbage collection. InSymposium on Programming
Languages Design and Implementation, pages 104–107. ACM Press,
May 1999.

[2] C. J. Cheney. A non-recursive list compacting algorithm.Commun.
ACM, 13(11):677–678, 1970.

[3] K. Crary. Typed assembly language: Type theory for machine code.
Talk presented at 2000 PCC Workshop, Santa Barbara, CA, June
2000.

[4] K. Crary, D. Walker, and G. Morrisett. Typed memory management
in a calculus of capabilities. InSymposium on Principles of
Programming Languages, pages 262–275, San Antonio, TX, Jan.
1999.

11



[5] K. Crary and S. Weirich. Flexible type analysis. InProc. 1999 ACM
SIGPLAN International Conference on Functional Programming,
pages 233–248. ACM Press, Sept. 1999.

[6] K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in
type-erasure semantics. InProc. 1998 ACM SIGPLAN International
Conference on Functional Programming, pages 301–312. ACM
Press, Sept. 1998.

[7] O. Danvy and A. Filinski. Representing control, a study of the cps
transformation.Mathematical Structures in Computer Science,
2(4):361–391, 1992.

[8] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. InTwenty-second Annual ACM Symp. on
Principles of Prog. Languages, pages 130–141, New York, Jan 1995.
ACM Press.

[9] R. Harper and G. Morrisett. Typed closure conversion for
recursively-defined functions. InSecond International Workshop on
Higher Order Operational Techniques in Semantics (HOOTS98, New
York, Sep 1998. ACM Press.

[10] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion.
In Proc. 23rd Annual ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, pages 271–283. ACM Press, 1996.

[11] G. Morrisett. Open problems for certifying compilers. Talk presented
at 2000 PCC Workshop, Santa Barbara, CA, June 2000.

[12] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to
typed assembly language. InSymposium on Principles of
Programming Languages, pages 85–97, San Diego, CA, Jan. 1998.

[13] G. Necula. Proof-carrying code. InTwenty-Fourth Annual ACM
Symp. on Principles of Prog. Languages, New York, Jan 1997. ACM
Press.

[14] S. Nettles and J. O’Toole. Real-time replication garbage collection.
In Symposium on Programming Languages Design and
Implementation, 1993.

[15] B. Saha, V. Trifonov, and Z. Shao. Fully reflexive intensional type
analysis. Technical Report YALEU/DCS/TR-1194, Dept. of
Computer Science, Yale University, New Haven, CT, March 2000.

[16] Z. Shao, C. League, and S. Monnier. Implementing typed
intermediate languages. InProc. 1998 ACM SIGPLAN International
Conference on Functional Programming (ICFP’98), pages 313–323,
September 1998.

[17] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
λ-calculus using a stack of regions. InProc. 21st Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
pages 188–201. ACM Press, 1994.

[18] A. Tolmach and D. P. Oliva. From ml to ada: Strongly-typed
language interoperability via source translation.Journal of
Functional Programming, 8(4):367–412, July 1998.

[19] V. Trifonov, B. Saha, and Z. Shao. Fully reflexive intensional type
analsysis. InProc. 2000 ACM SIGPLAN International Conference on
Functional Programming (ICFP’00), pages 82–93. ACM Press,
September 2000.

[20] D. Walker and G. Morrisett. Alias types for recursive data structures.
In International Workshop on Types in Compilation, Aug. 2000.

[21] D. C. Wang and A. W. Appel. Safe garbage collection = regions +
intensional type analysis. Technical Report TR-609-99, Princeton
University, 1999.

[22] D. C. Wang and A. W. Appel. Type-preserving garbage collectors
(extended version). Technical Report TR-624-00, Princeton
University, 2000.

[23] D. C. Wang and A. W. Appel. Type-preserving garbage collectors. In
Proc. 28th Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, page (to appear). ACM Press, 2001.

[24] P. Wilson. Uniprocessor garbage collection techniques. In1992
International Workshop on Memory Management, New York, June
1992. ACM Press.

[25] P. R. Wilson. Uniprocessor garbage collection techniques.

Appendix

A. Soundness ofλGC

Throughout this section, we assume unique variable names. Our
environments are sets with no duplicate occurrences and no order-
ing. It is easy to show by induction over judgments that extending
environments with additional bindings is safe. We will assume this
in the rest of the section.

The code regioncd is always implicitly part of the environment.
We treat it as a constant region. Even when the environment is
restricted to a particular set, sayΨ|∆, the code region is included
in the restricted set. ThereforeΨ|ν1,...νk is equivalent to{cd :
Υcd, ν1 : Υν1 , . . . νk : Υνk}. And Ψ|cd is equivalent to{cd :
Υcd}.

Lemma A.1 If ∆′, r; Θ;Φ ` σ, then∆[ν/r]; Θ;Φ[ν/r] ` σ[ν/r]
where∆′, r = ∆.

Proof The proof is a straightforward induction over the structure
of σ.

Lemma A.2 (Φ[ν/r])|∆,ν = (Φ|∆,r)[ν/r] and
(Γ[ν/r])|∆,ν = (Γ|∆,r)[ν/r]

Proof The lemma is proved by considering the structure ofΦ
andΓ respectively, and comparing the results in the two cases.

Lemma A.3 If Ψ;∆′, r; Θ;Φ; Γ ` op : σ, then
Ψ;∆[ν/r]; Θ;Φ[ν/r]; Γ[ν/r] ` op[ν/r] : σ[ν/r]
where∆′, r = ∆.

Proof The proof is by induction over the structure ofop. Most of
the cases follow directly by induction. We will show only the case
for type packages.
case〈α :∆1 =σ1, v :σ2〉: We know that

Ψ;∆′, r; Θ;Φ; Γ ` 〈α :∆1 =σ1, v :σ2〉 : ∃α :∆1.σ2

This implies that∆1; Θ; Φ|∆1 ` σ1 and

Ψ;∆′, r; Θ; Φ; Γ ` v : σ2[σ1/α]

Supposer /∈ ∆1. Thenr does not occur free inσ1. Then applying
the inductive hypothesis to the derivation forv, we get that

Ψ;∆[ν/r]; Θ;Φ[ν/r]; Γ[ν/r] ` v[ν/r] : (σ2[ν/r])[σ1/α]

SupposeΦ1 = Φ|∆1 . Then we have thatΦ[ν/r]|∆1 = Φ1, Φ2

andDom(Φ1) ∩Dom(Φ2) = ∅. Therefore, we have that

∆1; Θ;Φ|∆1 , Φ2 ` σ1

This implies that∆1; Θ;Φ[ν/r]|∆1 ` σ1, which leads to the re-
quired result.

Consider now thatr ∈ ∆1. Suppose∆1 = ∆2, r. Then

∆2, r; Θ;Φ|∆2,r ` σ1

Applying lemmas A.1 and A.2 we get that

∆1[ν/r]; Θ; (Φ[ν/r])|∆2,ν ` σ1[ν/r]

But ∆2, ν = ∆1[ν/r]. The second subderivation now becomes

Ψ;∆′, r; Θ; Φ; Γ ` v : σ2[σ1/α]

By applying the inductive hypothesis we get that

Ψ;∆[ν/r]; Θ;Φ[ν/r]; Γ[ν/r] ` v[ν/r] : (σ2[ν/r])[σ1[ν/r]/α]

This leads to the required result.

Lemma A.4 If Ψ;∆′, r; Θ;Φ; Γ ` e, then
Ψ;∆[ν/r]; Θ;Φ[ν/r]; Γ[ν/r] ` e[ν/r] where∆′, r = ∆

12



Proof The proof is by induction over the derivation ofe. Most
of the cases follow directly from the inductive hypothesis. We will
consider only one case here.
caseonly ∆1 in e: We get that

Ψ;∆, r; Θ; Φ; Γ ` only ∆1 in e

This implies that

Ψ|∆1 ;∆1, cd; Θ;Φ|∆1 ; Γ|∆1 ` e

and∆1 ⊂ ∆, r. Supposer /∈ ∆1. Thenr does not occur free ine.
Also ∆1[ν/r] = ∆1. SupposeΓ|∆1 = Γ1. Then we have that
Γ[ν/r]|∆1 = Γ1, Γ2 andDom(Γ1) ∩ Dom(Γ2) = ∅. Since we
can extend environments, we get that
Ψ|∆1 ;∆1, cd; Θ;Φ1, Φ2; Γ1, Γ2 ` e, whereΦ1 andΦ2 are con-
structed similar toΓ1 andΓ2. This implies that

Ψ|∆1 ;∆1, cd; Θ;Φ1, Φ2; Γ1, Γ2 ` e

Also ∆1 ⊂ (∆, r)[ν/r]. This leads to the required result.
Suppose now thatr ∈ ∆1. Suppose that∆1 = ∆2, r. Then

∆1[ν/r] = ∆2, ν. Then we have that

Ψ|∆2,r;∆2, r, cd; Θ;Φ|∆2,r; Γ|∆2,r ` e

Applying the inductive hypothesis we get that

Ψ|∆2,r;∆1[ν/r], cd; Θ; Φ|∆2,r[ν/r]; Γ|∆2,r[ν/r] ` e[ν/r]

Applying lemma A.2 we get that

Ψ|∆2,r;∆1[ν/r], cd; Θ;Φ[ν/r]|∆2,ν ; Γ[ν/r]|∆2,ν ` e[ν/r]

But we have thatΨ|∆2,r = Ψ|∆2 . Moreover,Ψ|∆2,ν = Ψ|∆2 , Ψ′.
Therefore, we get that

Ψ|∆2,ν ;∆1[ν/r], cd; Θ; Φ[ν/r]|∆2,ν ; Γ[ν/r]|∆2,ν ` e[ν/r]

We also have that∆1[ν/r] ⊂ ∆[ν/r]. This leads to the required
result.

