Weak updates and separation logic

Gang Tan, Zhong Sha, Xinyu Feng, and Hongxu C#i

1| ehigh University2Yale University
3Toyota Technological Institute at ChicadGoogle Inc.

Abstract. Separation Logic (SL) provides a simple but powerful teghei for
reasoning about imperative programs that use shared datauses. Unfortu-
nately, SL supports only “strong updates”, in which mutatio a heap location
is safe only if a unique reference is owned. This limits thpliaability of SL
when reasoning about the interaction between many high-lamguages (e.g.,
ML, Java, C#) and low-level ones since these high-leveldaggs do not support
strong updates. Instead, they adopt the discipline of “wgadates”, in which
there is a global “heap type” to enforce the invariant of tppeserving heap up-
dates. We present &{, a logic that extends SL with reference types and elegantly
reasons about the interaction between strong and weakagdse also describe
a semantic framework for reference types; this frameworlsisd to prove the
soundness of SY.

1 Introduction

Reasoning about mutable, aliased heap data structureseisties for proving properties
or checking safety of imperative programs. Two distinctrapghes perform such kind
of reasoning: Separation Logic, and a type-based appraaptoged by many high-
level programming languages.

Extending Hoare Logic, the seminal work of Separation Lt [10, 13]) is a
powerful framework for proving properties of low-level im@tive programs. Through
its separating conjunction operator and frame rule, SL suppocal reasoning about
heap updates, storage allocation, and explicit storagéodaton.

SL supports “strong updates”: as long as a unique refereree@éap cell is owned,
the heap-update rule of SL allows the cell to be updated withvalue:

{(e~—)p}[e] :=€{(e—€)xp} (1)

In the above heap-update rule, there is no restriction onéievaluee’. Hereafter, we
refer to heaps with strong updatessa®ng heapsHeap cells in strong heaps can hold
values of different types at different times of program estem.

Most high-level programming languages (e.g., Java, C#Mindhowever, support
only “weak updates”. In this paradigm, programs can perfonty type-preserving
heap updates. There is a global “heap type” that tells the tfvery allocated heap
location. The contents at a location have to obey the piesdiiype of the location in
the heap type, at any time. Managing heaps with weak upda@g@simple and type-
safe mechanism for programmers to access memory. As an é&xasuppose an ML

variable has typet'ref” (i.e., it is a reference to a value of typg. Then any update
through this reference with a new value of typis type safe and does not affect other
types, even in the presence of aliases and complicatedspminélations. Hereafter, we
refer to heaps with weak updatesvasak heaps

This paper is concerned with the interaction between st weak updates.
Strong-update techniques are more precise and powernlyialy destructive mem-
ory updates and explicit deallocation. But aliases and uamgss have to be explic-
itly tracked. Weak-update techniques allow type-safe rgament of memory without
tracking aliases, but types of memory cells can never chah@@amework that mixes
strong and weak updates enables a trade-off between preeisd scalability.

Such a framework is also useful for reasoning abuuttilingual programs Most
real-world programs are developed in multiple programmargguages. Almost all
high-level languages provide foreign function interfatmsinterfacing with low-level
C code (for example, the OCaml/C FFI, and the Java Nativafate). Real-world
programs consist of a mixture of code in both high-level awd-level languages. A
runtime state for such a program conceptually contains aruof a weak heap and a
strong heap. The weak heap is managed by a high-level landeay, Java), accepts
type-preserving heap updates, and is garbage-collectetisifong heap is managed
by a low-level language, accepts strong updates, and ifs¢eds are manually recol-
lected. To check the safety and correctness of multilinguagrams, it is of practical
value to have one framework that accommodates both strashgraak updates.

Since Separation Logic (SL) supports strong heaps, onaaidghought to mix
strong and weak updates is to extend SL with types so thatt@assecan also de-
scribe weak heaps. That is, in addition to regular SL assestiwe adde— t}, which
specifies a heap with a single cell and the cell holds a valugp&ETt. This scheme,
however, would encounter two challenges.

First, allowing general reference types{ia— 1} would make SL unsound. An
example demonstrating this point is as follows:

{{x+ 4} x{y— evenref}} [x] ;=3 {{x— 3}« {y+— evenref}} 2

The example is an instantiation of the heap-update rule)imuftl uses the additional
assertion{e— 1}. The precondition states thapoints to a heap cell whose contents
are of type ¢tven ref” (i.e., a reference to an even integer). Therefore, thegréition

is met on a heap whesepoints tox. However, the postcondition will not hold on the
new heap after the update becauseill point to an odd number. Therefore, the above
rule is sound only ify does not point to.

