
Weak updates and separation logic

Gang Tan1, Zhong Shao2, Xinyu Feng3, and Hongxu Cai4

1Lehigh University,2Yale University
3Toyota Technological Institute at Chicago,4Google Inc.

Abstract. Separation Logic (SL) provides a simple but powerful technique for
reasoning about imperative programs that use shared data structures. Unfortu-
nately, SL supports only “strong updates”, in which mutation to a heap location
is safe only if a unique reference is owned. This limits the applicability of SL
when reasoning about the interaction between many high-level languages (e.g.,
ML, Java, C#) and low-level ones since these high-level languages do not support
strong updates. Instead, they adopt the discipline of “weakupdates”, in which
there is a global “heap type” to enforce the invariant of type-preserving heap up-
dates. We present SLw, a logic that extends SL with reference types and elegantly
reasons about the interaction between strong and weak updates. We also describe
a semantic framework for reference types; this framework isused to prove the
soundness of SLw.

1 Introduction

Reasoning about mutable, aliased heap data structures is essential for proving properties
or checking safety of imperative programs. Two distinct approaches perform such kind
of reasoning: Separation Logic, and a type-based approach employed by many high-
level programming languages.

Extending Hoare Logic, the seminal work of Separation Logic(SL [10, 13]) is a
powerful framework for proving properties of low-level imperative programs. Through
its separating conjunction operator and frame rule, SL supports local reasoning about
heap updates, storage allocation, and explicit storage deallocation.

SL supports “strong updates”: as long as a unique reference to a heap cell is owned,
the heap-update rule of SL allows the cell to be updated with any value:

{(e 7→ −)∗p}[e] := e′{(e 7→ e′)∗p} (1)

In the above heap-update rule, there is no restriction on thenew valuee′. Hereafter, we
refer to heaps with strong updates asstrong heaps. Heap cells in strong heaps can hold
values of different types at different times of program execution.

Most high-level programming languages (e.g., Java, C#, andML), however, support
only “weak updates”. In this paradigm, programs can performonly type-preserving
heap updates. There is a global “heap type” that tells the type of every allocated heap
location. The contents at a location have to obey the prescribed type of the location in
the heap type, at any time. Managing heaps with weak updates is a simple and type-
safe mechanism for programmers to access memory. As an example, suppose an ML

variable has type “τ ref” (i.e., it is a reference to a value of typeτ). Then any update
through this reference with a new value of typeτ is type safe and does not affect other
types, even in the presence of aliases and complicated points-to relations. Hereafter, we
refer to heaps with weak updates asweak heaps.

This paper is concerned with the interaction between strongand weak updates.
Strong-update techniques are more precise and powerful, allowing destructive mem-
ory updates and explicit deallocation. But aliases and uniqueness have to be explic-
itly tracked. Weak-update techniques allow type-safe management of memory without
tracking aliases, but types of memory cells can never change. A framework that mixes
strong and weak updates enables a trade-off between precision and scalability.

Such a framework is also useful for reasoning aboutmultilingual programs. Most
real-world programs are developed in multiple programminglanguages. Almost all
high-level languages provide foreign function interfacesfor interfacing with low-level
C code (for example, the OCaml/C FFI, and the Java Native Interface). Real-world
programs consist of a mixture of code in both high-level and low-level languages. A
runtime state for such a program conceptually contains a union of a weak heap and a
strong heap. The weak heap is managed by a high-level language (e.g., Java), accepts
type-preserving heap updates, and is garbage-collected. The strong heap is managed
by a low-level language, accepts strong updates, and its heap cells are manually recol-
lected. To check the safety and correctness of multilingualprograms, it is of practical
value to have one framework that accommodates both strong and weak updates.

Since Separation Logic (SL) supports strong heaps, one natural thought to mix
strong and weak updates is to extend SL with types so that assertions can also de-
scribe weak heaps. That is, in addition to regular SL assertions, we add{e 7→ τ}, which
specifies a heap with a single cell and the cell holds a value oftype τ. This scheme,
however, would encounter two challenges.

First, allowing general reference types in{e 7→ τ} would make SL unsound. An
example demonstrating this point is as follows:

{{x 7→ 4} ∗ {y 7→ even ref}} [x] := 3 {{x 7→ 3} ∗ {y 7→ even ref}} (2)

The example is an instantiation of the heap-update rule in (1) and uses the additional
assertion{e 7→ τ}. The precondition states thaty points to a heap cell whose contents
are of type “even ref” (i.e., a reference to an even integer). Therefore, the precondition
is met on a heap wherey points tox. However, the postcondition will not hold on the
new heap after the update becausex will point to an odd number. Therefore, the above
rule is sound only ify does not point tox.

The second challenge of adding types to SL is how to prove its soundness with
mixed SL assertions and types. Type systems are usually proved sound following a
syntactic approach [19], where types are treated as syntax.Following the tradition of
Hoare Logic, SL’s soundness is proved through a denotational model, and SL assertions
are interpreted semantically. There is a need to resolve theconflict between syntactic
and semantic soundness proofs.