Lemma A.5 If Θ, t :κ′ ` τ : κ andΘ ` τ ′ : κ′, then
Θ ` τ [τ ′/t] : κ

Proof The proof is a straightforward induction over the structure
of τ .

Lemma A.6 If ∆;Θ, t :κ; Φ ` σ andΘ ` τ : κ, then
∆;Θ;Φ ` σ[τ/t]

Proof The proof is again a straighforward induction over the struc-
ture ofσ.

Lemma A.7 If Ψ;∆;Θ, t :κ; Φ; Γ ` op : σ andΘ ` τ : κ then
Ψ;∆;Θ; Φ; Γ[τ/t] ` op[τ/t] : σ[τ/t]

Proof The proof is a straightforward induction over the structure
of op. The only unusual case is whenop = ν.`. In this case,
Ψ(ν.`) = σ andDom(Ψ); ·; · ` σ. Therefore, the variablet does
not occur free inσ at ν.

Lemma A.8 If Ψ;∆;Θ, t :κ; Φ; Γ ` e and· ` τ ′ : κ then
Ψ;∆;Θ; Φ; Γ[τ ′/t] ` e[τ ′/t]

Proof The proof is a straightforward induction over the structure
of e. The only interesting case is for atypecase when the substi-
tuted variable is being analyzed.
casetypecase t of (ei; eλ; t1t2.e×; te.e∃): Suppose we substitute
the typeτ ′ for the variablet. Thenτ ′ can only be one ofInt, τ ′′ →
0, τ ′1 × τ ′2, or∃t.τ ′′. For aInt, we need to prove that

Ψ;∆;Θ; Φ; Γ[Int/t] ` (typecase t of (ei; eλ; t1t2.e×; te.e∃))[Int/t]

This implies that we need to prove that

Ψ;∆;Θ;Φ; Γ[Int/t] ` ei[Int/t]

By definition, we know that

Ψ;∆; Θ, t :Ω;Φ; Γ[Int/t] ` ei[Int/t]

Sincet is being substituted away, this leads to the required result.
For a code type we need to prove that

Ψ;∆;Θ; Φ; Γ[τ ′ → 0/t] `
(typecase t of (ei; eλ; t1t2.e×; te.e∃))[τ ′ → 0/t]

This implies that we need to prove that

Ψ;∆; Θ;Φ; Γ[τ ′ → 0/t] ` eλ[τ ′ → 0/t]

By definition, we get thatΨ;∆; Θ, t : Ω; Φ; Γ ` eλ. Substituting
for t and applying the inductive hypothesis leads to the result.

For the pair type we need to prove that

Ψ;∆; Θ;Φ; Γ[(τ ′1 × τ ′2)/t] `
(typecase t of (ei; eλ; t1t2.e×; te.e∃))[(τ ′1 × τ ′2)/t]

This implies that we need to prove that

Ψ;∆;Θ; Φ; Γ[(τ ′1 × τ ′2)/t] ` e×[(τ ′1 × τ ′2), τ
′
1, τ

′
2/t, t1, t2]

By definition, we know that

Ψ;∆; Θ, t :Ω, t1 :Ω, t2 :Ω;Φ; Γ[t1 × t2/t] ` e×[t1 × t2/t]

Note that the variablest1 andt2 do not occur free separately inΓ.
Substitutingτ ′1 for t1, τ ′2 for t2, andτ ′1 × τ ′2 for t1 × t2 leads to
the required result.

For the existential type we need to prove that

Ψ;∆; Θ; Φ; Γ[∃t1.τ
′/t] `

(typecase t of (ei; eλ; t1t2.e×; te.e∃))[∃t1.τ
′/t]

This implies that we need to prove that

Ψ;∆;Θ; Φ; Γ[∃t1.τ
′/t] ` e∃[∃t1.τ

′, λt1.τ
′/t, te]

By definition we know that

Ψ;∆; Θ, t :Ω, te :Ω −→ Ω;Φ; Γ[∃t1.tet1/t] ` e∃[∃t1.tet1/t]

Substituting(λt1.τ
′) for te and applying the inductive hypothesis

we get that

Ψ; ∆;Θ, t :Ω;Φ; Γ[∃t1.τ
′/t] ` e∃[∃t1.τ

′, λt1.τ
′/t, te]

Sincet is being substituted away, we can remove it from the type
environment. This leads to the required result.

Lemma A.9 If ∆;Θ; Φ, α :∆′ ` σ and∆′; Θ;Φ ` σ′, then
∆;Θ; Φ ` σ[σ′/α]

Proof The proof is a straighforward induction over the structure
of σ. In the case of c‘ode types, we use the fact that the argument
types~σ are fully closed.

Lemma A.10 If Ψ;∆; Θ;Φ, α :∆′; Γ ` op : σ and∆′; Θ;Φ ` σ′

then
Ψ;∆; Θ;Φ; Γ[σ′/α] ` op[σ′/α] : σ[σ′/α]

Proof The proof is again by induction over the typing derivation
for op. We will consider only the case for packages.
case〈β :∆′=σ1, v :σ2〉: By definition,

Ψ;∆; Θ;Φ, α :∆1; Γ ` 〈β :∆′=σ1, v :σ2〉 : ∃β :∆′.σ2

13



There are two possible cases. If∆1 ⊂ ∆′, then we get that
∆′; Θ; Φ|∆′ , α :∆1 ` σ1 and
Ψ;∆;Θ; Φ, α :∆1; Γ ` v : σ2[σ1/β]
By lemma A.9,
∆′; Θ; Φ|∆′ ` σ1[σ

′/α]
Applying the inductive hypothesis on the typing rule forv leads to
the result.

In the other case, we get that∆′; Θ; Φ|∆′ ` σ1 and
Ψ;∆;Θ; Φ, α :∆1; Γ ` v : σ2[σ1/β]
This implies thatα does not occur free inσ1. Therefore, we need
to prove that

Ψ;∆;Θ; Φ; Γ[σ′/α] `
〈β :∆′=σ1, v[σ′/α] :σ2[σ

′/α]〉 : ∃β :∆′.σ2[σ
′/α]

This follows from applying the inductive hypothesis to the judg-
ment forv.

Lemma A.11 If ∆;Θ; Φ ` σ[σ′/α] andα occurs free inσ, then
∆;Θ;Φ ` σ′

Proof The proof is by induction over the structure ofσ.

Lemma A.12 If Ψ;∆;Θ; Φ, α :∆′; Γ ` e and∆′; Θ; Φ ` σ′ then

Ψ;∆;Θ; Φ; Γ[σ′/α] ` e[σ′/α]

Proof The proof is again by induction over the derivation. The
only non-trivial case is theonly construct.
caseonly ∆1 in e: By definition,
Ψ;∆;Θ; Φ, α :∆′; Γ ` only ∆1 in e
and∆′; Θ;Φ ` σ′. Suppose∆′ ⊂ ∆1. Then we get that

Ψ|∆1 ;∆1, cd; Θ;Φ|∆1 , α :∆′; Γ|∆1 ` e

Applying the inductive hypothesis we get that

Ψ|∆1 ;∆1, cd; Θ;Φ|∆1 ; Γ|∆1 [σ
′/α] ` e[σ′/α]

But we also have thatΓ|∆1 [σ
′/α] = Γ[σ′/α]|∆1 . From here we

can conclude that

Ψ;∆; Θ;Φ; Γ[σ′/α] ` only ∆1 in e[σ′/α]

If ∆1 ⊂ ∆′, then we get that

Ψ|∆1 ;∆1, cd; Θ;Φ|∆1 ; Γ|∆1 ` e

This implies thatα does not occur free ine. We also have that
∆′; Θ; Φ ` σ′. Using lemma A.11, we can show thatΓ[σ′/α]|∆1 =
Γ|∆1 . Therefore, we get that

Ψ|∆1 ;∆1, cd; Θ; Φ|∆1 ; Γ[σ′/α]|∆1 ` e

This implies that

Ψ;∆;Θ;Φ; Γ[σ′/α] ` only ∆1 in e

Lemma A.13 If Ψ;∆; Θ;Φ; Γ, x :σ′ ` op : σ and
Ψ;∆;Θ; Φ; Γ ` v′ : σ′ then
Ψ;∆;Θ; Φ; Γ ` op[v′/x] : σ

Proof The proof is a straightforward induction over the typing
derivation for op.