The second challenge of adding types to SL is how to proveoitsidness with
mixed SL assertions and types. Type systems are usuallegresund following a
syntactic approach [19], where types are treated as syRtdbowing the tradition of
Hoare Logic, SL's soundness is proved through a denotdtmodel, and SL assertions
are interpreted semantically. There is a need to resolvedh#ict between syntactic
and semantic soundness proofs.

In this paper, we propose a hybrid logic, %L which mixes SL and a type system.
Although the logic is described in a minimal language ane tyystem, it makes a solid
step toward a framework that reasons about the interacétwden high-level and low-
level languages. The most significant technical aspectsedbyic are as follows:

(Command ¢ ::= --- | x:=[€] | [x] :=e]| x:= alloc(e) | free(e)
(Expression e ::= x|v|op(ey,...,en)
(Valug v ::=n|¢

Fig. 1. Language syntax

— SLW extends SL with a simple type system. It employs SL for reempabout
strong updates, and employs the type system for weak updédssinterestingly,
SLW mixes SL assertions and types, and accommodates crossidrgysointers
(from weak to strong heaps and vice versa). This is achieyat#tically maintain-
ing the distinction between pointers to weak heaps and @airib strong heaps.
SLW is presented in Section 2.

— To resolve the conflict between syntactic types and semassertions, we pro-
pose a semantic model of types. Our model of reference tyhles/s a fixed-point
approach and allows us to define a denotational model ¥f &td prove its sound-
ness. The model of St is presented in Section 3.

2 SLW: Separation logic with weak updates

We next describe S¥, an extension of SL that incorporates reasoning over weapshe
In Section 2.1, we describe a minimal language that enalslés develop SYY. Rules
of SLW are presented in Section 2.2 and examples of using the lo@edtion 2.3.

We first describe some common notations. For a iape write f [x~y] for a new
map that agrees with except it mapg toy. For two finite mapd; andf,, f1w fz is the
union of f; and f, when their domains are disjoint, and undefined otherwisewvite
f\ X for a new map after removing elements{rfrom the domain off. We writeX for
a sequence ofs ande for an empty sequence.

2.1 Language syntax and semantics

Figure 1 presents the syntax of the programming languagéhiohave will develop
SLY. The language is the imperative language used by Hoare (i§manted with a
set of commands for manipulating heap data structures.dimdar to the one used
in Reynolds’ presentation of SL [13]. Informally, the commda‘x := [€]” loads the
contents at locatior into variablex; “[x] := € updates the location atwith the value
€, “x := alloc(e)” allocates a new location, initializes it wite, and assigns the new
location tox; “free(e)” deallocates the locatioa

In the syntax, we use for integersx for variables/ for heap locations, anolp for
arithmetic operators. We assume there is an infinite number@bles and locations.

Figure 2 presents a formal operational semantics of theukzge A state consists
of a mapr from variables to values, a hehpand a sequence of commands. Commands
bring one state to another state and their semantics is fiyrdedined by a step relation
— . We write —* for the reflexive and transitive closure ef— .

A state may have no next state, i.e., “getting stuck”. Fongxa, a state whose next
instruction to execute ix| := e gets stuck whemn does not represent a location or the

(Stateg s ::= (r,h,©)
(Localg r ::= Var — Value
(Heap h:i={l1+—v1,....0n+—Vn}

(I‘, h,C' C_El.) — (127 h2762)
if c= then(rp,hy,) =
x. :': e (r[x~ h(E)j,.H, C1) whenr(e) = ¢ and/ € dom(h)
X:=e (z,h[¢~zx(e)],c1) whenr(x) = ¢ and/ € dom(h)
x:=alloc(e)| (r[x~{,hw{l+— r(e)},c1) whent¢dom(h)
free(e) (r,h\{¢},¢c1) whenr(e) = ¢ and/ € dom(h)
r(X) whene = x
wherer(e) = { v whene=v
op(z(ey),...,r(en)) whene=op(ey,...,en)

Fig. 2. Operational semantics

location is not in the domain of the state’s heap. A state esraihal state when the
sequence of commands is empty.

Definition 1. (Stuck and terminal states)

stucks) £ (3¢.s+——9)
terminal~,h,¢) £ C=¢

Below we define the usual notions of safety and termination:
Definition 2. (Safety and termination)
safgs) £ vs. ((s—*9) A —termina(s)) = 35". 8 —— §"

terminatés) = vs.s——*g = 35". § ——* &' A terminals’)

2.2 The logic SIW

Figure 3 presents assertions and types used i{. issertions in SV include all
formulas in predicate calculus (not shown in the figure), alh8L formulas. The only
additional assertion form in S¥is {e: T}, which denotes thathas typer.

SLY is equipped with a simple type system that classifies ingeged locations.
Although the type system does not include many types in kgl languages, by
including reference types itis already sufficient to shoteriesting interactions between
strong and weak heaps. Reference types are the most compemwhen high-level
languages interoperate with low-level languages becauti@s setting most data are
passed by references.