In this paper, we propose a hybrid logic, SLw, which mixes SL and a type system.
Although the logic is described in a minimal language and type system, it makes a solid
step toward a framework that reasons about the interaction between high-level and low-
level languages. The most significant technical aspects of the logic are as follows:

2

(Command) c ::= · · · | x := [e] | [x] := e | x := alloc(e) | free(e)
(Expression) e ::= x | v | op(e1, . . . ,en)

(Value) v ::= n | ℓ

Fig. 1. Language syntax

– SLw extends SL with a simple type system. It employs SL for reasoning about
strong updates, and employs the type system for weak updates. Most interestingly,
SLw mixes SL assertions and types, and accommodates cross-boundary pointers
(from weak to strong heaps and vice versa). This is achieved by statically maintain-
ing the distinction between pointers to weak heaps and pointers to strong heaps.
SLw is presented in Section 2.

– To resolve the conflict between syntactic types and semanticassertions, we pro-
pose a semantic model of types. Our model of reference types follows a fixed-point
approach and allows us to define a denotational model of SLw and prove its sound-
ness. The model of SLw is presented in Section 3.

2 SLw: Separation logic with weak updates

We next describe SLw, an extension of SL that incorporates reasoning over weak heaps.
In Section 2.1, we describe a minimal language that enables us to develop SLw. Rules
of SLw are presented in Section 2.2 and examples of using the logic in Section 2.3.

We first describe some common notations. For a mapf , we write f [x;y] for a new
map that agrees withf except it mapsx to y. For two finite mapsf1 and f2, f1⊎ f2 is the
union of f1 and f2 when their domains are disjoint, and undefined otherwise. Wewrite
f \X for a new map after removing elements inX from the domain off . We write~x for
a sequence ofxs andε for an empty sequence.

2.1 Language syntax and semantics

Figure 1 presents the syntax of the programming language in which we will develop
SLw. The language is the imperative language used by Hoare [6], augmented with a
set of commands for manipulating heap data structures. It issimilar to the one used
in Reynolds’ presentation of SL [13]. Informally, the command “x := [e]” loads the
contents at locatione into variablex; “ [x] := e” updates the location atx with the value
e; “x := alloc(e)” allocates a new location, initializes it withe, and assigns the new
location tox; “ free(e)” deallocates the locatione.

In the syntax, we usen for integers,x for variables,ℓ for heap locations, andop for
arithmetic operators. We assume there is an infinite number of variables and locations.

Figure 2 presents a formal operational semantics of the language. A state consists
of a mapr from variables to values, a heaph, and a sequence of commands. Commands
bring one state to another state and their semantics is formally defined by a step relation
7−→ . We write 7−→∗ for the reflexive and transitive closure of7−→ .

A state may have no next state, i.e., “getting stuck”. For example, a state whose next
instruction to execute is[x] := e gets stuck whenx does not represent a location or the

3

(State) s ::= (r,h,~c)
(Locals) r ::= Var→ Value
(Heap) h ::= {ℓ1 7→ v1, . . . , ℓn 7→ vn}

(r,h,c· ~c1) 7−→ (r2,h2, ~c2)

if c = then(r2,h2, ~c2) =

· · · · · ·

x := [e] (r[x;h(ℓ)],h, ~c1) whenr(e) = ℓ andℓ ∈ dom(h)

[x] := e (r,h[ℓ;r(e)], ~c1) whenr(x) = ℓ andℓ ∈ dom(h)

x := alloc(e) (r[x;ℓ],h⊎{ℓ 7→ r(e)}, ~c1) whenℓ 6∈ dom(h)

free(e) (r,h\{ℓ}, ~c1) whenr(e) = ℓ andℓ ∈ dom(h)

wherer(e) =







r(x) whene= x
v whene= v
op(r(e1), . . . ,r(en)) whene= op(e1, . . . ,en)

Fig. 2. Operational semantics

location is not in the domain of the state’s heap. A state is a terminal state when the
sequence of commands is empty.

Definition 1. (Stuck and terminal states)

stuck(s) , ¬(∃s′. s 7−→ s′)
terminal(r,h,~c) , ~c = ε

Below we define the usual notions of safety and termination:

Definition 2. (Safety and termination)

safe(s) , ∀s′.
(

(s 7−→∗ s′) ∧ ¬terminal(s′)
)

⇒∃s′′. s′ 7−→ s′′

terminate(s) , ∀s′. s 7−→∗ s′ ⇒∃s′′. s′ 7−→∗ s′′ ∧ terminal(s′′)

2.2 The logic SLw

Figure 3 presents assertions and types used in SLw. Assertions in SLw include all
formulas in predicate calculus (not shown in the figure), andall SL formulas. The only
additional assertion form in SLw is {e : τ}, which denotes thate has typeτ.

SLw is equipped with a simple type system that classifies integers and locations.
Although the type system does not include many types in high-level languages, by
including reference types it is already sufficient to show interesting interactions between
strong and weak heaps. Reference types are the most common types when high-level
languages interoperate with low-level languages because in this setting most data are
passed by references.

