COMPILING STANDARD ML FOR EFFICIENT EXECUTION
ON MODERN MACHINES

Zhong Shao

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

November 1994

(© Copyright by Zhong Shao 1995
All Rights Reserved

ii

Abstract

Many language theoreticians have taken great efforts in designing higher-level programming
languages that are more elegant and more expressive than conventional languages. However,
few of these new languages have been implemented very efliciently. The result is that most
software engineers still prefer to use conventional languages, even though the new higher-
level languages offer a better and simpler programming model.

This dissertation concentrates on improving the performance of programs written in
Standard ML (SML)—a statically typed functional language—on today’s RISC machines.
SML poses tough challenges to efficient implementations: very frequent function calls, poly-
morphic types, recursive data structures, higher-order functions, and first-class continua-
tions. This dissertation presents the design and evaluation of several new compilation tech-
niques that meet these challenges by taking advantage of some of the higher-level language
features in SML.

Type-directed compilation exploits the use of compile-time type information to optimize
data representations and function calling conventions. By inserting coercions at each type
instantiation and abstraction site, data objects in SML can use the same unboxed represen-
tations as in C, even with the presence of polymorphic functions. Measurements show that
a simple set of type-based optimizations improves the performance of the non-type-based
compiler by about 19% on a DECstation 5000.

Space-efficient closure representations utilizes the compile-time control and data flow
information to optimize closure representations. By extensive closure sharing and allocating
as many closures in registers as possible, the new closure conversion algorithm achieves very
good asymptotic space usage, and improves the performance of the old compiler by about
14% on a DECstation 5000, even without using a stack. Further empirical and analytic
studies show that the execution cost of stack-allocated and heap-allocated activation records
is similar, but heap allocation is simpler to implement and allows very efficient first-class

continuations.

iii

Unrolling lists takes advantage of the higher-level language abstraction in SML to sup-
port more eflicient representations for lists. By representing each cons cell using multiple
car fields and one cdr field, the unrolled list reduces the memory used for links and signifi-

cantly shortens the length of control-dependence and data-dependence chains in operations

on lists.

v

Acknowledgements

First and foremost, I would like to thank my advisor Andrew Appel for the huge amount
of effort he spent in guiding my research. During the last five years, he has always been
there to share his quick wit, to clarify and enhance my thinking, and to spark new ideas.
Without his careful guidance, this work would be impossible. This dissertation should
really be considered as a joint work with him. In addition, I thank him for helping improve
my writing and hacking skills, and for teaching me everything on how to become a good
scientist.

I would also like to thank my readers John Reppy and Doug Clark for providing timely
suggestions and valuable comments on this document. John gave this dissertation the kind
of close reading that one’s work is rarely privileged to receive; I thank him for his time and
patience in refining my thoughts and correcting my syntax. I also want to thank David
Hanson and Anne Rogers for serving on my thesis committee and for their interests in my
work.

Special thanks go to David MacQueen, John Reppy, and Lal George at AT&T Bell
Laboratories for the encouragement and advice they provided at various stages of this
work. Dave introduced me to the world of programming language theory in his spring 1990
course at Princeton, and I became greatly interested in Standard ML since then. John
and Lal taught me much about other aspects of the SML/NJ compiler. John also actively
participated in the research described in Chapter 6. I thank them for making the SML/NJ
compiler be such a pleasant project to work on.

Many people in many places have helped in many ways: I am grateful to Kai Li and
Doug Clark for their illuminating computer architecture classes; to Kai Li, David Dobkin,
David Hanson, and Anne Rogers for helping me decide my thesis topics and teaching me
what good research should really be like; to Hans Boehm and John Ellis for giving me the
opportunity to work at Xerox PARC (in summer 1993) where I learned many things outside

the SML/NJ world; to Giin Sirer and Marcelo Gongalves for implementing and adapting

the MiPsI instruction simulator that I used in the measurements in Chapter 5; to Hans
Boehm, Scott Burson, Amer Diwan, Damien Doligez, Lorenz Huelsbergen, Trevor Jim,
Xavier Leroy, Paul Wilson for many useful comments on the early drafts of Chapter 4 and
5; to all the people in the administrative offices at Princeton, particularly Melissa Lawson
for helping with all the paper work, Sharon Rodgers for helping me settle down when I first
arrived at Princeton, and Jim Roberts and Matthew Norcross for providing me with more
memory and disk space for running the “memory-eating” SML/NJ job.

Many thanks to Matthias Blume, Dimitrios Gunopulos, and Jeno Torocsik for being my
wonderful officemates and for playing the water-gun fight with me; to my friend and English
tutor Michael Dorn for patiently improving my English writing skills and for sharing many
interesting discussions; to many friends here at Princeton—Richard Alpert, Alvaro Campos,
Pei Cao, Stefanos Damianakis, Xue Fang, Yan Huo, S. V. Krishnan, Chen Lin, Zicheng Liu,
Qiang Ren, Bin Wei, Jenny Zhao, and Jiaping Zhong, to name just a few—for making the
quiet and boring town a lot more fun to live and work.

Finally, I want to thank my parents, my sister Hong, and my brother-in-law Zhenyu for
their constant love and support. My deepest thanks go to my wife Xiaoguang for giving
me great emotional support through her love, patience, and understanding. Xiaoguang
was always able to cheer me up when my paper got rejected. Without the happiness and
self-confidence that she instilled in me, this work would be impossible.