(Assertion p ::

(Type 1 =

(HeapType W ::
(LocalVarType I ::

- |emp | {e1— ez} | p1 P2 | P 4P | [{e: T}

int | ref | wref T
{l1:11,...,n:Tn}
{X1:10,..., %0 1 Tn}

Fig. 3. Assertions and types

Yr ket

x € dom(I") I -
W - x:M(x) YT Fn:int W 2 ref
W) =1 Vie[l.n.WT F g:int
W ECowreft W.I + op(eq,...,en) :int

Fig. 4. Typing rules for expressions

Typeint is for all integers andef for all locations. Type Wref t” is for locations in
a weak heap, but not in a strong heap. A heap tyfells the type of every location in
a weak heap; mathematically, it is a finite map from locatiortypes. Given heap type
Y, location? has type tref 1" if W(¢) equalst. A local variable typerl, tells the type
of local variables.

Figure 4 presents typing rules for expressions, which aseigmising. Notice that
the typing rule for Wref T requires that the locatiofis in the domain of the heap type
W andW(¢) has to be the same asThis rule and the later weak-update rule enforce
type-preserving updates on weak heaps.

The following schematic diagram helps to understand tfaiogiship between weak
heaps, strong heaps, local variables, assertions andusakinds of types in S{':

r:I’ L —
Q hw!V
A ! ___~—> wref(), ref
\“ \ '.: o= ref
\‘~~ I ;
>,' - hs:p
v-'.

As shown in the diagram, 9\ conceptually divides a heap into a weak hégap
and a strong heam,. The weak heap is specified by a heap ti#eand the strong heap
by SL formulap. Pointers to weak-heap cells (in solid lines) have typeef 17 or ref.
Pointers to strong heap cells (in dotted lines) can have typlgref.

Figure 5 presents rules for checking commands. These rgleshe judgment
W+ {r, p} €{I’, p'}. In this judgment¥, I andp are preconditions and specify
conditions on the weak heap, local variables, and the stneag respectively. Postcon-

[(T p)y (. p)| (Wel-formed statements)

YT k-emref WIEyit

U eyl = [T heotl xmyafeng) oA
wherex ¢ FV(e)
W.I = X:ref
VF I W = el e} TUPPATE)
W+ {I', emp} x:=alloc(e) {I [x~~ref], {x e}} (s-ALLOC)
wherex ¢ FV(e)
W,I F e:ref (s-rreg)

W {l, {e— —}}free(e) {I', emp}

WAl prc{l’, p}
W {T, pxp} C{I", P *p1}
where no variable occurring free i is modified byc

(FRAME)

T THE WORLD OF STRONG HEAPS

| THE WORLD OF WEAK HEAPS

YT+ e:wreft
W F I, emp} x:=[¢] {[[x~T], emp}

(W-LOAD)

WTIEx:wreft WIEe:t
W+ {I, emp} [x :=e{l, emp}

(W-UPDATE)

Yrre:t
W+ {I', emp} x:=alloc(e) {I' [x~>wref 1], emp}

(w-ALLOC)

Fig. 5. Rules for commands (Rules for assignments, condition&rsients, loops, and sequenc-
ing are the same as the ones in Hoare Logic and are omitted.)

ditions arel"” andp’; they specify conditions on local variables and the stroegyphof
the state after executirg) Readers may wonder why there is no postcondition speci-
fication of the weak heap. As common in mutable-reference systems, the implicit
semantics of the judgment is that there exists an extendag type’ O W and the
weak heap of the poststate should satigfyln terms of type checking, the particukif
does not matter. The formal semantics of the judgment wipiesented in Section 3.

Rules in Figure 5 are divided into two groups. One group igtierworld of strong
heaps, and another for the world of weak heaps. The rulesrfmigsheaps are almost
the same as the corresponding ones in standard SL, exceftefialso update when
necessary.

The rules for weak heaps are the ones that one would usuatlyirfia type sys-
tem for mutable-reference types. The weak-update wi@PDATE requires that the

Operational semantics: (r,h,s2w(x) - €) — (r,h,T)

WT = x:ref WIEe:t
Wk {T, {x— e}} s2w(x) {T [x~wref 1], emp} °

Rule: 2W

Fig. 6. Rule for converting a location from the strong heap to thelwesap

= {r/ ; pa_} = {r17 pl} W {r17 pl} 6{r27 pZ} + {r27 Pz} = {r/z p’Z}
W F {1, P €T, P}

WEAKENING

|- (T o} = {7, P}

Fp=7p
FTR e A e T e AL

Fig. 7. Weakening rules

pointer be of type Wref 17, and that the new value be of tyge This rule enforces
type-preserving updates. Once these conditions Hol&mains unchanged after the
update. Notice in this rule there is no need to understanaragpn and aliases as the
S-UPDATE rule does. Thev-ALLOC rule does not need to extend the heap tpbe-
cause¥ is only a precondition. When proving the soundness of thes mé need to find

a newW’ that extend$ and is also satisfied by the new weak heap after the allocation
Finally, there is no rule fofree(e) in the world of weak heaps. Weak heaps should be
garbage-collected.