Lemma A.14 If Ψ;∆; Θ;Φ; Γ ` v : σ and∆1; Θ;Φ|∆1 ` σ and
∆1 ⊂ ∆, thenΨ|∆1 ;∆1; Θ;Φ|∆1 ; Γ|∆1 ` v : σ

Proof The proof is by induction over the derivation forv. Most
of the cases follow directly from the inductive hypothesis. We will
consider only one case here.
caseν.`: We have that
Ψ;∆; Θ;Φ; Γ ` ν.` : σ at ν. This implies thatΨ(ν.`) = σ and
Dom(Ψ); ·; · ` σ at ν. However, by assumption we also know
that∆1; Θ; Φ|∆1 ` σ at ν. This implies thatν ∈ ∆1. This implies
thatΨ|∆1(ν.`) = σ. Moreover, we also get that∆1; ·; · ` σ at ν.
Therefore, we get thatDom(Ψ|∆1); ·; · ` σ at ν. From here we
get thatΨ|∆1 ; ∆1; Θ;Φ|∆1 ; Γ|∆1 ` ν.` : σ at ν.

Lemma A.15 If Ψ;∆; Θ;Φ; Γ, x :σ ` e and
Ψ;∆; Θ;Φ; Γ ` v : σ then
Ψ;∆; Θ;Φ; Γ ` e[v/x]

Proof The proof is again a straightforward induction over the
structure of e. We will only show the proof for a couple of cases,
the rest of them follow similarly.
caseonly ∆ in e: We have that
Ψ;∆; Θ;Φ; Γ, x :σ ` only ∆1 in e. This implies that
Ψ|∆1 ; ∆1; Θ;Φ|∆1 ; (Γ, x :σ)|∆1 ` e. If we have that
∆1; Θ;Φ|∆1 ` σ, then we get that
Ψ|∆1 ; ∆1; Θ;Φ|∆1 ; Γ|∆1 , x :σ ` e. By lemma A.14 we get that
Ψ|∆1 ; ∆1; Θ;Φ|∆1 ; Γ|∆1 ` v : σ. Applying the inductive hypoth-
esis gives us that
Ψ|∆1 ; ∆1; Θ;Φ|∆1 ; Γ|∆1 ` e[v/x].

In the other case, we get that
Ψ|∆1 ; ∆1; Θ;Φ|∆1 ; Γ|∆1 ` e. This implies thatx does not occur
free ine. The required result follows from here.
casetypecase t of (ei; eλ; t1t2.e×; te.e∃): By assumption, we get
thatΘ ` t : Ω

Ψ;∆;Θ;Φ; Γ[Int/t], x :σ[Int/t] ` ei[Int/t]
Ψ;∆;Θ;Φ; Γ, x :σ ` eλ

Ψ;∆;Θ, t1 :Ω, t2 :Ω; Φ; Γ[t1 × t2/t], x :σ[t1 × t2/t] `
e×[t1 × t2/t]

Ψ;∆;Θ, te :Ω −→ Ω;Φ; Γ[∃t1.tet1/t], x :σ[∃t1.tet1/t] `
e∃[∃t1.tet1/t]

By lemma A.7, we know that ifΨ;∆;Θ;Φ; Γ ` v : σ, then
Ψ;∆; Θ;Φ; Γ[τ/t] ` v : σ[τ/t]. Now substitutev[Int/t] in the
ei branch, substitutev in the eλ branch, substitutev[t1 × t2/t]
in the e× branch, and substitutev[∃t1.tet1/t] in the e∃ branch.
The required result follows from the inductive hypothesis on each
branch.

Proposition A.16 (Type Preservation) If ` (M, e) and
(M, e) =⇒ (M ′, e′) then` (M ′, e′).
Proof The proof is by induction over the evaluation relation. We
will consider only the cases that do not follow directly from the
inductive hypothesis and the substitution lemmas.
caseν.`[~τ ][~ν](~v): The lemma follows from the fact that tag reduc-
tion is strongly normalizing and confluent, and that tag reduction
preserves kind.
caseν.`[~τ ′][~ν](~v): By definition,

Ψ; Dom(Ψ); ·; ·; · ` ν.`[~τ ′][~ν](~v)

SinceM(ν.`) = (λ[ ~t :κ][~r](~x :~σ).e), we have that

Ψ; Dom(Ψ); ·; ·; · ` ν.` : ∀[ ~t :κ][~r](~σ) → 0 at ν

This implies that

Ψ|cd; cd, ~r;
−→
t :κ; ·;−−→x :σ ` e

By the typing rule, we get that

14



Ψ; Dom(Ψ); ·; ·; · ` vi : σi[~ν, ~τ ′/~r,~t]

and· ` τ ′i : κi. From lemma A.4 we get that

Ψ|cd; cd, ~ν; Θ; ·; ~x :σ[~ν/~r] ` e[~ν/~r]

From lemma A.8 we get that

Ψ|cd; cd, ~ν; ·; ·; ~x :σ[~ν, ~τ ′/~r,~t] ` e[~ν, ~τ ′/~r,~t]

SinceΨ|cd ⊂ Ψ andcd, ~ν ⊂ Dom(Ψ), we can extend the envi-
ronment for derivinge. Applying lemma A.15 we get that

Ψ; Dom(Ψ); ·; ·; · ` e[~ν, ~τ ′, ~v/~r,~t, ~x]

which leads to the result.
case(vJ~τK)[~τ ][~ν](~v): By definition,

Ψ; Dom(Ψ); ·; ·; · ` (vJ~τK)[~τ ][~ν](~v)

From the typing rules
Ψ; Dom(Ψ); ·; ·; · ` (vJ~τK) : ∀J~τK[~r](~σ)

ν−→ 0 for someν and
Ψ; Dom(Ψ); ·; ·; · ` vi : σi[~ν/~r]. Again from the typing rules we
get that
Ψ; Dom(Ψ); ·; ·; · ` v : ∀[ ~t :κ][~r](~σ′) → 0 at ν where
σ′i[~τ/~t] = σi and· ` τi : κi. We need to prove that

Ψ; Dom(Ψ); ·; ·; · ` v[~τ ][~ν](~v)

This is true if
Ψ; Dom(Ψ); ·; ·; · ` vi : σ′i[~ν, ~τ/~r,~t]. But we already know that
this holds.
caselet x = put[ν]v in e: By definition,

Ψ; Dom(Ψ); ·; ·; · ` let x = put[ν]v in e

From the typing rules,

Ψ; Dom(Ψ); ·; ·; · ` put[ν]v : σ at ν

for some typeσ, andν ∈ Dom(Ψ). This implies that

Ψ; Dom(Ψ); ·; ·; · ` v : σ

Again, from the typing rules,

Ψ, ν.` :σ; Dom(Ψ); ·; ·; · ` ν.` : σ at ν

The required result now follows from lemma A.15.
caselet x = get ν.` in e: By definition,

Ψ; Dom(Ψ); ·; ·; · ` let x = get ν.` in e

From the typing rules we get that

Ψ; Dom(Ψ); ·; ·; · ` ν.` : σ at ν

for some typeσ Again from the typing rules, we get thatΨ(ν.`) =
σ. This implies that ifM(ν.`) = v, then

Ψ; Dom(Ψ); ·; ·; · ` v : σ

The required result follows from lemma A.15.
caseopen 〈α :∆=σ1, v :σ2〉 as 〈α, x〉 in e: The twoopen con-
structs are proved similarly. We will show the proof for only one of
them. By definition,

Ψ; Dom(Ψ); ·; ·; · ` open 〈α :∆=σ1, v :σ2〉 as 〈α, x〉 in e

This implies that

Ψ; Dom(Ψ); ·; α :∆; x :σ2 ` e

The required result follows from lemmas A.15 and A.12.
caselet region r in e: By definition,

Ψ; Dom(Ψ); ·; ·; · ` let region r in e

This implies that

Ψ; Dom(Ψ), r; ·; ·; · ` e

By lemma A.4,

Ψ; Dom(Ψ), ν; ·; ·; · ` e[ν/r]

Sinceν is a newly introduced region, we can extendΨ with it. This
implies that

Ψ, ν 7→ {}; Dom(Ψ), ν; ·; ·; · ` e[ν/r]

This is the required result.
caseonly ∆ in e: By definition,

Ψ; Dom(Ψ); ·; ·; · ` only ∆ in e

This implies that

Ψ|∆; cd, ∆; ·; ·; · ` e

But cd, ∆ = Dom(Ψ|∆). This implies that

Ψ|∆; Dom(Ψ|∆); ·; ·; · ` e

which is the required result.
For all of the typecases, the required result follows directly

from the typing rules since the value environment is empty.