This research was funded, in part, by the National Science Foundation under grants

CCR-8914570, CCR-9002786, CCR 9200790.

vi

Contents

Abstract

Acknowledgements

Introduction

1.1 Motivation L

1.2 Outline of this dissertation

Background

2.1 Evolution of functional languages
2.1.1 Lambda calculus
2.1.2 LiSp . . o o e e e
2.1.3 ML. ..
2.1.4 Haskell

2.2 Introduction to Standard ML 0oL
2.2.1 Basic expressions, values, and types
2.2.2 Value bindings, functions, and polymorphism
2.2.3 Datatypes and pattern matching
2.2.4 Reference values o
2.2.5 Exceptions
2.2.6 First-class continuations L 0oL
2.2.7 Modules
2.2.8 Summary L e e e

2.3 Compiling functional languages
2.3.1 Stack allocation and heap allocation
2.3.2 Higher-order functions and closures
2.3.3 Spacesafety L

iii

2.4 Experimental measurements L0000 23
Type-Directed Compilation 26
3.1 Imtroduction L e 26
3.2 Datarepresentations L Lo 28
3.3 Overview of the compiler o 0L 31
3.4 Frontendissues. e e 35
3.4.1 Corelanguage e 35
3.4.2 Module language 36
3.4.3 Minimum typing derivation 38
3.5 Tramslation into LEXP oo 38
3.5.1 The typed lambda language LEXP 39
3.5.2 Translating static semantic objects into LTY 41
3.5.3 Translating Absyn into LEXP 0oL 44
3.5.4 Practical issues L 46
3.6 Typed CPSbackend o 47
3.6.1 The typed CPS language 48
3.6.2 Converting LEXP into CPS 50
3.6.3 CPS optimizations L o 51
3.6.4 Closure conversion e 52
3.6.5 Machine code generation L oL 53
3.7 Performance evaluation L L o oo 53
3.8 Related work oL 58
3.9 Summary L e e 60
Space-Efficient Closure Representations 61
4.1 Introduction L e 61
4.2 Safely linked closures Lo 63
4.3 Continuations and closures o oo oL 65
4.3.1 Continuation-passing style 0000, 66
4.3.2 Closure-passing style o Lo 67
4.4 Closure cONVersiON v v v v vt e e e e e e e e 69
4.4.1 Extended CPScall graph 70
4.4.2 Raw free variables with lifetime 000, 72
4.4.3 Closure strategy analysis 0oL, 73

4.4.4 Closure representation analysis 75

4.4.5 Access path for non-local free variables 77
4.4.6 Remarks. L 77
4.5 Casestudies L L 78
4.5.1 Function calls in sequence oL 78
4.5.2 Lambda lifting on known functions 80
4.5.3 General recursion oL oL oL 81
4.6 Measurements L e e e e e 83
4.7 Related worko L 88
4.8 SUINIATY . . . o v v o v e b e e e e e e e e e e e 89
Heap vs. Stack 91
5.1 Garbage-collected frames oL 92
5.2 Creation 94
5.3 Frame pointers 95
5.4 Copying and sharing o L 96
5.5 Spacesafetyo 98
5.6 Locality of referenceo 98
5.6.1 Write misses e e 100
5.6.2 Read misses: simulations 0 0oL 102
5.6.3 Read misses: analytically 106
5.7 Disposal L 109
5.8 Finding roots 113
5.9 First-class continuations L L Lo oo 115
5.10 Implementation L L e 116
5T Summaryo e e e e e e e 117
Unrolling Lists 118
6.1 Introduction L 118
6.2 Compiling with refinement types 122
6.2.1 The source language SRC and the target language TGT 124
6.2.2 An introduction to refinement types L. 126
6.2.3 The source-to-target translation 127
6.2.4 The definition of several meta-operations 133
6.2.5 Correctness of the translation 133

X

6.3 Compiling with multiple continuations 134

6.4 Experiments. e e 135
6.4.1 Avoiding code explosion Lo oL 136

6.4.2 Measurements e e e e e e e e e 137

6.5 Related work e 137
6.6 Summaryl e e e e 139

7 Conclusions and Future Work 140
7.1 Conclusions e e e 140
7.2 Future work L e 142
Bibliography 145

List of Tables

© 0 ~1 O Ut ke W N =

NN NN NN = e = e = e e
U = W N = O © 00 =~ O Ot k= W N = O

Flat closures and linked closures 22
General information about the benchmark programs 24
Signature matching is transparent Lo L. 36
Abstraction matching is opaque oL 36
A comparison of execution time oL oL 56
A comparison of total heap allocation 56
A comparison of compilation time oL 0oL 57
A comparison of code size Lo 57
A comparison of three closure representations 64
Raw free variables and closure strategies 72
Raw free variables and closure strategies for function f. 79
A comparison of execution time oL oL 85
A comparison of garbage collection time 85
A comparison of total heap allocation 86
A comparison of compilation time oL Lo 86
A comparison of code size Lo 87
Breakdown of closure access and allocation 87
Cost breakdown of different frame allocation strategies 92
Shared limit checks L 94
Copying and sharing cost oL 97
Heap allocation data oo 97
Garbage collection cost L 111
Standard vs. Unrolled List Representations 119
Performance of the Benchmark Programs 136
Combined performance improvement (execution time) 141