Figures 6 and 7 present some rules that show the interacéitmekn weak and
strong heaps. Figure 6 adds a new instructsfiw/(x)” for converting a location from a
strong heap to a weak heap. Operationally, this instruési@no-op (so it is an anno-
tation, rather than a “real” instruction). Its typing rulwever, involves transforming
the ownership in the strong heap to a pointer of weak-retergypes. Notice that there
is no rule for converting a location from the weak heap to theng) heap; this is similar
to deallocation in weak heaps and requires the help of garbaligctors.

Figure 7 presents weakening rules. Rul& converts type information ifi to in-
formation in assertiop. This is useful since information in might be overwritten due
to assignments to variables. One of examples in later sectidl show the use of this
rule. Rulew?2 uses the premise p = p’; any valid SL formule = p’ is acceptable.

2.3 Examples

We now show a few examples that demonstrate the use ¥f $ithese examples,
we assume an additional typeen for even integers. For clarity, we will also annotate

1 We do not formally consider the interaction between gartafjectors and weak heaps. When
considering a garbage collector, %lhas to build in an extra level of indirection for cross-
boundary references from strong heaps to weak heaps assobj@eak heaps may get moved
(this is how the JNI implements Java references in native)calfe leave this as future work.

the allocation instruction to indicate whether the allcmahappens in the strong heap
or in the weak heap. We write := allocs(e) for a strong-heap allocation. We write
x := allocy r(€) for a weak-heap allocation, and the intended typeefds 1. These
annotations help in guiding the type checking ot'6L

The first example shows how the counterexample in the intrbalu (formula (2)
on page 2) plays out in L. The following program first initializes the heap to a form
such that points to a location of typewref even” and x points to 4, and then performs
a heap update through The whole program is checkable in $lwith respect to any
heap type (remember the heap type specifiedriitel weak heap). Below we also
include conditions of the forml™, p” between instructions.

{}, emp
z:= allocy even(2)
{z: wref even}, emp

y := allocs(2)
{y:ref,z: wref even}, {y— z} by rule (w1l)
{y :ref,z: wref even}, {y— z} A {z: wref even} by rule (w2)
{y:ref,z: wref even}, 3v. {y+— v} A{v:wref even}

z:=0
{y:ref,z:int}, Iv. {y+— v} A{v:wrefeven}

x:= allocs(4)
{x:refy:ref,z:int}, Iv. ({y— v} A{v:wref even}) x {x+— 4}

[X]:=3

{x:ref,y:ref,ziint}, Iv. ({y— v} A{v:wrefeven})x {x— 3}

Different from the counterexample, the condition beford “E 3” limits wherey can
point to. In particulary cannot point tax because (1) by the type gf variabley must
point to a weak-heap location; (yepresents a location in the strong heap. Therefore,
the update throughk does not invalidate the type ®f We could easily construct an
example wherg indeed points tx. But in that case the type @fwould beref, which
would also not be affected by updates throvgh

One of the motivations of St is to reason about programs where code in high-level
languages interacts with low-level code. Prior researcth44has shown that it is error
prone when high-level code interoperates with low-leveleedAll kinds of errors may
occur. One common kind of errors occurs when low-level codk&en type misuses of
references that point to objects in the weak heap. For instan the JNI, types of all
references to Java objects are conflated into one type ivenatide—jobject. Con-
sequently, there is no static checking of whether nativeames these Java references
in a type-safe way. Type misuses of these Java referencagsalhin silent memory
corruption or unexpected behavior.

The first example already demonstrates how'Snables passing pointers from
high-level to low-level code. In the example, the first atition is on the weak heap and
can be thought of as an operation by high-level code. Therlpttation is passed to the
low level by being stored in the strong heap. Unlike foreigndtion interfaces where
types of cross-boundary references are conflated into ¢esiyge in low-level code,
SLW can track the accurate types of those references and egpbledfety.

The next example demonstrates how low-level code canlia#éia data structure in
the strong heap, and then transfer that structure to the ek so that the structure is
usable by high-level code.

{}, emp
X := allocs(4)

{x:ref}, {x— 4}
y := allocs(X)

{x:refy:ref}, {x— 4} x{y— x}
s2w/(X)

{x: wref even,y: ref}, {y+— x}
s2w(y)

{x: wref even,y : wref (wref even)}, emp

3 Soundness of SV

Soundness of S¥ is proved by a semantic approach. We first describe a semantic
model for weak-reference types. Based on this model, sécsawit various concepts

in SLW are defined. Every rule in $Lis then proved as a lemma according to the
semantics.