Lemma A.17 (Canonical forms)

1. If Ψ;∆; ·; ·; · ` v : int thenv = n.

2. If Ψ;∆; ·; ·; · ` v : σ at ν thenv = ν.`.

3. If Ψ;∆; ·; ·; · ` v : σ1 × σ2 thenv = (v1, v2).

4. If Ψ;∆; ·; ·; · ` v : ∃t :κ.σ thenv = 〈t=τ, v′ :σ〉.
5. If Ψ;∆; ·; ·; · ` v : ∃α :∆′.σ thenv = 〈α :∆′=σ1, v

′ :σ2〉.
6. If Ψ;∆; ·; ·; · ` v : ∀J~τK[~r](~σ)

ρ−→ 0 thenv = v′J~τK.
7. If Ψ;∆; ·; ·; · ` v : ∀[ ~t :κ][~r](~σ) → 0

thenv = λ[ ~t :κ][~r]( ~x :σ).e.

Proof The proof follows from the inspection of the typing rules
for values.

Proposition A.18 (Progress)If ` (M, e) then eithere = halt v
or there exists a(M ′, e′) such that(M, e) =⇒ (M ′, e′).
Proof The proof is again by induction over the structure ofe.
By definition,Ψ; Dom(Ψ); ·; ·; · ` e. The proof for the individual
cases start from this point.
casev[~τ ][~ν](~v): From the typing rules, either

v :∀[ ~t :κ][~r](~σ) → 0 at ν or v :∀J~τK[~r](~σ)
ν−→ 0

In the first case by lemma A.17,v = ν.`. From the typing rules
M(ν.`) = λ[ ~t :κ][~r]( ~x :σ).e This implies that we have a reduction.

In the second case, by lemma A.17v = v′JτK. In this case also
we have a reduction tov′[~τ ][~ν](~v).
caselet x = op in e: If op = v, then we have a reduction. If
op = πiv, then from the typing rules,
Ψ; Dom(Ψ); ·; ·; · ` v : σ1 × σ2. The required result follows from
lemma A.17. In the case ofput[ν]v, the result follows directly. The
constraintν ∈ ∆ ensures thatν ∈ Dom(Ψ). In the case forget v,
by the typing rules we know thatv = ν.` for someν.`. Again
from the typing rule we know thatΨ(ν.`) = σ. This implies that
M(ν.`) = v′ for some valuev′.

For the other cases ofe, the proposition follows directly from the
operational semantics.

15



— Syntactic type shorthands for notational convenience: —
tc[t] ≡ ∀Jt1, t2, teK[r1, r2, r3](Mr2(t), αc)

ρ−→ 0× αc — Basic type of the continuations ofcopy—
tk[t] ≡ (∃t1 :Ω.∃t2 :Ω.∃te :Ω −→ Ω.∃αc :{r1, r2, r3}.tc[t]) at r3 — Same astc but closed with existential packages —

— The mainGC entry point —
fix gc[t :Ω][r1](f :∀[][r](Mr(t)) → 0, x :Mr1(t)).

let region r2 in
let region r3 in
let c = (gcendJt, int, λt.tK, f) in
let k = put[r3]〈t1 = t, t2 = int, te =λt.t, αc :{r1, r2, r3} = ∀[][r](Mr(t)) → 0, c : tc[t]〉 in
copy[t][r1, r2, r3](x, k)

— The second half ofGC, passed as a continuation tocopy—
fix gcend[t1 :Ω, t2 :Ω, te :Ω −→ Ω][r1, r2, r3](y :Mr2(t1), f :∀[][r](Mr(t1)) → 0).

only {r2} in f [][r2](y)

— The maincopyentry point —
fix copy[t :Ω][r1, r2, r3](x :Mr1(t), k : tk[t]).

typecase t of
int ⇒ open (get k) as 〈t1, t2, te, αc, c〉 in (π1c)[t1, t2, te][r1, r2, r3](x, π2c)
λ ⇒ open (get k) as 〈t1, t2, te, αc, c〉 in (π1c)[t1, t2, te][r1, r2, r3](x, π2c)

t1 × t2 ⇒ let c = (copypair1Jt1, t2, λt.tK, (π2(get x), k)) in
let k = put[r3]〈t1 = t1, t2 = t2, te =λt.t, αc :{r1, r2, r3} = Mr1(t2)× tk[t], c : tc[t1]〉 in
copy[t1][r1, r2, r3](π1(get x), k)

∃te ⇒ open (get x) as 〈tx, y〉 in
let c = (copyexist1Jtx, int, teK, k) in
let k = put[r3]〈t1 = tx, t2 = int, te = te, αc :{r1, r2, r3} = tk[t], c : tc[tet1]〉 in
copy[tetx][r1, r2, r3](y, k)

— First continuation when copying a pair —
fix copypair1[t1 :Ω, t2 :Ω, te :Ω −→ Ω][r1, r2, r3](x1 :Mr2(t1), c :Mr1(t2)× tk[t1 × t2]).

let c′ = (copypair2Jt2, t1, λt.tK, (x1, π2c, )) in
let k = put[r3]〈t1 = t1, t2 = t2, te =λt.t, αc :{r1, r2, r3} = Mr2(t1)× tk[t1 × t2], c

′ : tc[t2]〉 in
copy[t2][r1, r2, r3](π1c, k)

— Second continuation when copying a pair —
fix copypair2[t1 :Ω, t2 :Ω, te :Ω −→ Ω][r1, r2, r3](x2 :Mr2(t2), c :Mr2(t1)× tk[t1 × t2]).

open (get (π2c)) as 〈t1, t2, te, αc, c
′〉 in (π1c

′)[t1, t2, te][r1, r2, r3](put[r2](π1c, x2), π2c
′)

— Continuation when copying an existential package —
fix copyexist1[t1 :Ω, t2 :Ω, te :Ω −→ Ω][r1, r2, r3](z :Mr2(tet1), c : tk[tet1]).

open (get c) as 〈t′1, t′2, t′e, α′c, c′〉 in (π1c
′)[t′1, t

′
2, t

′
e][r1, r2, r3](put[r2]〈t= t1, z :Mr2(tet)〉, π2c

′)

Figure 12: The basic GC code after CPS and closure conversion.

B. Closed CPS garbage collector
Figure 12 presents the code of the basic collector after CPS and

closure conversion (the direct-style code is shown in Fig. 4). The
presence of free tag variables in the continuations requires the use
of a form of translucent types for the typed closure conversion [10].

In the general case typed closure conversion also requires exis-
tential quantification over kinds, but in the present case, we can
avoid it by using a superset of all possible kinds: since some con-
tinuations requiret1, t2 of kind Ω, Ω while others only needt1, te

or kind Ω, (Ω → Ω), we unify the two intot1, t2, te where some
of the arguments are simply left unused.

The verbose type annotations make it look more scary than it
really is. Four new functions were introduced because of CPS con-
version. They are all used as continuations to calls tocopy:

1. gcendis the code executed at the end of the toplevel call to
copyand just finishes the garbage collection by freeing the
from space and calling back the mutator.

2. copyexist1is the continuation of the recursive call to copy an

existential package.

3. Since copying a pair requires two recursive calls, we need
bothcopypair1for the continuation of the first call andcopy-
pair2 for the continuation of the second.

Since the code has to be closed, all the free variables need to
be passed explicitly via the continuation objectk whose type is
abbreviated astk[t] but is really a big existential wrapper around
the real data whose type is abbreviated astc[t].

C. Soundness ofλGCforw

As before, We use the usual exchange and weakening proper-
ties of environments without proving them. The code regioncd is
always implicitly part of the environment. Even when the environ-
ment is restricted to a particular set, sayΨ|∆, the code region is
included in the restricted set.

We will show the proofs only for the extensions. The only non-
trivial extension is thewiden construct. The proofs of the propo-
sitions for the other constructs follow in a straightforward way by

16



induction over the derivations.
Because of thewiden operator, the notion of a well formed ma-

chine state has to be slightly adjusted to allow non-well-formed
memory elements as long as they can be shown not to influence the
execution:

Definition C.1 The machine state(M, e) is well formed iff

M ⊂ M ` M :Ψ Ψ; Dom(Ψ); ·; ·; · ` e

` (M, e)

Note that to show well-formedness we now need to find not only
a witnessΨ but also a properM subset.

The reason is thatwiden casts the whole live heap from one
type to the other but cannot cast any arbitraryM because it might
include existential packages of the form〈α :∆=σ1, v :σ2〉 where
castingα would require an update ofM , which goes against the
idea thatwiden is a nop.