4

(Assertion) p ::= · · · | emp | {e1 7→ e2} | p1 ∗p2 | p1−∗p2 | {e : τ}
(Type) τ ::= int | ref | wref τ

(HeapType) Ψ ::= {ℓ1 : τ1, . . . , ℓn : τn}
(LocalVarType) Γ ::= {x1 : τ1, . . . ,xn : τn}

Fig. 3. Assertions and types

Ψ,Γ ⊢ e : τ

x∈ dom(Γ)

Ψ,Γ ⊢ x : Γ(x) Ψ,Γ ⊢ n : int Ψ,Γ ⊢ ℓ : ref

Ψ(ℓ) = τ
Ψ,Γ ⊢ ℓ : wref τ

∀i ∈ [1..n]. Ψ,Γ ⊢ ei : int

Ψ,Γ ⊢ op(e1, . . . ,en) : int

Fig. 4.Typing rules for expressions

Type int is for all integers andref for all locations. Type “wref τ” is for locations in
a weak heap, but not in a strong heap. A heap typeΨ tells the type of every location in
a weak heap; mathematically, it is a finite map from locationsto types. Given heap type
Ψ, locationℓ has type “wref τ” if Ψ(ℓ) equalsτ. A local variable type,Γ, tells the type
of local variables.

Figure 4 presents typing rules for expressions, which are unsurprising. Notice that
the typing rule for “wref τ” requires that the locationℓ is in the domain of the heap type
Ψ andΨ(ℓ) has to be the same asτ. This rule and the later weak-update rule enforce
type-preserving updates on weak heaps.

The following schematic diagram helps to understand the relationship between weak
heaps, strong heaps, local variables, assertions and various kinds of types in SLw:

As shown in the diagram, SLw conceptually divides a heap into a weak heaphw

and a strong heaphs. The weak heap is specified by a heap typeΨ, and the strong heap
by SL formulap. Pointers to weak-heap cells (in solid lines) have type “wref τ” or ref.
Pointers to strong heap cells (in dotted lines) can have onlytyperef.

Figure 5 presents rules for checking commands. These rules use the judgment
Ψ ⊢ {Γ, p} ~c {Γ′, p′}. In this judgment,Ψ, Γ andp are preconditions and specify
conditions on the weak heap, local variables, and the strongheap respectively. Postcon-

5

Ψ ⊢ {Γ, p}~c {Γ′, p′} (Well-formed statements)

Ψ,Γ ⊢ e : ref Ψ,Γ ⊢ y : τ
Ψ ⊢ {Γ, {e 7→ y}} x := [e] {Γ[x;τ], x = y∧{e 7→ x}}

(S-LOAD)

wherex 6∈ FV(e)

Ψ,Γ ⊢ x : ref

Ψ ⊢ {Γ, {x 7→ −}} [x] := e{Γ, {x 7→ e}}
(S-UPDATE)

Ψ ⊢ {Γ, emp} x := alloc(e) {Γ[x; ref], {x 7→ e}}
(S-ALLOC)

wherex 6∈ FV(e)

Ψ,Γ ⊢ e : ref

Ψ ⊢ {Γ, {e 7→ −}} free(e) {Γ, emp}
(S-FREE)

Ψ ⊢ {Γ, p}~c {Γ′, p′}

Ψ ⊢ {Γ, p∗p1}~c {Γ′, p′ ∗p1}
(FRAME)

where no variable occurring free inp1 is modified by~c

↑ THE WORLD OF STRONG HEAPS

−−−
↓ THE WORLD OF WEAK HEAPS

Ψ,Γ ⊢ e : wref τ
Ψ ⊢ {Γ, emp} x := [e] {Γ[x;τ], emp}

(W-LOAD)

Ψ,Γ ⊢ x : wref τ Ψ,Γ ⊢ e : τ
Ψ ⊢ {Γ, emp} [x] := e{Γ, emp}

(W-UPDATE)

Ψ,Γ ⊢ e : τ
Ψ ⊢ {Γ, emp} x := alloc(e) {Γ[x;wref τ], emp}

(W-ALLOC)

Fig. 5. Rules for commands (Rules for assignments, conditional statements, loops, and sequenc-
ing are the same as the ones in Hoare Logic and are omitted.)

ditions areΓ′ andp′; they specify conditions on local variables and the strong heap of
the state after executing~c. Readers may wonder why there is no postcondition speci-
fication of the weak heap. As common in mutable-reference type systems, the implicit
semantics of the judgment is that there exists an extended heap typeΨ′ ⊇ Ψ and the
weak heap of the poststate should satisfyΨ′. In terms of type checking, the particularΨ′

does not matter. The formal semantics of the judgment will bepresented in Section 3.
Rules in Figure 5 are divided into two groups. One group is forthe world of strong

heaps, and another for the world of weak heaps. The rules for strong heaps are almost
the same as the corresponding ones in standard SL, except that they also updateΓ when
necessary.

The rules for weak heaps are the ones that one would usually find in a type sys-
tem for mutable-reference types. The weak-update ruleW-UPDATE requires that the

6

Operational semantics: (r,h,s2w(x) ·~c) 7−→ (r,h,~c)