3.1 Modeling weak-reference types

Intuitively, a type is a set of values. This suggests thatraasic type should be a
predicate of the metatyp&alue— Prop’. However, this idea would not support weak-
reference types. To see why, let us examine a naive modekwivesf T’ in a heap

h would denote a set of locatiorfssuch thath(¢) is of typet. This simple model is
unfortunately unsound, which is illustrated by the follagiexample:

1. Create areference of typaref even”, and let the reference be

2. Copyx toy. By the naive model, a reference of typeréf even” also has type
“wref int” (because an even number is also an integer). wetfint” be the type of
y.

3. Update the reference throughwith an odd integer, say 3. Ag has the type
“wref int”, updating it with an odd integer is legal.

4. Dereference. Alas, the dereference returns 3, although the typg iofiplies a
result of an even number!

The problem with the naive model is that, with aliases,|idves inconsistent views
of memory. In the foregoing examplg,andy have inconsistent views on the same
memory cell. To address this problem,%ses a heap typ# to type check a location.
This follows the approach of Tofte [16] and Harper [5]. An eyde W is as follows:

W= {{lo:even, {1:int, {2 :wrefeven, ¢3: wrefint} 3)

A heap type¥ helps to define two related concepts, informally statedvieétbeir
formal semantic definitions will be presented in a moment):

(i) Alocation/ is of type ‘wref 1" if and only if W(¢) equalst.

(i) A heaph is consistent with¥ if for every ¢, the valueh(¢) has typeW(¢). For
the exampl@éb, it means thah(¢p) should be an even numbéi/1) should be an
integer,h(¢2) should be of typewref even”, ...

The heap typ& prevents aliases from having inconsistent views of the hislégses
have to agree on their types because the types have to adghethavtype ind. In par-
ticular, the example showing the unsoundness of the nabdehwould not work in the
above model because, in step 3 of the exampdannot be cast from typevtef even”
to “wref int”: type “wref even” implies thatW(y) = even, which is a different type from
int.

A subtlety of the above model is the denotation aféf " depends on the heap
type W, but isindependenof the heaph. A weak-reference type is connected to the
heaph only indirectly, through the consistency relation betwbemd¥.

Example 3.Let h = {{p — 4, {1 — 3, {2 — Lo, {3+— (1}. It is consistent with the
exampleW in (3). To see this, 4 at locatiofy is an even number and 3 at locatién
is an integer. At locatior, g is of type ‘wref even” because, by (i), this is equivalent
to W(¢p) = even—a true statement. Similarly, the valde at location/s is of type
“wref int”. O

Formalizing a set of semantic predicates following (i) arddirectly, however,
would encounter difficulties because of a circularity in thedel: by (i), W is a map
from locations to types; by (i), the model of types takéss an argumenti is nec-
essary to decide if a location belongs teréf 1. If defined naively, the model would
result in inconsistent cardinality, as described by Ahnidd [

We next propose a fixed-point approach. We rewrite the hgagWyas a recursive
equation. After addingf as an argument to types, the example in (3) becomes:

W= {lo:even(W), {1 :int(V¥), L2 : (wref even)(W), l3: (wrefint)(W)} 4)

Notice thatW appears on both the left and the right side of the equatione®ris
written as a recursive equation, it follows that any fixedof the following functional
is a solution to the equation (4):

AW.{lo:even(W), {1 :int(W), £2: (wref even) (W), £3: (wrefint)(W)} (5)

To get a fixed point of (5), we follow the indexed model of restue types by Appel
and McAllester [2]. We first introduce some domains:

(SemHeapTypeF € Loc— SemlType
(SemIType t € SemHeapEmw Nat— Value— Prop
(SemHeapEnve € Loc— Nat— Value— Prop

We useF for a semantic heap type (it is the metatype of the denotafibrap types,

as we will see). It maps locations to indexed types. An imgarpoint is that fronF
we can define\@,¢. F(¢) @, which has the metatyp8emHeapEnv- SemHeapEnv

10

Therefore, a semantic heap type is effectively a functismailar to the one in (5), and
a fixed point off is of the metatyp&emHeapEnv

A semantic typet is a predicate over the following argumengsis a semantic
heap environment is a natural-number index; is a value. The heap environment
@ € SemHeapEnis used in our model of WRéf) to constrain reference types. The
index k comes from the indexed model and is a technical device thaltles us to
define the fixed point of a semantic heap type

Following the indexed model, we introduce a notion of coctiveness.

Definition 4. (Contractiveness)
contractive(F) £ V¢ € dom(F). contractive(F(¢))
contractive(t) Vo k, j <k V. (t@jv) < (t (approx(k,@)) j V)
approx(k,@) = AL j,V. j <kKA@I jv.