xi

List of Figures

© 0 ~1 O Ut ke W N =

NN NN NN = e e = e e
U = W N = O © 00 ~1 O Ot k= W N = O

The type deduction rules for core ML 12
Higher-order functions and space safety 21
Standard boxed representationso oL 29
Flat unboxed representations with simple descriptors 29
Flat unboxed representations with sophisticated descriptors 30
More compact representations for concrete data type such aslist 31
Overview of the new type-based SML/NJ compiler 32
Front end issues in core language oL 34
Front end issues in module language 35
The typed lambda language LEXP L. 39
Translating ML type into LTY 42
Flexible constructor type must be recursively boxed 42
The typed CPS language 48
A comparison of execution time (illustration) 55
An example in Standard ML o000 Lo 64
Function iter in Standard ML oL 65
Abstract syntax of CPS oL o 66
Function iter after CPS-based optimizations 67
Function iter in after closure conversion 68
Closure strategy analysis for known functions 74
Function fin CPS 79
Making a sequence of function calls 0L 80
Function map using special calling conventions 82
A comparison of execution time (illustration) 84
Simulations: write-allocate vs. write-around cache 103

xii

26

27

28
29
30
31
32
33
34
35
36

Execution of 7(7) in a 16-line cache. Every uptick (procedure call) is a write
miss; only the bold downticks (procedure returns) are read misses. 106

Execution of 77(6) in a 16-line cache. Only the bold downticks (procedure

returns) are read misses. 106
left: The Source Language SRC; right: The Target Language TGT 124
Definitions of C, <, V, top, and apprfty on refinement types 128
Translation of Expressions o o000 129
Translation of Declarations 130
Translation of Matches oo 130
Translation of Patterns o oo oo 130
Example on the map function 131
Definitions of combine, coerce, and applyfun 132
Pseudo CPS code for filter 134

xiii

Chapter 1

Introduction

The most important component in software development is programming—the formaliza-
tion of ideas and their expression in forms suitable for interpretation by computers. In
programming, we start with a mental picture of some computational behavior, refine and
clarify the idea over and over as its ramifications are better understood, and finally write out
the formalized detail in a programming language—a formal notation designed for specifying
such computational behaviors. The resulting program, after being translated into machine
instructions, can then be executed on real machines to perform the desired task.

The ultimate goal of software research is to find the right programming model in which
one can write the “best quality” (reliable, efficient, portable, etc.) program with the least
amount of time and effort. Many researchers in programming languages believe that the
most effective way to achieve this goal is to write programs in higher-level languages (i.e.,
languages that use more abstract representations and allow greater distance from low-level
machines). In fact, most higher-level languages support simpler and cleaner programming
models—making it easier to develop large and complex software. However, because higher-
level languages are abstracted further away from real machines, they are difflicult to im-
plement as efficiently as conventional languages. As a result, most software engineers—
unwilling to sacrifice code efficiency of their products—still prefer to write programs using
conventional languages such as C and C++.

I believe that new higher-level languages, if designed carefully, can be implemented very
efficiently even on modern machines. This dissertation documents a set of new compilation
techniques that significantly improve the performance of programs written in Standard ML
(SML)—a statically typed functional language—on today’s RISC machines. Like many

other higher-level languages, SML poses tough challenges to efficient implementations: very

CHAPTER 1. INTRODUCTION 2

frequent function calls, polymorphic types, recursive data structures, higher-order functions,
and first-class continuations. This dissertation presents the design and evaluation of several
new techniques that meet these challenges by taking advantage of some of the higher-level

language features in SML.

1.1 Motivation

It has been nearly four decades since the first programming languages, such as Fortran and
Lisp, came into the programming world. Thousands of programming languages have been
designed and implemented since then. Among these languages, there are imperative lan-
guages such as Fortran, Algol, Pascal, Ada, and C; object-oriented languages such as C++,
Modula-3, and Smalltalk; functional languages such as Lisp, Scheme, ML, and Haskell;
logic programming languages such as Prolog. While all language designers and implemen-
tors agree that they have the same ultimate goal—finding a programming model in which
one can write the “best quality” software with the least amount of time and effort, language

research has been carried out in two rather different directions:

o At one end, language theoreticians design new higher-level languages that have cleaner

semantics; they usually do not care much about very efficient implementations;

o At the other end, most software in today’s industrial world is still written using con-
ventional languages such as C; most software engineers still prefer to use C and C++
simply because they have much more efficient implementations (and easy interface to

libraries and operating system) .

This difference is also reflected in the dilemma that many people encounter when choosing
which languages to use. Conventional languages such as C and C++ are very popular; they
run very fast and use little memory. They are “hacker’s heaven” because one can arbitrarily
manipulate the machine level data representations in the source program; because of this,
programs written in these languages might core-dump, and they are diflicult to debug and
difficult to reason about. On the other hand, higher-level languages such as ML are relatively
less well known; they run slower and consume much memory. But they are much cleaner
and safer than C and C+4. Moreover, they often have very well founded semantics, and
are easy to reason about and easy to write code in. Clearly, we want to have the best of
both worlds, that is, to find languages that have both clean programming models and also

efficient implementations.

CHAPTER 1. INTRODUCTION 3

Perhaps the best way to settle this dilemma is to develop new compilation techniques
to make higher-level languages run faster. In the long term, the research centered around

this can at least provide three benefits:

o If higher-level languages can be compiled as efficiently as conventional languages such
as C and C++4, we will be a step closer towards the “ideal”, that is, to achieve the

ultimate goal of software research.

o Because programs written in higher-level languages have very different run time behav-
iors (e.g., more allocations, fewer side-effects) from those in conventional languages,
new compiler technologies discovered for higher-level languages may offer new insights
on what is the best way to achieve successful high-performance computer systems in

the future.

¢ Doing research on how to compile higher-level languages efficiently can give language
theoreticians more feedback on what language features are very difficult to compile
and can give hardware designers more feedback on what support modern machines

can offer in order to achieve the best performance.