This problem appears when we try to prove type preservation,
which is the main obstacle to show soundness of thewiden opera-
tor, whose proof uses two lemmas for the following two steps:

1. First, we construct aM which only contains elements that we
can cast (i.e. of typeMρ(τ)) and we show that the state is
still well-formed. This is the case because when we reach a
widen, all the live data if of such a type.

2. Then we show that when everything has a type of the form
Mρ(τ), we can cast every single type consistently to itsCρ,ρ′(τ)
equivalent and the result is still properly typed. This relies on
the subsumption rule on sum types and the fact thatC types
only differs fromM types by adding branches to sum types.

Lemma C.2 (Region Substitution)

1. If Ψ;∆, r; Θ; Φ; Γ ` op : σ
thenΨ;∆, ν; Θ; Φ[ν/r]; Γ[ν/r] ` op[ν/r] : σ[ν/r].

2. If Ψ;∆, r; Θ; Φ; Γ ` e
thenΨ;∆, ν; Θ; Φ[ν/r]; Γ[ν/r] ` e[ν/r].

Proof Straightforward proof via induction over the derivation of
the typing judgment. Note thatν ∈ Ψ is not required here.
caselet x = widen[ρ′][τ ](v) in e: We have that
Ψ;∆, r; Θ;Φ; Γ ` let x = widen[ρ′][τ ](v) in e. This implies
Ψ;∆, r; Θ;Φ; Γ ` v : Mρ(τ) and
Ψ|cd; cd, ρ, ρ′; Θ; Φ|ρρ′ ; x :Cρ,ρ′(τ) ` e. Applying lemma C.2.1
to the derivation forv we get that
Ψ;∆, ν; Θ; Φ[ν/r]; Γ[ν/r] ` v[ν/r] : Mρ[ν/r](τ) since
Mρ(τ)[ν/r] = Mρ[ν/r](τ).

If either ρ = r or ρ′ = r then the inductive hypothesis on the
derivation ofe and lemma A.2 and the fact thatCρ,ρ′(τ)[ν/r] =
C(ρ,ρ′)[ν/r](τ) leads to the required result.

In the other case,Φ[ν/r]|ρρ′ = Φ|ρρ′ , Φ
′ whereDom(Φ|ρρ′)∩

Dom(Φ′) is empty. Moreover,r does not occur free ine. Since
we can extend environments with new bindings we get that
Ψ|cd; cd, ρ, ρ′; Θ; Φ|ρρ′ , Φ

′; x :Cρ,ρ′(τ) ` e. This leads to the re-
quired result.

Lemma C.3 (Type Substitution)

1. If Ψ;∆;Θ, t :κ; Φ; Γ ` op : σ andΘ ` τ : κ
thenΨ;∆;Θ;Φ; Γ[τ/t] ` op[τ/t] : σ[τ/t].

2. If Ψ;∆;Θ, t :κ; Φ; Γ ` e andΘ ` τ : κ
thenΨ;∆;Θ;Φ; Γ[τ/t] ` e[τ/t].

3. If Ψ;∆;Θ; Φ, α :∆′; Γ ` op : σ and∆′; Θ;Φ ` σ′

thenΨ;∆;Θ; Φ; Γ[σ′/α] ` op[σ′/α] : σ[σ′/α]

4. If Ψ;∆;Θ; Φ, α :∆′; Γ ` e and∆′; Θ;Φ ` σ′

thenΨ;∆;Θ; Φ; Γ[σ′/α] ` e[σ′/α]

Proof Same thing here, the induction hypothesis can always be
applied directly.

Lemma C.4 (Value Substitution)

1. If Ψ;∆;Θ; Φ; Γ, x :σ ` op : σ′

andΨ;∆;Θ; Φ; Γ ` v : σ
thenΨ;∆;Θ; Φ; Γ ` op[v/x] : σ′.

2. If Ψ;∆;Θ; Φ; Γ, x :σ ` e
andΨ;∆;Θ; Φ; Γ ` v : σ
thenΨ;∆;Θ; Φ; Γ ` e[v/x].

Proof The proof is by induction over the derivation of the type
judgment. Most of the cases follow directly from the induction
hypothesis. Exceptions are:

widen We need to show that the substitution one has no effect,
which is easy since the variable we are substituting cannot
occur freely ine.

Definition C.5 LetΨ|
ν,M be the restriction ofΨ to pieces of code

or elements of typeMν(τ):

Ψ|
ν′,M = {ν.` :σ | Ψ(ν.`) = σ ∧

�
σ = ∀[~τ ][~r](−→v :σ) → 0
∨ ∃τ.(σ at ν = Mν′(τ))

�
}

Note that sincecd only contains functions,Ψ|
ν,M will preserve all

its contents.

Lemma C.6 If Ψ; Dom(Ψ); ·; ·; · ` v : Mν(τ) then
Ψ|

ν,M; Dom(Ψ|ν); ·; ·; · ` v : Mν(τ)

Proof By the definition of theM type,v is either of typeint or of
typeσ at ν. The lemma follows trivially ifv is of typeint. Consider
the other cases.
caseMν(τ → 0): In this casev = cd.`. Therefore
Ψ(cd.`) = ∀[][r](Mr(τ)) → 0. Therefore
M(cd.`) = λ[][r](−−→x :σ).e. The lemma now follows since the body
e is typed only under the code regionΨ|cd and the region environ-
mentcd, r.
caseMν(τ1 × τ2): We again have thatv = ν.`. Therefore,
Ψ(ν.`) = left(Mν(τ1)×Mν(τ2)). This implies thatM(ν.`) =
inl v′. We know that

Ψ; Dom(Ψ); ·; ·; · ` inl v′ : left(Mν(τ1)×Mν(τ2))

This implies that

Ψ; Dom(Ψ); ·; ·; · ` v′ : (Mν(τ1)×Mν(τ2))

This implies thatv′ = (v′1, v
′
2). From the typing rules we get that

Ψ; Dom(Ψ); ·; ·; · ` v′1 : Mν(τ1) and
Ψ; Dom(Ψ); ·; ·; · ` v′2 : Mν(τ2). Applying the inductive hypoth-
esis to the derivations forv′1 andv′2, we get that
Ψ|

ν,M; Dom(Ψ|ν); ·; ·; · ` v′1 : Mν(τ1) and

Ψ|
ν,M; Dom(Ψ|ν); ·; ·; · ` v′2 : Mν(τ2). The required result fol-

lows from this.
caseMν(∃t.τ): We again have thatv = ν.`. Therefore,
Ψ(ν.`) = left(∃t.Mν(τ)). This implies thatM(ν.`) = inl v′. We
know that

17



Ψ; Dom(Ψ); ·; ·; · ` inl v′ : left(∃t.Mν(τ))

This implies that

Ψ; Dom(Ψ); ·; ·; · ` v′ : ∃t.Mν(τ)

This implies that
v′ = 〈t=τ ′, v′′ :Mν(τ)〉. From here we get that
Ψ; Dom(Ψ); ·; ·; · ` v′′ : (Mν(τ))[τ ′/t]. But we have that
(Mν(τ))[τ ′/t] = Mν(τ [τ ′/t]). Therefore, applying the inductive
hypothesis to the derivation forv′′, we get that
Ψ|

ν,M; Dom(Ψ|ν); ·; ·; · ` v′′ : Mν(τ [τ ′/t]). The required result
follows from this.

Definition C.7 Let Tρ,ρ′ be the type operator that turns a type of
the formMρ(τ) into a type of the formCρ,ρ′(τ) and keeps code
pointer types unchanged:

Tρ,ρ′(Mρ(τ)) = Cρ,ρ′(τ)
Tρ,ρ′(∀[~τ ][~r](−→v :σ) → 0 at ρ) = ∀[~τ ][~r](−→v :σ) → 0 at ρ

We also use this operator onΨ where it is defined as:

Tρ,ρ′(Ψ) = {ν.` :σ | Ψ(ν.`) = σ′ ∧ Tρ,ρ′(σ
′ at ρ) = σ at ρ}

Note that the two parts of the definition ofTρ,ρ′(σ) overlap but
are consistent sinceMρ(τ) andCρ,ρ′(τ) are identical in the case
whenτ is an arrow type. Also, sincecd only contains functions,
Tρ,ρ′(Ψ) does not change the type ofcd. Finally since bothM and
C are iterators, the T type operator can be defined as an iterator.