1> 11

We define(OF) = A@,¢. F(¢) @ That is, it turnsF into a functional of type
SemHeapEnw- SemHeapEnv

Theorem 5. If contractive(F), then the following Eis the least fixed poiRbf the func-
tional (O F):
WF 2 Akv. (OF)Y(1L) fky,
where L = A/, k, V. false, and (0 F)¥+1 applies the functional k- 1 times.
The theorem is proved by following the indexed model of remar types [2]. We

present the proof in our technical report [15].
The following lemma is an immediate corollary of Theorem 5.

Lemma 6. For any contractiver, any/,k,v, we have(F(¢) (UF) k V) < ((WF)(¢) k v)
Most of the semantic types ignore thargument. For example,

Even £ A@k,v.Ju.v=2xu.

We use capitalized Even to emphasize that it is a predicatizad of the syntactic type
even. The model of weak-reference types uses the argument
Definition 7. WRef(t) £ A@k (. Vj<KV.Qljvet@jv

In words, a locatior? is of type WReft) under heap environmeny if ¢(¢) equalst
approximately, with index less than

Example 8.Let Fo = {{o : Even /1 : WRef(Even}. Then “WRefEven) (pFo) k 40"
holds for anyk. To see this, for any < k andv, we have

(MFo) Lo j V < Fo(fo)(UFo)j v « Even(uFo) j v

The first step is by lemma 6, and the second is by the definifiéig at location/o.
We can similarly show “WRé&WRef(Even)) (UFo) k £1” holds. O

Note that the definition of WRét) is more general than thevtef 1" type in SLYW,
ast is syntactically defined, while can be any (contractive) semantic predicate.

2 SinceF is contractive in the sense that(?) @ k w’ performs only calls tap on arguments
smaller thark, it is easy to show by induction that any two fixed pointsFodre identical;
therefore, the least fixed point Bfis also its greatest fixed point.

11

Heap allocation.We need an additional idea to cope with heap allocation imisak
heap. Our indexed types take the fixed point of a semantic typa as an argument.
But F changes after heap allocation. For example, from

F = {lo:Even /1 : WRef(Even} to F' = {{y: Even /1 : WRef(Even),/(, : Ever},

after/s is allocated and initialized with an even number.

After a new heap location is allocated, any value that has typefore alloca-
tion should still have the same type after allocation. Taithe monotonicity condition
maintained by type systems. To model it semantically, oeaid to quantify explicitly
outside of the model of types over all future semantic heppgyand assert that the type
in question is true over the fixed point of any future semamgiap type.

First is a semantic notion of type-preserving heap exterfsamF to F’:

Definition9. F >F £
contractive(F) A contractive(F) AV{ € dom(F),@,k,v. F'(£) ok v F(¢) ok v

Lemma 10. The relationF’ > Fis reflexive, anti-symmetric, and transitive (thus a par-
tial order).

Next, we define the consistency relation betwbeandF, and also a relation that
states a valug is of typet underF. Both relations quantify over all future semantic
heap types, and require that the type in question be truetbeefixed point of any
future semantic heap type.

Definition 11. =h:F £ dom(h) C dom(F) AV/ € dom(h).F = h(¢) : F(¢)
FEV:t = VF >FVk t (WF)kv

With our model, the following theorem for memory operaticas be proved (please
see our technical report [15] for proofs).

Theorem 12.

(i) (Read) If=h:F, and?¢edomh), andF|=¢: WRef(t), thenF=h(¢): t.
(i) (Write) If =h: F, and¢ € domh), andF = ¢ : WRef(t), andF = v: t, then
Eh[l~V]: F.
(iii) (Allocation) If =h: F,andF}=v: t, andcontractive(t), and? ¢ dom(F), then
Ehu{l—v}:FU{l— t}.

3.2 Semantic model of SV

To show the soundness of ¥l we define semantics for judgments in¥6land then
prove each rule as a lemma according to the semantics. Rigpresents definitions
that are used in the semantics.

The semantics of types is unsurprising. In particular, gm@antics offwref 1] is
defined in terms of the predicate WRigfin Definition 7. All these types are contractive.
The semantics d¥ andr is just the point-wise extension of the semantics of types.