This dissertation concentrates on improving the performance of programs written in
Standard ML (SML) [MTH90] on modern RISC machines. SML may not be the most
representative or the most elegant higher-level language in today’s world, but it serves as
a great test bed to explore modern compilation technologies. There are many reasons to

believe that SML can be compiled to run efficiently:

e SML is a statically typed language, that is, all type checking is done at compile time.
This means that type tags need not be carried around at run time, and operators

need not to check the types of their arguments at run time.

e SML uses call-by-value evaluation semantics, so SML programs still have under-
standable control flow to do all conventional data flow and control flow optimiza-

tions [ASUS86].

e Unlike pure functional languages such as Haskell [HJet al92], SML is just a mostly
functional language. Side-effects are still allowed in SML, making it possible to sup-

port very efficient mutable data structures such as arrays and hash tables.

o We already have an efficient compiler for SML—the Standard ML of New Jersey
compiler (SML/NJ) [AM91]—with which to explore new compiler optimizations.

CHAPTER 1. INTRODUCTION 4

However, SML contains many contemporary language features that are rarely seen in

conventional languages:

Frequent function calls Almost all control structures in SML are expressed using func-
tion applications. For example, loops in conventional languages are expressed as

recursive functions in SML.

Higher-order functions As in Scheme and other languages derived from the A-calculus,
functions in SML are first-class values that may be passed as arguments, returned as

values, and put into data structures.

Polymorphic types SML allows polymorphic functions and data structures; that is, a
function may take arguments of arbitrary type if in fact the function does not depend
on that type. For example, the same map function can operate on a list of anything,

and similarly for other common list functions such as cons, length, and append.

Immutable recursive data structures Recursive data structures are declared using
concrete data type definitions. Like many pure functional languages, SML encour-
ages heavy use of immutable data structures. For example, in order to insert an
element into the end of a list, in SML, one has to copy the list rather than directly

attaching the new element at the end.

First-class continuations SML' supports call-with-current-continuation (call/cc)—a

primitive often used to support tasking, coroutines, exceptions, and so on.

Because compiler technologies developed for conventional languages do not apply to
these new language features, the major challenge for compiling SML efficiently is naturally
to find new techniques that can successfully deal with these new features. This dissertation
presents the design and evaluation of several such new techniques that significantly improve

the performance of SML programs:

o Type-directed compilation exploits the use of compile-time type information to opti-
mize data representations and function calling conventions. By inserting coercions at
each type instantiation and abstraction site, data objects in SML can use the same
unboxed representations as in C, even with the presence of polymorphic functions.
Measurements show that a simple set of type-based optimizations improve the per-

formance of the non-type-based compiler by about 19% on a DECstation 5000.

Tt is really the Standard ML of New Jersey dialect that supports first-class continuations.

CHAPTER 1. INTRODUCTION 5

o Space-efficient closure representations utilizes compile-time control and data flow in-
formation to optimize closure representations. By extensive closure sharing and allo-
cating as many closures in registers as possible, the new closure conversion algorithm
achieves very good asymptotic space usage, and improves the performance of the old
compiler by about 14% on a DECstation 5000, even without using a stack. Further
empirical and analytic studies show that the execution cost of stack-allocated and
heap-allocated activation records is similar, but heap allocation is simpler to imple-

ment and allow very efficient first-class continuations.

o Unrolling lists takes advantage of the higher-level language abstraction in SML to
support more eflicient representations for lists. By representing each cons cell using
multiple car fields and one cdr field, the unrolled list reduces the memory used for
links and significantly shortens the length of control-dependence and data-dependence

chains in operations on lists.

1.2 Outline of this dissertation

The development of this dissertation may be easier to follow for readers with some back-
ground in Standard ML [Ull93, Har86, MTH90] and basic compilation techniques for func-
tional languages [App92, Pey87].

Chapter 2 contains a survey of various functional languages, an introduction to SML
(which may be skipped if the reader is familiar with SML notation), and a review of sev-
eral important aspects in compiling functional languages. This chapter also explains the
experimental methodology and the SML benchmarks used in the rest of the chapters.

Chapters 3 through 6 constitute the core of this dissertation. Chapter 3 describes the
design, implementation, and evaluation of the type-directed compilation technique in the
context of the Standard ML of New Jersey compiler [AM91]; the new technique allows
data objects in SML to use eflicient unboxed representations, even with the presence of
polymorphic functions. Chapter 4 describes the design, implementation, and evaluation
of a new heap-based environment allocation scheme that uses the space-efficient closure
representations; this new scheme supports very efficient function calls and returns, even
though all activation records are allocated on the heap. Chapter 5 does an empirical and
analytic study of the heap-based scheme described in Chapter 4 and the conventional stack-
based scheme, and shows that in compiling languages such as SML, the efficient heap-based

scheme can be more attractive than a stack-based scheme. Chapter 6 describes the unrolling

CHAPTER 1. INTRODUCTION 6

l1sts technique that supports a more efficient representation for lists; the unrolled list reduces
the memory used for links and significantly shortens the length of control-dependence and
data-dependence chains in operations on lists.

Finally, Chapter 7 describes areas for future research and summarizes the results of this

dissertation.

History

The idea of allocating continuation closures in callee-save registers (described in Chapter 4)
is first published as Reference [AS92]. The new closure conversion algorithm in Chapter 4
is developed recently, and published as Reference [SA94]. The measurement data used in
Reference [SA94] is different from one in Chapter 4 because they are using different versions
of the SML/NJ compiler. The comparison of stack-based and heap-based closure allocation
scheme described in Chapter 5 previously appeared as Reference [AS94]. The unrolling lists
technique described in Chapter 6 is previously published as Reference [SRA94]. Some of the
ideas used in Chapter 3 are evolved from my work on smartest recompilation [SA93, SA92],

which is not described in this dissertation.