Rule:
Ψ,Γ ⊢ x : ref Ψ,Γ ⊢ e : τ

Ψ ⊢ {Γ, {x 7→ e}} s2w(x) {Γ[x;wref τ], emp}
S2W

Fig. 6. Rule for converting a location from the strong heap to the weak heap

⊢ {Γ′
1, p

′
1}⇒ {Γ1, p1} Ψ ⊢ {Γ1, p1}~c {Γ2, p2} ⊢ {Γ2, p2}⇒ {Γ′

2, p
′
2}

Ψ ⊢ {Γ′
1, p

′
1}~c {Γ′

2, p
′
2}

WEAKENING

⊢ {Γ, p}⇒ {Γ′, p′}

⊢ {Γ, p}⇒ {Γ, p ∧ {x : Γ(x)}}
W1 ⊢ p⇒ p′

⊢ {Γ, p}⇒ {Γ, p′}
W2

Fig. 7. Weakening rules

pointer be of type “wref τ”, and that the new value be of typeτ. This rule enforces
type-preserving updates. Once these conditions hold,Γ remains unchanged after the
update. Notice in this rule there is no need to understand separation and aliases as the
S-UPDATE rule does. TheW-ALLOC rule does not need to extend the heap typeΨ be-
causeΨ is only a precondition. When proving the soundness of the rule, we need to find
a newΨ′ that extendsΨ and is also satisfied by the new weak heap after the allocation.
Finally, there is no rule forfree(e) in the world of weak heaps. Weak heaps should be
garbage-collected.1

Figures 6 and 7 present some rules that show the interaction between weak and
strong heaps. Figure 6 adds a new instruction “s2w(x)” for converting a location from a
strong heap to a weak heap. Operationally, this instructionis a no-op (so it is an anno-
tation, rather than a “real” instruction). Its typing rule,however, involves transforming
the ownership in the strong heap to a pointer of weak-reference types. Notice that there
is no rule for converting a location from the weak heap to the strong heap; this is similar
to deallocation in weak heaps and requires the help of garbage collectors.

Figure 7 presents weakening rules. RuleW1 converts type information inΓ to in-
formation in assertionp. This is useful since information inΓ might be overwritten due
to assignments to variables. One of examples in later sections will show the use of this
rule. RuleW2 uses the premise⊢ p⇒ p′; any valid SL formulap⇒ p′ is acceptable.

2.3 Examples

We now show a few examples that demonstrate the use of SLw. In these examples,
we assume an additional typeeven for even integers. For clarity, we will also annotate

1 We do not formally consider the interaction between garbagecollectors and weak heaps. When
considering a garbage collector, SLw has to build in an extra level of indirection for cross-
boundary references from strong heaps to weak heaps as objects in weak heaps may get moved
(this is how the JNI implements Java references in native code). We leave this as future work.

7

the allocation instruction to indicate whether the allocation happens in the strong heap
or in the weak heap. We writex := allocs(e) for a strong-heap allocation. We write
x := allocw,τ(e) for a weak-heap allocation, and the intended type fore is τ. These
annotations help in guiding the type checking of SLw.

The first example shows how the counterexample in the introduction (formula (2)
on page 2) plays out in SLw. The following program first initializes the heap to a form
such thaty points to a location of type “wref even” andx points to 4, and then performs
a heap update throughx. The whole program is checkable in SLw with respect to any
heap type (remember the heap type specifies theinitial weak heap). Below we also
include conditions of the form “Γ,p” between instructions.

{}, emp
z := allocw,even(2)

{z : wref even}, emp
y := allocs(z)

{y : ref,z : wref even}, {y 7→ z} by rule (w1)
{y : ref,z : wref even}, {y 7→ z}∧{z : wref even} by rule (w2)
{y : ref,z : wref even}, ∃v. {y 7→ v}∧{v : wref even}

z := 0
{y : ref,z : int}, ∃v. {y 7→ v}∧{v : wref even}

x := allocs(4)
{x : ref,y : ref,z : int}, ∃v. ({y 7→ v}∧{v : wref even})∗ {x 7→ 4}

[x] := 3
{x : ref,y : ref,z : int}, ∃v. ({y 7→ v}∧{v : wref even})∗ {x 7→ 3}

Different from the counterexample, the condition before “[x] := 3” limits wherey can
point to. In particular,y cannot point tox because (1) by the type ofv, variabley must
point to a weak-heap location; (2)x represents a location in the strong heap. Therefore,
the update throughx does not invalidate the type ofv. We could easily construct an
example wherey indeed points tox. But in that case the type ofv would beref, which
would also not be affected by updates throughx.

One of the motivations of SLw is to reason about programs where code in high-level
languages interacts with low-level code. Prior research [4, 14] has shown that it is error
prone when high-level code interoperates with low-level code. All kinds of errors may
occur. One common kind of errors occurs when low-level code makes type misuses of
references that point to objects in the weak heap. For instance, in the JNI, types of all
references to Java objects are conflated into one type in native code—jobject. Con-
sequently, there is no static checking of whether native code uses these Java references
in a type-safe way. Type misuses of these Java references canresult in silent memory
corruption or unexpected behavior.

The first example already demonstrates how SLw enables passing pointers from
high-level to low-level code. In the example, the first allocation is on the weak heap and
can be thought of as an operation by high-level code. Then, the location is passed to the
low level by being stored in the strong heap. Unlike foreign function interfaces where
types of cross-boundary references are conflated into a single type in low-level code,
SLw can track the accurate types of those references and enable type safety.

8

The next example demonstrates how low-level code can initialize a data structure in
the strong heap, and then transfer that structure to the weakheap so that the structure is
usable by high-level code.

{}, emp
x := allocs(4)

{x : ref}, {x 7→ 4}
y := allocs(x)

{x : ref,y : ref}, {x 7→ 4} ∗ {y 7→ x}
s2w(x)

{x : wref even,y : ref}, {y 7→ x}
s2w(y)

{x : wref even,y : wref (wref even)}, emp

3 Soundness of SLw

Soundness of SLw is proved by a semantic approach. We first describe a semantic
model for weak-reference types. Based on this model, semantics of various concepts
in SLw are defined. Every rule in SLw is then proved as a lemma according to the
semantics.