The predicate¥,r,h = p”interprets the truth of assertign Whenp is a standard
SL formula, the interpretation is the same as the one in SLeWhis {e: 1}, the

12

[[t] € SemIType

[int] £ A@k,v. In.v=n. [ref] £ A@k,v. 3t.v=". [wref 1] £ WRef([[1])
(%] € Loc— SemiTypé (ORI yG VAR 3y OARY %
(1] € Var — SemiTypé [0 T2 X0 T} 2 {0 [Tl X [}

F,r,h = {e:1} £ Fl=x(e) : 1]

F,r,h = emp £ dom(h) =0

Fr,h = {e1— e} = domh) =xr(e1) A h(x(e1)) =x(e2)

F,r,h |: P1*P2 £ Jhy, hy. (h: hlth) A (ervhl ‘: pl) A (F,I‘,hz |: Pz)

F,r,h |: P1 P2 £ vhy. ((dorn(hl)mdom(h) 20) A (ervhl |: pl)) = (ervhlwh ‘: Pz)

Fler:IT 2 ¥xcdom(l).Fl=x(X):[[(X)]
r,h = Fxp £ 3hg,hy. (h=hywhy) A (dom(hy) = dom(F)) A (=hy:F) A (F,r,hp = p)

Fig. 8. Semantic definitions

interpretation depends dn Notice that the interpretation dk: 1} is independent of
the heap; it is a pure assertion (that is, it does not depetldeostrong heap).

The definition ofF = r : I is the point-wise extension &f[= v : t to local variable
types. The definition of#,h = Fxp” splits the heap into two parts. One for the weak
heap, which should satis; and the other for the strong heap, which is specified.by

With the above definitions, we are ready to define the sensatithe judgments in
SLW. The following definitions interpret W.I + e: 1", “+ p = p”, and

AT ph= (TP |

Definition 13.

Wl Eet12VF>[V].Vr Fer:T = FkEre): [t
Ep=9p &2 VFnrh (FrhkE p) = (Fnrh})

h.
F AT, pt = {1, P}
A

N
VE,rh (FEr:T Arh | Fxp)= (FEr:T" A rh | Fxp)

Now we are ready to interpré! = {I', p} €{I"’, p'}. Following Hoare Logic, we
define both partial and total correctness:

13

Definition 14. (Partial and total correctness)

W):P {ra P} 6{r/’ P/} £
VE> [W], mh. ((F': r:[)A(r,h E F*p)) =
safer,h,C) A
(V’r’,h’. (rh)—* (W e)=3F >F (FEZ:T) A (PN E F’*p'))

W):t {ra p} 6{r/7 p/} £
(LP |:p {rv P} é{rlv pl}) A
(VF>[W],nh. (FE=r:T) A (r,h = Fxp)) = terminatér, h,c))

In the partial-correctness interpretation, it assumesg ¢hat satisfies the condition
{I',p} and requires that the state be safe (see Definition 2 on page gafety). In
addition, it requires that, for any terminal state after &xecution ofc, we must be
able to find a new semantic heap tyPeso thatF’ > F and the new state satisfies
{I'",p’}. Note that’ may be larger thaf due to allocations i@. The total-correctness
interpretation requires termination in addition to theuiegments of partial correctness.

Theorem 15. All rules in Figures 5, 6 and 7 are sound for both partial andatccor-
rectness.

The proof uses Theorem 12. It is largely straightforward andtted. We refer
interested readers to our technical report [15] for the proo

4 Related work

We discuss related work in three categories: (1) work rdlaiéanguage interoperation;
(2) work related to integrating SL with type systems; andw8jk related to semantic
models of types.

Most work in language interoperation focuses on the desighimplementation
of foreign function interfaces. Examples are plenty. Giganultilingual program, one
natural question is how to reason about the program as a whuikekind of reasoning
requires models, program analyzers, and program logits#mawork across language
boundaries. Previous work has addressed the question ofchowdel the interopera-
tion between dynamically typed languages and staticapgdylanguages [9], and the
interoperation between two safe languages when they hé#fegedit systems of com-
putational effects [18]. By integrating SL and type syste8isV can elegantly reason
about properties of heaps that are shared by high-levelandelvel code.

Previous systems of integrating SL with type systems [1&s8lime that programs
are well-typed according to a syntactic type system, andsthen used as an add-
on to reason about more properties of programs. Hatdds program logic [7, 20]
for higher-order languages supports reference types batrafuires a separate type
system (in addition to the Hoare assertions); Retusl [12] presented an extension of
separation logic for supporting higher-order store (r&ferences to higher-order func-
tions), but their logic does not support weak heaps which @liele embodies the key
feature of reference types (i.e., the ability to perfornesgidates without knowing the

14

exact aliasing relation). Compared to previous system¥, Birgets the interoperation
between high-level and low-level code. It allows cross+mtary references and mixes
SL formulas and types.

The soundness of $Lis justified by defining a semantic model, notably for types.
Ahmed [1] and Appett al[3] presented a powerful index-based semantic model for a
rich type system with ML-style references. They rely on ¢oriting a “dependently
typed” global heap type to break the circularity discusse&éction 3. Our current
work, in contrast, simply takes a fixed point of the recuryidefined heap type pred-
icate and avoids building any dependently typed data strest Our work also differs
from theirs in that we are reasoning about reference typ@sprogram logic. Appel
et al.[3] can also support impredicative polymorphism which i$ addressed in our
current work.