Chapter 2
Background

This chapter sets the stage for the presentations in Chapters 3 through 6. First, we review
the fundamental concepts and notations evolved in the development of functional languages;
then we present an introduction to Standard ML; finally, we explain the space-usage as-

sumption and the experimental methodology used in this dissertation.

2.1 Evolution of functional languages

In this section, we use four representative functional languages—namely, lambda calculus,
Lisp, ML, and Haskell—to explain the fundamental concepts and notations evolved in the
development of functional languages. A more complete survey of the history of functional
languages can be found in Hudak [Hud89]. This section only describes the core ML language
and its polymorphic type system; a more detailed description of Standard ML [MTH90] is

presented later in Section 2.2.

2.1.1 Lambda calculus

The development of functional languages has been influenced from time to time by many
sources, but none is as fundamental as the work of Church [Chu41] on the lambda calculus.
The lambda calculus is often regarded as the first functional language, and all modern
functional languages can be thought of as nontrivial embellishments of the lambda calculus.
Interested readers are referred to the excellent book by Barendregt [Bar84] for more detailed

explanations.

CHAPTER 2. BACKGROUND 8

The abstract syntax of the pure untyped lambda calculus (a name chosen to distinguish
it from other versions defined later) embodies what are called lambda expressions, defined

by the following grammar:
en=2x | Az.e; | e ey

where = denotes an arbitrary identifier. Expressions of the form Az.e are called abstractions
and of the form e; ey are called applications. The former captures the notion of a function
and the latter captures the notion of application of a function. By convention, application
is assumed to be left associative, so that (e; ey e3) is the same as ((e1 e3) e3).

The rewrite rules of the lambda calculus depend on the notion of substitution of an
expression ey for all free occurrences of an identifier # in an expression ey, which we write
as [e1/z]ez. To understand substitution, we must first understand the notion of the free
variables of an expression e, which we write as fv(e) and define by the following simple

rules:

Jo(z) ={a};
Jo(erez) = fo(er) U fo(ez);
Jo(Aa.e) = fo(e)\ {z}.

We say that « is free in e if and only if z € fv(e). The substitution “[e;/z]e;” can then be

inductively defined as follows:

[e/z]z = ¢;

[e/]y = y;

[e1/z](e2es) = ([er/z]ea)([e1/a]es);

fer/2]

ler/z]Ay.e2 = Ay.[er/z]es, il @ & fo(es) or y & foler);

[er/x]Ay.e2 = Az.[e1/z]([z/y]ez), otherwise, where z & (fv(e1) U fu(ez)).

Az.eg = Ar.es;

The last rule is the subtle one, since it is where a name conflict could occur and is resolved
by making a name change.
To complete the lambda calculus, we define three simple conversion rules on lambda

expression:
a-conversion (renaming): A\z.e<=,Ay.[y/z]e where y & fv(e);
(-conversion (application): (Az.ej)ey<=glez/x]eq;

n-conversion : if x € e, then Az.ex<=e.

CHAPTER 2. BACKGROUND 9

The notion of reduction, which is the same as conversion but restricted so that g-conversion

and n-conversion only happen in one direction:
B-reduction : (Az.eq)ea=>plez/x]er;
n-reduction if z € e, then Az.ex=>e.

. %
We write e, = €5 il e5 can be derived from zero or more - or n-reductions or a-conversions;
* . . .
and e; <= e3 if €3 can be derived from zero or more a-, -, or n-conversions. In summary,
* .] e * . .] e
—> captures the notion of reducibility, and <= captures the notion of intraconvertibility.
A lambda expression is in normal form if it cannot be further reduced using 3- or n-
reduction. For example, AzAy.y, Az.z, zy are in normal forms, while (Az.y)z is not in
normal form because it can be g-reduced into y. Note that some lambda expressions have

no normal form, such as

(Az.(zz))(Az.(zx)),

where the only possible §-reduction leads to an identical term, and thus the reduction
process is nonterminating.

The famous Church-Rosser theorem says that if e; and e; are intraconvertible (i.e.,
6] <= e2), then there exists a third term (possibly the same as e; or e3) to which they can
both be reduced. One corollary of this is that a lambda expression e can never be reduced
to two distinct normal forms. Otherwise, suppose e => e; and ¢ = e, and both e; and
ey are in normal form, then according to the Church-Rosser theorem, there exists a third
term e’ to which both e; and e, can be reduced. But e; and e; cannot be both in normal
form. This corollary essentially means that as long as the reduction finally reaches a normal
form, the way how it is carried out (i.e., the evaluation order) is irrelevant.

Two most well known ways to carry out the reduction are normal-order reduction and
applicalive-order reduction: the normal-order reduction, corresponding to the call-by-name
evaluation strategy, is a sequential reduction in which, whenever there is more than one re-
ducible sub-expression (called a redez), the leftmost one is chosen first; the applicative-order
reduction, corresponding to the call-by-value evaluation strategy, is a sequential reduction
in which the leftmost innermost redex is chosen first. Given an expression e, applying
the normal-order reduction on e will always yield the normal form of e if there is one.
Applicative-order reduction, however, is not always adequate. Consider the following ex-

ample:

normal order reduction will yield:

CHAPTER 2. BACKGROUND 10

One nice thing about the lambda calculus is the ability to express recursive functions
nonrecursively. Given a lambda expression e, there is a fixpoint e’ such that (ee’) <= ¢;

One example of ¢ is just the expression (Ye) where the Y combinator is defined by

Y = M.(Az.f(zz))(Az.f(zzx)).