3.1 Modeling weak-reference types

Intuitively, a type is a set of values. This suggests that a semantic type should be a
predicate of the metatype “Value→ Prop”. However, this idea would not support weak-
reference types. To see why, let us examine a naı̈ve model where “wref τ” in a heap
h would denote a set of locationsℓ such thath(ℓ) is of typeτ. This simple model is
unfortunately unsound, which is illustrated by the following example:

1. Create a reference of type “wref even”, and let the reference bex.
2. Copyx to y. By the naı̈ve model, a reference of type “wref even” also has type

“wref int” (because an even number is also an integer). Let “wref int” be the type of
y.

3. Update the reference throughy with an odd integer, say 3. Asy has the type
“wref int”, updating it with an odd integer is legal.

4. Dereferencex. Alas, the dereference returns 3, although the type ofx implies a
result of an even number!

The problem with the naı̈ve model is that, with aliases, it allows inconsistent views
of memory. In the foregoing example,x and y have inconsistent views on the same
memory cell. To address this problem, SLw uses a heap typeΨ to type check a location.
This follows the approach of Tofte [16] and Harper [5]. An exampleΨ is as follows:

Ψ = {ℓ0 : even, ℓ1 : int, ℓ2 : wref even, ℓ3 : wref int} (3)

A heap typeΨ helps to define two related concepts, informally stated below (their
formal semantic definitions will be presented in a moment):

9

(i) A locationℓ is of type “wref τ” if and only if Ψ(ℓ) equalsτ.
(ii) A heap h is consistent withΨ if for every ℓ, the valueh(ℓ) has typeΨ(ℓ). For

the exampleΨ, it means thath(ℓ0) should be an even number,h(ℓ1) should be an
integer,h(ℓ2) should be of type “wref even”, ...

The heap typeΨ prevents aliases from having inconsistent views of the heap. Aliases
have to agree on their types because the types have to agree with the type inΨ. In par-
ticular, the example showing the unsoundness of the naı̈ve model would not work in the
above model because, in step 3 of the example,y cannot be cast from type “wref even”
to “wref int”: type “wref even” implies thatΨ(y) = even, which is a different type from
int.

A subtlety of the above model is the denotation of “wref τ” depends on the heap
type Ψ, but is independentof the heaph. A weak-reference type is connected to the
heaph only indirectly, through the consistency relation betweenh andΨ.

Example 3.Let h = {ℓ0 7→ 4, ℓ1 7→ 3, ℓ2 7→ ℓ0, ℓ3 7→ ℓ1}. It is consistent with the
exampleΨ in (3). To see this, 4 at locationℓ0 is an even number and 3 at locationℓ1

is an integer. At locationℓ2, ℓ0 is of type “wref even” because, by (i), this is equivalent
to Ψ(ℓ0) = even—a true statement. Similarly, the valueℓ1 at locationℓ3 is of type
“wref int”. 2

Formalizing a set of semantic predicates following (i) and (ii) directly, however,
would encounter difficulties because of a circularity in themodel: by (ii),Ψ is a map
from locations to types; by (i), the model of types takesΨ as an argument—Ψ is nec-
essary to decide if a location belongs to “wref τ”. If defined naı̈vely, the model would
result in inconsistent cardinality, as described by Ahmed [1].

We next propose a fixed-point approach. We rewrite the heap typeΨ as a recursive
equation. After addingΨ as an argument to types, the example in (3) becomes:

Ψ = {ℓ0 : even(Ψ), ℓ1 : int(Ψ), ℓ2 : (wref even)(Ψ), ℓ3 : (wref int)(Ψ)} (4)

Notice thatΨ appears on both the left and the right side of the equation. OnceΨ is
written as a recursive equation, it follows that any fixed point of the following functional
is a solution to the equation (4):

λΨ.{ℓ0 : even(Ψ), ℓ1 : int(Ψ), ℓ2 : (wref even)(Ψ), ℓ3 : (wref int)(Ψ)} (5)

To get a fixed point of (5), we follow the indexed model of recursive types by Appel
and McAllester [2]. We first introduce some domains:

(SemHeapType) F ∈ Loc⇀ SemIType

(SemIType) t ∈ SemHeapEnv→ Nat→ Value→ Prop

(SemHeapEnv) φ ∈ Loc⇀ Nat→ Value→ Prop

We useF for a semantic heap type (it is the metatype of the denotationof heap types,
as we will see). It maps locations to indexed types. An important point is that fromF
we can defineλφ, ℓ. F(ℓ) φ, which has the metatypeSemHeapEnv→ SemHeapEnv.

10

Therefore, a semantic heap type is effectively a functionalsimilar to the one in (5), and
a fixed point ofF is of the metatypeSemHeapEnv.

A semantic typet is a predicate over the following arguments:φ is a semantic
heap environment;k is a natural-number index;v is a value. The heap environment
φ ∈ SemHeapEnvis used in our model of WRef(t) to constrain reference types. The
index k comes from the indexed model and is a technical device that enables us to
define the fixed point of a semantic heap typeF.

Following the indexed model, we introduce a notion of contractiveness.