5 Discussion and future work

This work aims toward a framework for reasoning about lagguateroperation, but
a lot remains to be done. A realistic high-level languagdaios many more language
features and types. We do not foresee much difficulty in ipomating language features
and types at the logic level as their modeling is largely petelent from the interaction
between weak and strong heaps. One technical concern ischextend our semantic
model to cover a complicated type system, including fumctypes and OO classes.

SLY does not formally consider the effect of a garbage colleé&aarbage collec-
tor would break the crucial monotonicity condition of theakeheap that our semantic
model relies on. We believe a possible way to overcome tholslpm is to use a region-
based type system [17]. A garbage collector would also intipht there cannot be
direct references from strong heaps to weak heaps; an exehdf indirection has to
be added.

6 Conclusion

In his survey paper of Separation Logic [13], Reynolds askéduabther the dividing line
between types and assertions can be eras&tis paper adds evidence that the type-
based approach has its unique place when ensuring safegaik lveaps and when rea-
soning about the interaction between weak and strong h&apsombination of types
and SL provides a powerful framework for checking safety aerifying properties of
multilingual programs.

Acknowledgments

We thank anonymous referees for suggestions and commerats earlier version of
this paper. Gang Tan is supported in part by NSF grant CCET®L. Zhong Shao is
supported in part by a gift from Microsoft and NSF grants Q24545 and CCF-
0811665. Xinyu Feng is supported in part by NSF grant CCF4688 and National
Natural Science Foundation of China (grant No. 90818019)

15

References

[1]
(2]

3]
4]
5]
6]
7]
8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]
(17]

(18]
(19]

(20]

A. J. Ahmed.Semantics of Types for Mutable Sta®D thesis, Princeton University, 2004.
A. W. Appel and D. McAllester. An indexed model of recwsitypes for foundational
proof-carrying codeACM Trans. on Prog. Lang. and Sy23(5):657-683, 2001.

A. W. Appel, P.-A. Mellies, C. D. Richards, and J. Vouitlo A very modal model of a
modern, major, general type system.A®PL '07, pages 109-122. ACM Press, Jan. 2007.
M. Furr and J. S. Foster. Checking type safety of foreignction calls. ACM Trans.
Program. Lang. Syst30(4):1-63, 2008.

R. Harper. A simplified account of polymorphic refereadaformation Processing Letters
57(1):15-16, 1996.

C. A. R. Hoare. An axiomatic basis for computer programgni Commun. ACM
12(10):578-580, October 1969.

K. Honda, N. Yoshida, and M. Berger. An observationalymplete program logic for
imperative higher-order frame rules. WCS '05, pages 270-279, June 2005.

N. Krishnaswami, L. Birkedal, J. Aldrich, and J. Reynslddealized ML and its separation
logic. July 2007.

J. Matthews and R. B. Findler. Operational semanticsnfioitti-language programs. In
Proc. 34th ACM Symp. on Principles of Prog. Lanmpges 3-10, 2007.

P. W. O’'Hearn, J. C. Reynolds, and H. Yang. Local reasgpabout programs that alter data
structures. IlComputer Science Logipages 1-19, 2001.

M. Parkinson.Local reasoning for JavaPhD thesis, University of Cambridge Computer
Laboratory, Oxford, Nov. 2005. Tech Report UCAM-CL-TR-654

B. Reus and J. Schwinghammer. Separation logic fordriginder store. 1r20th Interna-
tional Workshop on Computer Science Logic (GPages 575-590, 2006.

J. C. Reynolds. Separation logic: A logic for shared ahle data structures. IRroc.
LICS’02 pages 55-74, July 2002.

G. Tan and J. Croft. An empirical security study of theivecode in the JDK. Irl7th
Usenix Security Symposiypages 365-377, 2008.

G. Tan, Z. Shao, X. Feng, and H. Cai. Weak updates andatima logic. http://www.
cse.lehigh.edu/~gtan/paper/WUSL-tr.pdf, June 2009.

M. Tofte. Type inference for polymorphic referencésf. and Comp.89(1):1-34, 1990.

M. Tofte and J.-P. Talpin. Region-based memory manageninformation and Computa-
tion, 132(2):109-176, 1997.

V. Trifonov and Z. Shao. Safe and principled languagerimperation. Ir8th European
Symposium on Programming (ESQPages 128-146, 1999.

A. K. Wright and M. Felleisen. A syntactic approach t@&ysoundnessinformation and
Computation115(1):38-94, 1994.

N. Yoshida, K. Honda, and M. Berge. Logical reasoningti@her-order functions with
local state. IFFoSSaCSpages 361-377, March 2007.

16