Lemma C.8 If Ψ|
ν,M; Dom(Ψ|ν); ·; ·; · ` v : Mν(τ), then

Tν,ν′(Ψ|ν,M); Dom(Ψ|ν), ν′; ·; ·; · ` v : Cνν′(τ)

Proof Whenv is of typeint, the lemma follows trivially.
caseMν(τ → 0): In this casev = cd.` and
M(cd.`) = λ[][r](−−→x :σ).e. This implies that
Ψ|cd; cd, r; ·; ·;−−→x :σ ` e. SinceMν(τ ′ → 0) = Cνν′(τ

′ → 0)
the type operatorT is the identity for code types. Therefore, the
cast will leave the type of the code region unchanged. Therefore
Ψ|cd = (Tν,ν′(Ψ|ν,M))|cd. This leads to the required result.

caseMν(τ1 × τ2): We again have thatv = ν.`. Therefore,
Ψ(ν.`) = left(Mν(τ1)×Mν(τ2)). This implies thatM(ν.`) =
inl v′. We know that

Ψ; Dom(Ψ); ·; ·; · ` inl v′ : left(Mν(τ1)×Mν(τ2))

This implies that

Ψ; Dom(Ψ); ·; ·; · ` v′ : (Mν(τ1)×Mν(τ2))

This implies thatv′ = (v′1, v
′
2). From the typing rules we get that

Ψ; Dom(Ψ); ·; ·; · ` v′1 : Mν(τ1) and
Ψ; Dom(Ψ); ·; ·; · ` v′2 : Mν(τ2). Applying lemma C.6 to the deriva-
tions forv′1 andv′2, we get that
Ψ|

ν,M; Dom(Ψ|ν); ·; ·; · ` v′1 : Mν(τ1) and

Ψ|
ν,M; Dom(Ψ|ν); ·; ·; · ` v′2 : Mν(τ2). Applying the inductive

hypothesis to the derivations forv′1 andv′2 we get that
Tν,ν′(Ψ|ν,M); Dom(Ψ|ν), ν′; ·; ·; · ` v′1 : Cνν′(τ1) and

Tν,ν′(Ψ|ν,M); Dom(Ψ|ν), ν′; ·; ·; · ` v′2 : Cνν′(τ2). From here we
can conclude that

Tν,ν′(Ψ|ν,M); Dom(Ψ|ν), ν′; ·; ·; · `
inl v′ : left(Cνν′(τ1)× Cνν′(τ2))

By the subtyping rule we can conclude that

Tν,ν′(Ψ|ν,M); Dom(Ψ|ν), ν′; ·; ·; · `
inl v′ : (+

left(Cνν′(τ1)× Cνν′(τ2))
right(Mν′(τ2 × τ2))

)

This is the required result.
caseMν(∃t.τ): The proof proceeds exactly as in the previous case.
We only need to use the fact that(Cρ,ρ′(τ))[τ ′/t] = Cρ,ρ′(τ [τ ′/t])

Proposition C.9 (Type Preservation)
If ` (M, e) and(M, e) =⇒ (M ′, e′) then` (M ′, e′).
Proof The proof is by cases on the structure ofe. For each possi-
ble case, we use the typing derivation together with the evaluation
step to get the derivation of the new typing judgment. This mostly
relies on the substitution lemmas. We only show the more interest-
ing cases.

• (M, let x = v in e) =⇒ (M, e[v/x])
From` (M, let x = v in e) we get that̀ M :Ψ and
Ψ; Dom(Ψ); ·; ·; · ` let x = v in e. The derivation in turns
tells us thatΨ; Dom(Ψ); ·; ·; · ` v : σ and
Ψ; Dom(Ψ); ·; ·; ·, x :σ :̀ e. At this point, we can apply
value substitution to getΨ; Dom(Ψ); ·; ·; · ` e[v/x].

• (M, only ∆ in e) =⇒ (M |∆, e)
Here we getΨ; Dom(Ψ); ·; ·; · ` only ∆ in e which gives us
Ψ|∆;∆; ·; ·; · ` e. SinceM ⊂ M , we have that
M |∆ ⊂ M |∆. Moreover, we know that∆ ⊂ Dom(Ψ).
Therefore,Dom(Ψ|∆) = ∆.

• (M, let x = widen[ν′][τ ](v) in e) =⇒ (M, e[v/x])
We know that ifM :Ψ, then we have that
Ψ; Dom(Ψ); ·; ·; · ` let x = widen[ν′][τ ](v) in e. This
implies thatΨ; Dom(Ψ); ·; ·; · ` v : Mν(τ) and
Ψ|cd; cd, ν, ν′; ·; ·; , x :Cνν′(τ) ` e for someν andν′

belonging toDom(Ψ). By lemma C.6 we have that
Ψ|

ν,M; Dom(Ψ|ν); ·; ·; · ` v : Mν(τ). By lemma C.8 we
have thatTν,ν′(Ψ|ν,M); Dom(Ψ|ν); ·; ·; · ` v : Cνν′(τ).

But we have thatTν,ν′(Ψ|ν,M) = Ψ|cd, Ψ′ for someΨ′

since the cast leaves the code type unchanged. Also
Ψ′ = Tνν′(Ψ|ν,M) Since we can extend the environment,

we have thatΨ|cd, Ψ′; cd, ν, ν′; ·; ·; , x :Cνν′(τ) ` e.
Applying lemma C.4.2 we get that
Ψ|cd, Ψ′; cd, ν, ν′; ·; ·; · ` e[v/x]. This implies that
Ψ|cd, Ψ′, ν′ 7→ {}; cd, ν, ν′; ·; ·; · ` e[v/x]. If

M :Ψ|cd, Ψ′, ν′ 7→ {}, then clearlyM ⊂ M . This leads to
the required result.

Lemma C.10 (Canonical forms)

1. If Ψ;∆; ·; ·; · ` v : int thenv = n.

2. If Ψ;∆; ·; ·; · ` v : σ at ρ thenv = ν.`.

3. If Ψ;∆; ·; ·; · ` v : σ1 × σ2 thenv = (v1, v2).

4. If Ψ;∆; ·; ·; · ` v : ∃t.σ thenv = 〈t=τ, v′ :σ〉.
5. If Ψ;∆′; ·; ·; · ` v : ∃α :∆.σ thenv = 〈α :∆=σ1, v

′ :σ2〉.
6. If Ψ;∆; ·; ·; · ` v : ∀J~τK[~r](~σ)

ρ−→ 0 thenv = v′J~τK.
7. If Ψ;∆; ·; ·; · ` v : ∀[ ~t :κ][~r](~σ) → 0

thenv = λ[ ~t :κ][~r]( ~x :σ).e.

18



Proof The proof follows from the inspection of the typing rules
for values.

Proposition C.11 (Progress)If ` (M, e) then eithere = halt v
or there exists a(M ′, e′) such that(M, e) =⇒ (M ′, e′).
Proof The proof is again by cases on the structure ofe. It uses
lemma C.10.

D. Soundness ofλGCgen

In this section, we prove the soundness ofλGCgen. We will
prove soundness in the same way – with the subject reduction and
progress lemmas. SinceλGCgen is just an extension ofλGC , we
will prove the required lemmas only for the new cases. As usual
we will use the exchange and widening lemmas for environments
throughout the section.

Lemma D.1 If ∆;Θ; Φ ` σ, then∆[ν/r]; Θ; Φ[ν/r] ` σ[ν/r].

Proof The proof is by induction over the derivation ofσ.

Lemma D.2 (Φ[ν/r])|∆,ν = (Φ|∆,r)[ν/r] and
(Γ[ν/r])|∆,ν = (Γ|∆,r)[ν/r]

Proof Same as lemma A.2.

Lemma D.3 (Mρ1,ρ2(τ))[τ ′/t] = Mρ1,ρ2(τ [τ ′/t]) and
(Mρ1,ρ2(τ))[ν/r] = Mρ1[ν/r],ρ2[ν/r](τ)

Proof Proved by considering the different possible reductions of
Mρ1,ρ2(τ).

Lemma D.4 If Ψ;∆, r; Θ;Φ; Γ ` op : σ, then
Ψ;∆, ν; Θ; Φ[ν/r]; Γ[ν/r] ` op[ν/r] : σ[ν/r]

Proof The proof is a straightforward induction over the deriva-
tion for op. Note that∆, ν = (∆, r)[ν/r]. It uses lemma D.3 for
the case involving subtyping with theMρ1,ρ2(τ) type.
case 〈r′ ∈ ∆′ = ρ, v〉: We have that

Ψ;∆, r; Θ;Φ; Γ ` 〈r′ ∈ ∆′ = ρ, v〉 : ∃r′∈∆′.(σ at r′)

This implies that
Ψ;∆, r; Θ;Φ; Γ ` v : σ[ρ/r′] at ρ andρ ∈ ∆′ and∆′ ⊂ ∆, r.
Applying the inductive hypothesis we get that

Ψ;∆, ν; Θ;Φ[ν/r]; Γ[ν/r] ` v[ν/r] : (σ[ρ/r′])[ν/r] at ρ[ν/r]

This implies that

Ψ;∆, ν; Θ; Φ[ν/r]; Γ[ν/r] `
v[ν/r] : (σ[ν/r])[(ρ[ν/r])/r′] at ρ[ν/r]

Moreover,∆′[ν/r] ⊂ ∆, ν andρ[ν/r] ∈ ∆′[ν/r]. This implies
that

Ψ;∆, ν; Θ;Φ[ν/r]; Γ[ν/r] `
〈r′ ∈ ∆′[ν/r] = ρ[ν/r], v[ν/r]〉 : ∃r′∈{∆′[ν/r]}.(σ[ν/r] at r′)