Definition 4. (Contractiveness)

contractive(F) , ∀ℓ ∈ dom(F). contractive(F(ℓ))

contractive(t) , ∀φ,k, j ≤ k,v. (t φ j v) ↔ (t (approx(k,φ)) j v)

approx(k,φ) , λℓ, j,v. j < k∧φ l j v.

We define(℘F) = λφ, ℓ. F(ℓ) φ. That is, it turnsF into a functional of type
SemHeapEnv→ SemHeapEnv.

Theorem 5. If contractive(F), then the following µF is the least fixed point2 of the func-
tional (℘F):

µF , λℓ,k,v. (℘F)k+1(⊥) ℓ k v,

where⊥ = λℓ,k,v. false, and(℘F)k+1 applies the functional k+1 times.

The theorem is proved by following the indexed model of recursive types [2]. We
present the proof in our technical report [15].

The following lemma is an immediate corollary of Theorem 5.

Lemma 6. For any contractiveF, anyℓ,k,v, we have
(

F(ℓ) (µF) k v
)

↔
(

(µF)(ℓ) k v
)

Most of the semantic types ignore theφ argument. For example,

Even , λφ,k,v. ∃u. v = 2×u.

We use capitalized Even to emphasize that it is a predicate, instead of the syntactic type
even. The model of weak-reference types uses the argumentφ.

Definition 7. WRef(t) , λφ,k, ℓ. ∀ j < k,v. φ ℓ j v ↔ t φ j v

In words, a locationℓ is of type WRef(t) under heap environmentφ, if φ(ℓ) equalst
approximately, with index less thank.

Example 8.Let F0 = {ℓ0 : Even, ℓ1 : WRef(Even)}. Then “WRef(Even) (µF0) k ℓ0”
holds for anyk. To see this, for anyj < k andv, we have

(µF0) ℓ0 j v ↔ F0(ℓ0)(µF0) j v ↔ Even(µF0) j v

The first step is by lemma 6, and the second is by the definition of F0 at locationℓ0.
We can similarly show “WRef(WRef(Even)) (µF0) k ℓ1” holds. 2

Note that the definition of WRef(t) is more general than the “wref τ” type in SLw,
asτ is syntactically defined, whilet can be any (contractive) semantic predicate.

2 SinceF is contractive in the sense that “F(ℓ) φ k w” performs only calls toφ on arguments
smaller thank, it is easy to show by induction that any two fixed points ofF are identical;
therefore, the least fixed point ofF is also its greatest fixed point.

11

Heap allocation.We need an additional idea to cope with heap allocation in theweak
heap. Our indexed types take the fixed point of a semantic heaptypeF as an argument.
But F changes after heap allocation. For example, from

F = {ℓ0 : Even, ℓ1 : WRef(Even)} to F′ = {ℓ0 : Even, ℓ1 : WRef(Even), ℓ2 : Even},

afterℓ2 is allocated and initialized with an even number.
After a new heap location is allocated, any value that has type t before alloca-

tion should still have the same type after allocation. This is the monotonicity condition
maintained by type systems. To model it semantically, our idea is to quantify explicitly
outside of the model of types over all future semantic heap types and assert that the type
in question is true over the fixed point of any future semanticheap type.

First is a semantic notion of type-preserving heap extension fromF to F′:

Definition 9. F′ ≥ F ,

contractive(F′)∧ contractive(F)∧∀ℓ ∈ dom(F),φ,k,v. F′(ℓ) φ k v↔ F(ℓ) φ k v

Lemma 10. The relationF′ ≥ F is reflexive, anti-symmetric, and transitive (thus a par-
tial order).

Next, we define the consistency relation betweenh andF, and also a relation that
states a valuev is of typet underF. Both relations quantify over all future semantic
heap types, and require that the type in question be true overthe fixed point of any
future semantic heap type.

Definition 11. |= h : F , dom(h) ⊆ dom(F)∧∀ℓ ∈ dom(h).F |= h(ℓ) : F(ℓ)
F |= v : t , ∀F′ ≥ F.∀k. t (µF′) k v

With our model, the following theorem for memory operationscan be proved (please
see our technical report [15] for proofs).

Theorem 12.

(i) (Read) If|= h : F, andℓ ∈ dom(h), andF |= ℓ : WRef(t), thenF |= h(ℓ) : t.
(ii) (Write) If |= h : F, andℓ ∈ dom(h), andF |= ℓ : WRef(t), andF |= v : t, then

|= h[ℓ;v] : F.
(iii) (Allocation) If |= h : F, andF |= v : t, andcontractive(t), andℓ /∈ dom(F), then

|= h⊎{ℓ 7→ v} : F ⊎{ℓ 7→ t}.

3.2 Semantic model of SLw

To show the soundness of SLw, we define semantics for judgments in SLw and then
prove each rule as a lemma according to the semantics. Figure8 presents definitions
that are used in the semantics.

The semantics of types is unsurprising. In particular, the semantics of[[wref τ]] is
defined in terms of the predicate WRef(t) in Definition 7. All these types are contractive.
The semantics ofΨ andΓ is just the point-wise extension of the semantics of types.