With this Y combinator, every recursive function in the form “f = ... f...

can now be

written nonrecursively as

f=Y(Nfo...f.0).
For example, the factorial function (written in lambda calculus extended with conditional

expressions and constants)

fac = An.if(n = 0) then 1 else (n * fac(n — 1))

can be written nonrecursively as

fac = Y (Afac. An.if(n = 0) then 1 else (n * fac(n — 1))).
The ability of the lambda calculus to simulate recursion in this way is the key to its power
and accounts for its persistence as a useful model of computation. Actually, it is shown
(by Turing [Tur37]) that those functions computable on Turing machines are exactly those

definable functions in the lambda calculus.

2.1.2 Lisp

Lisp [McC60, Ste84] was the first functional language in the world, developed by John
McCarthy in 1950s. Although the core of Lisp is essentially the lambda calculus plus the
constants, many new features in Lisp are now commonly used by almost all functional
languages.

For example, Lisp is the first language that uses S-expressions. An S-expression is either
a symbol, a number, or a pair of S-expressions. A restricted form of S-expression is the list
data structure. Most list notations, such as the primitive cons, car, and cdr operations, are
first introduced in Lisp.

Unlike the lambda calculus, Lisp is a strict call-by-value language. It allows side effect
on S-expressions, using the primitive rplaca (for “replace the car”) and rplacd (for “replace
the cdr”) operations.

Lisp is the first language that supports dynamic storage allocation. Whenever cons is
applied, the cons cell must be allocated on the heap. When memory is used up, garbage

collection is triggered to reclaim unused cells.

CHAPTER 2. BACKGROUND 11

Lisp programs are untyped; that is, Lisp does not associate types with expressions.
Type-checking in Lisp is done during program execution. This so-called “dynamic type-
checking” is done by inserting extra code into the program to watch for impending errors.

Because of this, every data object in Lisp must have a type tag attached.

2.1.3 ML

A fundamental difference between ML and Lisp is that ML is statically typed and Lisp is
dynamically typed. The type checking in ML is done, once and for all, at compile time. Like
Lisp, ML is a “mostly functional” language, meaning that most ML programs are side effect
free but ML has facilities for creating and manipulating mutable objects. The evaluation
order in ML is call-by-value, with function arguments strictly evaluated from left to right.

ML is most well-known for its powerful polymorphic type system. ML programs are
checked for type correctness at compile time. The compiler can infer the types of identifiers
during type checking, so that the programmer need not declare them explicitly. In the
following, we briefly explain the ML type system using the following core ML language
(which still looks like the lambda calculus):

enx==x|Az.e; |e; ex| let @ = ey in ey

Here, the let statement is just a syntactic language construct equivalent to [e1/z]eq; this
additional structure is used to support ML’s powerful polymorphic type system, developed
independently by Hindley [Hin69] and Milner [Mil78].

Suppose TyVar is an infinite set of type variables and TyCon is a set of nullary type

constructors,

7 € TyCon = {int, bool, . ..}

a € TyVar = {f3,7,a1,...}
then the set of types, Type, ranged over by 7 and the set of type schemes, TypeScheme,
ranged over by o are defined by
Tu=Tw|a|lT— 7
o =1 | Va.oy.
A type environment is a finite map from program variables to type schemes. tyvars(t),
tyvars(o) and tyvars(TFE) are the set of type variables that occur free in 7, ¢ and TF

respectively. A type 7’ is a generic instance of a type scheme o = Vay,...,a,.7, written

as 7' < o, if there exists a substitution S with its domain being a subset of {ay, ..., a,}

CHAPTER 2. BACKGROUND 12

T < TE(x)
(VAR) TEFz:7
TE+{z—T1'}te:r
(ABS) TEF Aze:7 — 71
TEFe i7" —=717 TEFey:T
(APP) TE v ejeq: 7T
LET TEFe:mm TE+x{z— gen(TE,)} ey T
() TEFlet © = €1 in ey : 7T

Figure 1: The type deduction rules for core ML

and 7/ = S(7). A type scheme oy is more general than oy, denoted as o3 < oy, if all
generic instances of oy are also generic instances of o7. The generalization of a type 7
in a type environment TF is denoted by gen(TFE,T), it is the type scheme Vaq,...,a,.7
where {aq, ...,a,} = tyvars(T)\tyvars(TE). The core ML type system, in the form of type
deduction rules as TFE e : 7, is listed in Figure 1.

In general, an expression e can be given many different typings under the deduction
rules and a given type environment TFE. We are particularly concerned with the principal
type of e under TFE, namely the type 7 such that if 7K F e : 7 and TF F e : 7/, then
gen(TE,7) < 7'. Damas and Milner [DM82] have shown that any expression that has
a type in a given environment has a principal type in that environment, which is unique
except for choice of bound type-variable names and can be inferred using the well-known
type assignment algorithm “W” [DM82].

Standard ML [MTH90] is just core ML extended with constants, pattern matching, data
type definitions, references and exceptions, and a sophisticated module system [Mac84].

We’ll explain the details of Standard ML in Section 2.2.

2.1.4 Haskell

Haskell is a nonstrict, purely functional programming language developed by Hudak, Peyton
Jones, Wadler et al [HJet al92]. Core Haskell is very much like the core ML described in
the last section; it is a statically typed language with the same Hindley-Milner type system.