Lemma D.5 If Ψ;∆, r; Θ;Φ; Γ ` e, then
Ψ;∆, ν; Θ; Φ[ν/r]; Γ[ν/r] ` e[ν/r]

Proof The proof is by induction over the derivation ofe. Note
that ∆, ν = (∆, r)[ν/r]. We will consider only the extra cases
here.
caseopen v as 〈r′, x〉 in e: We have that

Ψ;∆, r; Θ;Φ; Γ ` open v as 〈r′, x〉 in e

This implies that

Ψ;∆, r, r′; Θ;Φ; Γ, x :σ at r′ ` e

andΨ;∆, r; Θ; Φ; Γ ` v : ∃r′∈∆′.(σ at r′). Applying lemma D.4
to the derivation forv we get that

Ψ;∆, ν; Θ;Φ[ν/r]; Γ[ν/r] ` v[ν/r] : ∃r′∈∆′[ν/r].(σ[ν/r] at r′)

Applying the inductive hypothesis to the derivation fore we get
that

Ψ;∆, ν, r′; Θ; Φ[ν/r]; Γ[ν/r], x :σ[ν/r] at r′ ` e[ν/r]

From this we get that

Ψ;∆, ν; Θ;Φ[ν/r]; Γ[ν/r] ` open v[ν/r] as 〈r′, x〉 in e[ν/r]

caseifreg (r1 = r2) e1 e2: We have that

Ψ; (∆, r)[r′, r′/r1, r2]; Θ;Φ[r′, r′/r1, r2]; Γ[r′, r′/r1, r2] `
e1[r

′, r′/r1, r2]

andΨ;∆, r; Θ;Φ; Γ ` e2 andr′ /∈ ∆, r. Applying the inductive
hypothesis to the derivation fore2 leads to

Ψ;∆, ν; Θ;Φ[ν/r]; Γ[ν/r] ` e2[ν/r]

Applying the inductive hypothesis to the derivation fore1 and using
the fact thatr is different fromr1 andr2 we get that

Ψ; (∆, ν)[r′, r′/r1, r2]; Θ;
(Φ[ν/r])[r′, r′/r1, r2]; (Γ[ν/r])[r′, r′/r1, r2] `

(e1[ν/r])[r′, r′/r1, r2]

This leads to the required result.
caseifreg (r = r2) e1 e2: We have that

Ψ;∆, r; Θ; Φ; Γ ` ifreg (r = r2) e1 e2

This implies that

Ψ; (∆, r)[r′, r′/r, r2]; Θ; Φ[r′, r′/r, r2]; Γ[r′, r′/r, r2] `
e1[r

′, r′/r, r2]

andΨ;∆, r; Θ; Φ; Γ ` e2. We must prove that

Ψ;∆, ν; Θ; Φ[ν/r]; Γ[ν/r] ` ifreg (ν = r2) e1[ν/r] e2[ν/r]

This implies that we must prove that
Ψ;∆, ν; Θ;Φ[ν/r]; Γ[ν/r] ` e2[ν/r] and

Ψ; (∆, ν)[ν/r2]; Θ; (Φ[ν/r])[ν/r2]; (Γ[ν/r])[ν/r2] `
(e1[ν/r])[ν/r2]

This implies that we must prove that

Ψ; (∆, r)[ν, ν/r, r2]; Θ; Φ[ν, ν/r, r2]; Γ[ν, ν/r, r2] `
e1[ν, ν/r, r2]

Applying the inductive hypothesis to the derivation fore2 leads
to the required result for this derivation. In the case fore1, we
substitute forr′ and applying the inductive hypothesis and the fact
thatr′ /∈ ∆, r leads to the required result.
caseifreg (ν′ = r2) e1 e2: This case follows directly from the
inductive hypothesis on the derivations ofe1 ande2 and using the
fact thatν′ 6= ν andr 6= r2.
caseifreg (ν = r2) e1 e2: This case follows directly from the
inductive hypothesis on the derivations ofe1 ande2 and using the
fact thatr 6= r2.
caseifreg (ν′ = r) e1 e2: We have that

19



Ψ;∆, r; Θ; Φ; Γ ` ifreg (ν′ = r) e1 e2

This means that we know that

Ψ;∆, r; Θ;Φ; Γ ` e2

We have to prove that

Ψ;∆, ν; Θ; Φ[ν/r]; Γ[ν/r] ` ifreg (ν′ = ν) e1[ν/r] e2[ν/r]

This implies that we have to prove that

Ψ;∆, ν; Θ;Φ[ν/r]; Γ[ν/r] ` e2[ν/r]

Applying the inductive hypothesis to the derivation fore2 leads to
the result.
caseifreg (ν = r) e1 e2: We have that

Ψ;∆, r; Θ; Φ; Γ ` ifreg (ν = r) e1 e2

This means that we know that

Ψ;∆, ν; Θ;Φ[ν/r]; Γ[ν/r] ` e1[ν/r]

We have to prove that

Ψ;∆, ν; Θ;Φ[ν/r]; Γ[ν/r] ` ifreg (ν = ν) e1[ν/r] e2[ν/r]

This implies that we have to prove that

Ψ;∆, ν; Θ;Φ[ν/r]; Γ[ν/r] ` e1[ν/r]

But we already know this.

Lemma D.6 If Θ, t :κ′ ` τ : κ andΘ ` τ ′ : κ′, then
Θ ` τ [τ ′/t] : κ

Proof The proof is a straightforward induction over the structure
of τ .

Lemma D.7 If ∆;Θ, t :κ; Φ ` σ andΘ ` τ : κ, then
∆;Θ;Φ ` σ[τ/t]

Proof The proof is again a straighforward induction over the struc-
ture ofσ.

Lemma D.8 If Ψ;∆; Θ, t :κ; Φ; Γ ` op : σ andΘ ` τ : κ then
Ψ;∆;Θ; Φ; Γ[τ/t] ` op[τ/t] : σ[τ/t]

Proof The proof is by induction over the derivation forop.

Lemma D.9 If Ψ;∆; Θ, t :κ; Φ; Γ ` e and· ` τ ′ : κ then
Ψ;∆;Θ; Φ; Γ[τ ′/t] ` e[τ ′/t]

Proof The proof is again by induction over the derivation for
e.

Lemma D.10 If ∆;Θ; Φ, α :∆′ ` σ and∆′; Θ;Φ ` σ′, then
∆;Θ;Φ ` σ[σ′/α]

Proof The proof is a straighforward induction over the structure
of σ.

Lemma D.11 If Ψ;∆;Θ;Φ, α :∆′; Γ ` op : σ and∆′; Θ;Φ ` σ′

then
Ψ;∆;Θ; Φ; Γ[σ′/α] ` op[σ′/α] : σ[σ′/α]

Proof The proof is again by induction over the typing derivation
for op. We will consider only the case for region packages.
case 〈r ∈ ∆′ = ρ, v〉: We have that

Ψ;∆; Θ;Φ, α :∆′; Γ ` 〈r ∈ ∆′ = ρ, v〉 : ∃r∈∆′.(σ at r)

and∆′; Θ;Φ ` σ′. This implies that
Ψ;∆; Θ;Φ, α :∆′; Γ ` v : σ[ρ/r] at ρ andρ ∈ ∆′ and∆′ ⊂ ∆.
Applying the inductive hypothesis we get that

Ψ;∆;Θ; Φ; Γ[σ′/α] ` v[σ′/α] : (σ[ρ/r])[σ′/α] at ρ

Sincer does not occur in∆, and∆′ ⊂ ∆, thereforer does not
occur free inσ′. Therefore we have that

Ψ;∆;Θ; Φ; Γ[σ′/α] ` v[σ′/α] : (σ[σ′/α])[ρ/r] at ρ

This leads to the lemma.