The predicate “F,r,h |= p” interprets the truth of assertionp. Whenp is a standard
SL formula, the interpretation is the same as the one in SL. When p is {e : τ}, the

12

[[τ]] ∈ SemIType

[[int]] , λφ,k,v. ∃n.v = n. [[ref]] , λφ,k,v. ∃ℓ.v = ℓ. [[wref τ]] , WRef([[τ]])

[[Ψ]] ∈ Loc⇀ SemIType [[{ℓ1 : τ1, . . . , ℓn : τn}]] , {ℓ1 : [[τ1]], . . . , ℓn : [[τn]]}

[[Γ]] ∈ Var ⇀ SemIType [[{x1 : τ1, . . . ,xn : τn}]] , {x1 : [[τ1]], . . . ,xn : [[τn]]}

F,r,h |= p

F,r,h |= {e : τ} , F |= r(e) : [[τ]]
F,r,h |= emp , dom(h) = /0
F,r,h |= {e1 7→ e2} , dom(h) = r(e1) ∧ h(r(e1)) = r(e2)

F,r,h |= p1 ∗p2 , ∃h1,h2. (h = h1⊎h2) ∧ (F,r,h1 |= p1) ∧ (F,r,h2 |= p2)

F,r,h |= p1−∗p2 , ∀h1. ((dom(h1)∩dom(h) = /0) ∧ (F,r,h1 |= p1)) ⇒ (F,r,h1⊎h |= p2)

F |= r : Γ , ∀x∈ dom(Γ). F |= r(x) : [[Γ(x)]]
r,h |= F∗p , ∃h1,h2. (h = h1⊎h2) ∧ (dom(h1) = dom(F)) ∧ (|= h1 : F) ∧ (F,r,h2 |= p)

Fig. 8. Semantic definitions

interpretation depends onF. Notice that the interpretation of{e : τ} is independent of
the heap; it is a pure assertion (that is, it does not depend onthe strong heap).

The definition ofF |= r : Γ is the point-wise extension ofF |= v : t to local variable
types. The definition of “r,h |= F∗p” splits the heap into two parts. One for the weak
heap, which should satisfyF, and the other for the strong heap, which is specified byp.

With the above definitions, we are ready to define the semantics of the judgments in
SLw. The following definitions interpret “Ψ,Γ ⊢ e : τ”, “ ⊢ p ⇒ p′”, and
“⊢ {Γ, p}⇒ {Γ′, p′}”.

Definition 13.

Ψ,Γ |= e : τ , ∀F≥ [[Ψ]] . ∀r. F |= r : Γ ⇒ F |= r(e) : [[τ]].

|= p⇒ p′ , ∀F,r,h. (F,r,h |= p) ⇒ (F,r,h |= p′)

|= {Γ, p}⇒ {Γ′, p′} ,

∀F,r,h. (F |= r : Γ ∧ r,h |= F∗p) ⇒ (F |= r : Γ′ ∧ r,h |= F∗p′)

Now we are ready to interpretΨ ⊢ {Γ, p}~c {Γ′, p′}. Following Hoare Logic, we
define both partial and total correctness:

13

Definition 14. (Partial and total correctness)

Ψ |=p {Γ, p}~c {Γ′, p′} ,

∀F≥ [[Ψ]],r,h.
(

(F |= r : Γ) ∧ (r,h |= F∗p)
)

⇒
safe(r,h,~c) ∧
(

∀r′,h′. (r,h,~c) 7−→∗ (r′,h′,ε) ⇒∃F′ ≥ F. (F′ |= r′ : Γ′) ∧ (r′,h′ |= F′ ∗p′)
)

Ψ |=t {Γ, p}~c {Γ′, p′} ,

(Ψ |=p {Γ, p}~c {Γ′, p′}) ∧
(

∀F≥ [[Ψ]],r,h.
(

(F |= r : Γ) ∧ (r,h |= F∗p)
)

⇒ terminate(r,h,~c)
)

In the partial-correctness interpretation, it assumes a state that satisfies the condition
{Γ,p} and requires that the state be safe (see Definition 2 on page 4 for safety). In
addition, it requires that, for any terminal state after theexecution of~c, we must be
able to find a new semantic heap typeF′ so thatF′ ≥ F and the new state satisfies
{Γ′,p′}. Note thatF′ may be larger thanF due to allocations in~c. The total-correctness
interpretation requires termination in addition to the requirements of partial correctness.

Theorem 15. All rules in Figures 5, 6 and 7 are sound for both partial and total cor-
rectness.

The proof uses Theorem 12. It is largely straightforward andomitted. We refer
interested readers to our technical report [15] for the proof.

4 Related work

We discuss related work in three categories: (1) work related to language interoperation;
(2) work related to integrating SL with type systems; and (3)work related to semantic
models of types.

Most work in language interoperation focuses on the design and implementation
of foreign function interfaces. Examples are plenty. Givena multilingual program, one
natural question is how to reason about the program as a whole. This kind of reasoning
requires models, program analyzers, and program logics that can work across language
boundaries. Previous work has addressed the question of howto model the interopera-
tion between dynamically typed languages and statically typed languages [9], and the
interoperation between two safe languages when they have different systems of com-
putational effects [18]. By integrating SL and type systems, SLw can elegantly reason
about properties of heaps that are shared by high-level and low-level code.