The main differences between ML and Haskell are as follows:

CHAPTER 2. BACKGROUND 13

o ML is a mostly functional language; side effects in ML are allowed. Haskell is a purely

functional language; no side effects are permitted.

e ML isa “strict” call-by-value language (i.e., uses applicative-order reduction). Haskell,

on the other hand, is a “non-strict” language that uses lazy evaluation.

e ML supports a more expressive and powerful module system than Haskell. For ex-
ample, ML supports parametrized modules (i.e., functors) and module abstractions

while Haskell does not.

o The type system in Haskell also supports type-classes—a more general form of over-

loading [WB89].

The details on how to efficiently compile pure functional languages such as Haskell are
discussed by Peyton Jones [Pey87, Pey92]. Although some of the techniques described in
this dissertation also apply to lazy languages such as Haskell, the rest of dissertation will

mainly focus on compiling strict functional languages such as Standard ML.

2.2 Introduction to Standard ML

This section provides an introduction to Standard ML (SML) that should allow the reader
to follow the examples and notations used in this dissertation easily. Readers are referred to
References [Har86, Ull93, Pau91] for a more complete introduction. The formal definition

and commentary for SML can be found in References [MTH90, MT91].

2.2.1 Basic expressions, values, and types

SML is an expression language: the traditional statement constructs, such as blocks, condi-
tionals, case statements, and assignment, are packaged as expressions. Every expression has
a statically determined type and will only evaluate to values of that type. In the following,

we illustrate the basic values and types of SML by example:

Unit The type unit consists of a single value, written (). This type is used whenever an

expression has no interesting value, or a function is to have no arguments.

Booleans The type bool consists of the values true and false. The ordinary boolean
negation is available as not. Booleans are most commonly used as the first argument

of the conditional expression

if e then e; else ey.

CHAPTER 2. BACKGROUND 14

In SML, both the then and else clauses must have the same type.

Integers The type int is the set of integers. Integers are written in the usual way, except

“~” rather than a minus

that negative integers are written with the tilde character
sign. ML supports the usual arithmetic operators, +, -, *, div, and mod; and the

usual relational operators, <, <=, >, >=, =, and <>.

Strings The type string consists of the set of finite sequences of characters. Strings
are written in the conventional fashion as characters between double quotes, e.g.,

"hello world!\n", "foo".

Real Numbers The type of floating point numbers is known in SML as real. Real num-
bers written in more or less the usual fashion for programming languages, e.g., 3.1415,

0.03.

Tuples The type 7 * 79, where 71 and 79 are types, is the type of ordered pairs whose
first component has type 71 and whose second component has type 7. Ordered pairs
are written (e1,ez), where e; and ey are expressions. An ordered n-tuple, where n >
2, is written as m comma-separated expressions between parentheses. For example,
(1,true) is a pair of int and bool; ("bar", 17, 3.14%3.14) is a triple whose SML

type is string * int * real.

Records The record lype is quite similar to Pascal records and to C structures. A record
consists of a finite set of labelled fields, each with a value of any type (as with tuples,
different fields may have different types). Record values are written by giving a set of
equations of the form [= e, where [/ is the label and e is an expression, enclosed in
curly braces. The type of a record is a set of pairs of the form [: 7 where [is a label and
T is a type, aslo enclosed in curly braces. For example, {name="bar", used=true} is

a record whose type is {name:string, used:booll}.

2.2.2 Value bindings, functions, and polymorphism

The principal mechanism for associating values with variables in SML is to use value dec-

larations or function declarations. A wvalue binding starts with a leading key word val,
e.g.,

val x = 4 * b

CHAPTER 2. BACKGROUND 15

it is evaluated by first evaluating the expression on the right-hand side, and then setting
the value of the variable on the left-hand side to this value. In the above example, x is
bound to 20, an integer.

Function declaration uses the leading key word fun; for example, the factorial function

can be defined as:

fun fac n = if (n = 0) then 1 else n * fac(n-1)

The type of function fac is int — int.
Functions in SML are first-class values; they can be passed as arguments, embedded in

data structures and returned as results. For example, in the following,

fun compose (f,g) = fn x => (f (g x))

the function compose takes two functions f and g as arguments; it returns the composition
of £ and g as the result.
As described in Section 2.1.3, SML also supports polymorphic types. The compose
function above has a polymorphic type
YavBY.((a — B) + (8 — 7)) — (@ — 7);
it can be applied to any pair of functions as long as the application satisfies the ML type

deduction rules (see Figure 1).

2.2.3 Datatypes and pattern matching

One very important feature in SML is that programmer can declare new concrete data types

using the datatype constructs. The most commonly used data type is list, defined as

datatype ’a list = nil
| :: of ’a * ’a list
here ’a is a type variable used to denote the Greek symbol a. This data type declaration
defines a list to be either empty (nil), or the cons of an element and a list (::). In
(A

SML, the cons operator “::” is pre-declared as an infix operator; lists are often represented

syntactically as

which really denotes

(ep::(eg::...::(e,1:nil))).
Another important predefined data type in SML (actually, only in SML/NJ [AMO91]) is the
polymorphic option type:

datatype ’a option = NONE | SOME of ’a

CHAPTER 2. BACKGROUND 16

Structured data type values are decomposed using a powerful pattern matching notation.
A pattern is a data template. If a datum matches a pattern, the variables in the pattern
are bound to the corresponding components of the datum. A match fails if the datum
and pattern do not concur. Pattern matching is useful for defining functions—a series
of n patterns can select from a function’s n cases. The | symbol separates pattern-case
pairs. Matching proceeds serially from left to right. A successful match causes evaluation
of the corresponding function case. The matching process faults if no pattern matches the

function’s argument value. Using patterns, a function to compute the lengths of lists is:

fun length nil = 0
| length (x::xs) = 1 + (length xs)

When length is applied to the empty list, the first pattern (nil) matches and length
returns 0; otherwise, length’s argument matches the cons cell (with the :: list constructor)
in the second pattern (x::xs). This match binds x to the head element of the list and xs to
the tail. Since the length function does not require a binding for a list’s head element, the
pattern (x::xs) is more informatively written as (_: :xs) where the wildcard (_) matches—

but does not bind—anything.