Lemma D.12 If Ψ;∆;Θ;Φ, α :∆′; Γ ` e and∆′; Θ;Φ ` σ′ then

Ψ;∆; Θ;Φ; Γ[σ′/α] ` e[σ′/α]

Proof The proof is by induction over the derivation ofe.
caseopen v as 〈r, x〉 in e: We have that

Ψ;∆; Θ;Φ, α :∆′; Γ ` v : ∃r∈∆1.(σ at r)

andΨ;∆, r; Θ;Φ, α :∆′; Γ, x :σ at r ` e. Applying lemma D.11
to the derivation forv we get that

Ψ;∆;Θ;Φ; Γ[σ′/α] ` v[σ′/α] : ∃r∈∆1.(σ[σ′/α] at r)

Applying the inductive hypothesis to the derivation fore we get
that

Ψ;∆, r; Θ;Φ; Γ[σ′/α], x :σ[σ′/α] at r ` e[σ′/α]

This leads to the required result.
caseifreg (r1 = r2) e1 e2: We have that
Ψ;∆; Θ;Φ, α :∆′; Γ ` e2 and

Ψ;∆[r, r/r1, r1]; Θ;
Φ[r, r/r1, r1], α :∆′[r, r/r1, r1]; Γ[r, r/r1, r2] `

e1[r, r/r1, r2]

Applying the inductive hypothesis to the derivation ofe2 leads to

Ψ;∆;Θ; Φ; Γ[σ′/α] ` e2[σ
′/α]

By lemma D.1 we have that

∆′[r, r/r1, r2]; Θ;Φ[r, r/r1, r2] ` σ′[r, r/r1, r2]

Substituteσ′[r, r/r1, r2] in the derivation fore1 and by applying
the inductive hypothesis we get that

Ψ; ∆[r, r/r1, r1]; Θ;Φ[r, r/r1, r1]; (Γ[σ′/α])[r, r/r1, r2] `
(e1[σ

′/α])[r, r/r1, r2]

This leads to the required result.
caseifreg (r = ν) e1 e2: We have that
Ψ;∆; Θ;Φ, α :∆′; Γ ` e2 and

Ψ;∆[ν/r]; Θ; Φ[ν/r], α :∆′[ν/r]; Γ[ν/r] ` e1[ν/r]

Applying the inductive hypothesis to the derivation ofe2 leads to

Ψ;∆;Θ; Φ; Γ[σ′/α] ` e2[σ
′/α]

By lemma D.1 we have that

∆′[ν/r]; Θ;Φ[ν/r] ` σ′[ν/r]

Substitutingσ′[ν/r] in the derivation fore1 and applying the in-
ductive hypothesis gives us that

Ψ;∆[ν/r]; Θ; Φ[ν/r]; (Γ[σ′/α])[ν/r] ` (e1[σ
′/α])[ν/r]

which leads to the required result.

Lemma D.13 If Ψ;∆; Θ;Φ; Γ, x :σ′ ` op : σ and
Ψ;∆; Θ;Φ; Γ ` v′ : σ′ then
Ψ;∆; Θ;Φ; Γ ` op[v′/x] : σ

20



Proof The proof is by induction over the typing derivation for
op. The new cases follow in a straightforward way.

Lemma D.14 If Ψ;∆; Θ;Φ; Γ ` v : σ and∆1; Θ;Φ|∆1 ` σ and
∆1 ⊂ ∆, thenΨ|∆1 ;∆1; Θ;Φ|∆1 ; Γ|∆1 ` v : σ

Proof The proof is by induction over the derivation forv. We
will show only the extra case here.
case〈r ∈ ∆2 = ρ, v〉: We have that
Ψ;∆;Θ; Φ; Γ ` 〈r ∈ ∆2 = ρ, v〉 : ∃r∈∆2.(σ at r). This implies
that
Ψ;∆;Θ; Φ; Γ ` v : σ[ρ/r] at ρ andρ ∈ ∆2 and∆2 ⊂ ∆. We
also have that
∆1; Θ;Φ|∆1 ` ∃r∈∆2.(σ at r). This implies that∆2 ⊂ ∆1.
Moreover,
∆1, r; Θ;Φ|∆1 ` σ. By lemma D.1 we get that
∆1, ρ; Θ; (Φ|∆1)[ρ/r] ` σ[ρ/r]. But sinceρ ∈ ∆1 andr does not
occur free inΦ|∆1 , we get that
∆1; Θ;Φ|∆1 ` σ[ρ/r]. Applying the inductive hypothesis to the
derivation forv we get that
Ψ|∆1 ;∆1; Θ;Φ|∆1 ; Γ|∆1 ` v : σ[ρ/r] at ρ. This implies that
Ψ|∆1 ;∆1; Θ;Φ|∆1 ; Γ|∆1 ` 〈r ∈ ∆2 = ρ, v〉 : ∃r∈∆2.(σ at r)

Lemma D.15 If Ψ;∆; Θ;Φ; Γ, x :σ ` e and
Ψ;∆;Θ; Φ; Γ ` v : σ then
Ψ;∆;Θ; Φ; Γ ` e[v/x]

Proof The proof is by induction over the derivation ofe. We will
only consider the case forifreg.
caseifreg (r = ν) e1 e2: By definition we have that

Ψ;∆[ν/r]; Θ; Φ[ν/r]; Γ[ν/r], x :σ[ν/r] ` e1[ν/r]

andΨ;∆;Θ; Φ; Γ, x : σ ` e2. Applying the inductive hypothesis
to the derivation ofe2, we get that
Ψ;∆;Θ; Φ; Γ ` e2[v/x]. By lemma D.4 we know that

Ψ;∆[ν/r]; Θ;Φ[ν/r]; Γ[ν/r] ` v[ν/r] : σ[ν/r]

Substitutingv[ν/r] for x in the derivation fore1 leads to the lemma.
caseifreg (r1 = r2) e1 e2: By definition we have that

Ψ;∆[r, r/r1, r2]; Θ;
Φ[r, r/r1, r2]; Γ[r, r/r1, r2], x :σ[r, r/r1, r2] `

e1[r, r/r1, r2]

andΨ;∆;Θ;Φ; Γ, x :σ ` e2. By lemma D.4 we know that

Ψ;∆[r, r/r1, r2]; Θ; Φ[r, r/r1, r2]; Γ[r, r/r1, r2] `
v[r, r/r1, r2] : σ[r, r/r1, r2]

Substitutingv[r, r/r1, r2] and v in the derivation ofe1 and e2

respectively, and applying the inductive hypothesis leads to the
lemma.

Proposition D.16 (Type Preservation)If ` (M, e) and
(M, e) =⇒ (M ′, e′) then` (M ′, e′).
Proof The proof is by induction over the evaluation relation. We
will consider only the additional cases here. The lemma follows in
a straightforward way for theifreg cases.
caseopen 〈r ∈ ∆ = ν, v〉 as 〈r, x〉 in e: We know that

Ψ; Dom(Ψ); ·; ·; · ` open 〈r ∈ ∆ = ν, v〉 as 〈r, x〉 in e

This implies that

Ψ; Dom(Ψ); ·; ·; · ` 〈r ∈ ∆ = ν, v〉 : ∃r∈∆.(σ at r)

where∆ ⊂ Dom(Ψ). By the typing rule for region packages, we
have thatν ∈ Dom(Ψ) and that
Ψ; Dom(Ψ); ·; ·; · ` v : σ[ν/r] at ν. We also have that
Ψ; Dom(Ψ), r; ·; ·; x :σ at r ` e. By lemma D.5 and sinceν ∈
Dom(Ψ) we get that

Ψ; Dom(Ψ); ·; ·; x :σ[ν/r] at ν ` e[ν/r]

Applying lemma D.15 leads to the result.

Lemma D.17 (Canonical forms)

1. If Ψ;∆; ·; ·; · ` v : int thenv = n.

2. If Ψ;∆; ·; ·; · ` v : σ at ν thenv = ν.`.

3. If Ψ;∆; ·; ·; · ` v : σ1 × σ2 thenv = (v1, v2).

4. If Ψ;∆; ·; ·; · ` v : ∃t :κ.σ thenv = 〈t=τ, v′ :σ〉.
5. If Ψ;∆; ·; ·; · ` v : ∃α :∆′.σ thenv = 〈α :∆′=σ1, v

′ :σ2〉.
6. If Ψ;∆; ·; ·; · ` v : ∃r∈∆′.(σ at r) then

v = 〈r ∈ ∆′ = ρ, v′〉.
7. If Ψ;∆; ·; ·; · ` v : ∀J~τK[~r](~σ)

ρ−→ 0 thenv = v′J~τK.
8. If Ψ;∆; ·; ·; · ` v : ∀[ ~t :κ][~r](~σ) → 0

thenv = λ[ ~t :κ][~r]( ~x :σ).e.

Proof The proof follows from the inspection of the typing rules
for values.

Proposition D.18 (Progress)If ` (M, e) then eithere = halt v
or there exists a(M ′, e′) such that(M, e) =⇒ (M ′, e′).
Proof The proof is by induction over the structure ofe. The
ifreg cases follow in a straightforward way. We will consider only
the region open construct.
caseopen v as 〈r, x〉 in e: We know that

Ψ; Dom(Ψ); ·; ·; · ` open v as 〈r, x〉 in e

This means that

Ψ; Dom(Ψ); ·; ·; · ` v : ∃r∈∆.(σ at r)

By lemma D.17 we get thatv = 〈r ∈ ∆ = ρ, v′〉. By the typing
rule for region packages, we get thatρ ∈ Dom(Ψ). This means
thatρ = ν for someν. Therefore, we have that

Ψ; Dom(Ψ); ·; ·; · ` open 〈r ∈ ∆ = ν, v′〉 as 〈r, x〉 in e

But by the operational semantics this goes to(M, e[ν, v′/r, x]).

21