Previous systems of integrating SL with type systems [11, 8]assume that programs
are well-typed according to a syntactic type system, and SL is then used as an add-
on to reason about more properties of programs. Hondaet al’s program logic [7, 20]
for higher-order languages supports reference types but also requires a separate type
system (in addition to the Hoare assertions); Reuset al [12] presented an extension of
separation logic for supporting higher-order store (i.e.,references to higher-order func-
tions), but their logic does not support weak heaps which we believe embodies the key
feature of reference types (i.e., the ability to perform safe updates without knowing the

14

exact aliasing relation). Compared to previous systems, SLw targets the interoperation
between high-level and low-level code. It allows cross-boundary references and mixes
SL formulas and types.

The soundness of SLw is justified by defining a semantic model, notably for types.
Ahmed [1] and Appelet al [3] presented a powerful index-based semantic model for a
rich type system with ML-style references. They rely on constructing a “dependently
typed” global heap type to break the circularity discussed in Section 3. Our current
work, in contrast, simply takes a fixed point of the recursively defined heap type pred-
icate and avoids building any dependently typed data structures. Our work also differs
from theirs in that we are reasoning about reference types ina program logic. Appel
et al. [3] can also support impredicative polymorphism which is not addressed in our
current work.

5 Discussion and future work

This work aims toward a framework for reasoning about language interoperation, but
a lot remains to be done. A realistic high-level language contains many more language
features and types. We do not foresee much difficulty in incorporating language features
and types at the logic level as their modeling is largely independent from the interaction
between weak and strong heaps. One technical concern is how to extend our semantic
model to cover a complicated type system, including function types and OO classes.

SLw does not formally consider the effect of a garbage collector. A garbage collec-
tor would break the crucial monotonicity condition of the weak heap that our semantic
model relies on. We believe a possible way to overcome this problem is to use a region-
based type system [17]. A garbage collector would also implythat there cannot be
direct references from strong heaps to weak heaps; an extra level of indirection has to
be added.

6 Conclusion

In his survey paper of Separation Logic [13], Reynolds asked“whether the dividing line
between types and assertions can be erased”. This paper adds evidence that the type-
based approach has its unique place when ensuring safety in weak heaps and when rea-
soning about the interaction between weak and strong heaps.The combination of types
and SL provides a powerful framework for checking safety andverifying properties of
multilingual programs.

Acknowledgments

We thank anonymous referees for suggestions and comments onan earlier version of
this paper. Gang Tan is supported in part by NSF grant CCF-0915157. Zhong Shao is
supported in part by a gift from Microsoft and NSF grants CCF-0524545 and CCF-
0811665. Xinyu Feng is supported in part by NSF grant CCF-0524545 and National
Natural Science Foundation of China (grant No. 90818019)

15

References

[1] A. J. Ahmed.Semantics of Types for Mutable State. PhD thesis, Princeton University, 2004.
[2] A. W. Appel and D. McAllester. An indexed model of recursive types for foundational

proof-carrying code.ACM Trans. on Prog. Lang. and Sys., 23(5):657–683, 2001.
[3] A. W. Appel, P.-A. Mellies, C. D. Richards, and J. Vouillon. A very modal model of a

modern, major, general type system. InPOPL ’07, pages 109–122. ACM Press, Jan. 2007.
[4] M. Furr and J. S. Foster. Checking type safety of foreign function calls. ACM Trans.

Program. Lang. Syst., 30(4):1–63, 2008.
[5] R. Harper. A simplified account of polymorphic references. Information Processing Letters,

57(1):15–16, 1996.
[6] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):578–580, October 1969.
[7] K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic for

imperative higher-order frame rules. InLICS ’05, pages 270–279, June 2005.
[8] N. Krishnaswami, L. Birkedal, J. Aldrich, and J. Reynolds. Idealized ML and its separation

logic. July 2007.
[9] J. Matthews and R. B. Findler. Operational semantics formulti-language programs. In

Proc. 34th ACM Symp. on Principles of Prog. Lang., pages 3–10, 2007.
[10] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data

structures. InComputer Science Logic, pages 1–19, 2001.
[11] M. Parkinson.Local reasoning for Java. PhD thesis, University of Cambridge Computer

Laboratory, Oxford, Nov. 2005. Tech Report UCAM-CL-TR-654.
[12] B. Reus and J. Schwinghammer. Separation logic for higher-order store. In20th Interna-

tional Workshop on Computer Science Logic (CSL), pages 575–590, 2006.
[13] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. InProc.

LICS’02, pages 55–74, July 2002.
[14] G. Tan and J. Croft. An empirical security study of the native code in the JDK. In17th

Usenix Security Symposium, pages 365–377, 2008.
[15] G. Tan, Z. Shao, X. Feng, and H. Cai. Weak updates and separation logic. http://www.

cse.lehigh.edu/∼gtan/paper/WUSL-tr.pdf, June 2009.
[16] M. Tofte. Type inference for polymorphic references.Inf. and Comp., 89(1):1–34, 1990.
[17] M. Tofte and J.-P. Talpin. Region-based memory management. Information and Computa-

tion, 132(2):109–176, 1997.
[18] V. Trifonov and Z. Shao. Safe and principled language interoperation. In8th European

Symposium on Programming (ESOP), pages 128–146, 1999.
[19] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.Information and

Computation, 115(1):38–94, 1994.
[20] N. Yoshida, K. Honda, and M. Berge. Logical reasoning for higher-order functions with

local state. InFoSSaCS, pages 361–377, March 2007.

16