2.2.4 Reference values

Although SML is mostly functional, it does allow side effects. References are cells whose
contents may be changed after creation by assignment. The ref “datatype” constructor,

and its corresponding value constructor, are almost as if defined by the declaration
datatype ’a ref = ref of ’a

A reference whose initial contents are string "foo" may be created and later altered as

follows:

let val r = ref "foo"
in (r := ("bar""('r))

end
Here, “~” is the string concatenation operator (infix); “:=" is the assignment operator
(infix); “!” is the dereferencing operator. The final content for r is the string "barfoo".

2.2.5 Exceptions

SML has an exception mechanism for signaling run-time errors and other exceptional con-

ditions. For example,

CHAPTER 2. BACKGROUND 17

exception Head

fun head(nil) = raise Head
| head(x::xs) = x

fun head2 1 = head(l) handle Head => 0

the first line is an exception binding that declares Head to be an exception. The function
head is defined in the usual waay by pattern matching on the constructors of the list
type. In the case of a non-empty list, the value of head is simply the first element. But
for nil, the function head is unable to return a value, and instead raises an exception. To
be complete there is a way of doing something about an error; in SML, this is called an
exception handler. The expression
e handle exn => ¢’

is evaluated as follows: first, evaluate e; if it returns a value v, then the value of the whole
expression is v; if it raises the exception exn, then returns the value of €; if it raises any
other exception, then raise that exception. The above function head2 will return 0 if the

argument is an empty list.

2.2.6 First-class continuations

An extension in Standard ML of New Jersey (SML/NJ) [AMO1] is the typed first-class
continuation [DHM91], defined as follows:

type ’a cont

val callcc : (’la cont -> ’l1a) -> ’la

val throw : ’a cont -> ’a -> ’b
Here, cont is an abstract type constructor; “’1a” denotes a weak type variable (also
used for typing references) [Mac88]; callcc is used to capture the current state (repre-
senting the “rest of the program?”), just like the call-with-current-continuation function in
Scheme [RC86]; the captured continuation can be later applied by using the throw function.

First-class continuations can be used to support tasking, coroutines, exceptions, and so on.

2.2.7 Modules

SML provides a powerful module system, which can be used to partition programs along
clean interfaces.
In its simplest form, a module is (syntactically) just a collection of declarations viewed

as a unit, or (semantically) the environment defined by those definitions. This is one form of

CHAPTER 2. BACKGROUND 18

a structure expression: “struct dec end.” For example, the following structure expression

represents an implementation of stacks:

struct
datatype ’a stack = Empty | Push of ’a * ’a stack
exception Pop and Top
fun empty(Empty) = true | empty _ = false
val push = Push
fun pop(Push(v,s))
fun top(Push(v,s))
end

s | pop(Empty) = raise Pop
v | top(Empty) = raise Top

Structure expressions and ordinary expressions are distinct classes; structure expressions
may be bound using the structure keyword to structure identifiers. For example, we

might make a structure Stack using the structure expression shown above:

structure Stack = struct
datatype ’a stack = ...

end

It is often useful to explicitly constrain a structure binding to limit the visibility of its
fields. This is done with a signature, which is to structure binding as a type constraint is
to a value binding. For example, we might write a signature for the Stack as

sig type ’a stack

exception Pop and Top
val Empty : ’a stack

val push : ’a * ’a stack -> ’a stack
val empty : ’a stack -> bool

val pop : ’a stack -> ’a stack

val top : ’a stack -> ’a

end

The signature mentions the structure components that will be visible outside the struc-
ture. Signatures may be bound to identifiers by a signature declaration using the key word
signature, for example, the signature above could be bound to the identifier STACK by the

declaration

signature STACK = sig type ’a stack

end

A signature can be used to constrain a structure (also called signature matching) by includ-

ing it in a structure declaration:

structure Stackl : STACK = Stack

CHAPTER 2. BACKGROUND 19

Now the constructor Push is not a visible component of the Stackl structure, since it
does not appear in the signature. Since the constructor Empty is mentioned as a val in
the signature, but not as a constructor (i.e., as part of a data type specification), then
Stackl.Empty may be applied as a function but not matched in a pattern.

SML also supports parametrized modules, called functors. Functors, which are functions
on structures, are used to manage the dynamics of program development in SML. Functors
are defined using functor declarations, using the key word functor. The syntax of a functor

declaration is similar to the clausal form of function definition, for example,

functor F(S : STACK) =
struct fun init() = S.Empty
fun pushlist(nil,s) =
| pushlist(x::xs,s)
val pop = S.pop
val top = S.top

s
= S.push(x,pushlist(xs,s))

end

this functor F defines a function that, given any structure matching STACK, returns another

structure, which contains four components, init, pushlist, pop, and top.

2.2.8 Summary

In summary, SML is a functional language that contains many features frequently seen in

the modern higher-level programming languages:

e SML is safe: programs cannot corrupt the runtime system so that further execution

of the program is not faithful to the language semantics.

o SML supports first-class functions: functions can be passed as arguments, returned as
results, and stored in variables. The principal control mechanism in SML is recursive

function application.

e SML is statically typed with a powerful polymorphic type system. Every legal ex-
pression in SML has a uniquely determined most general typing which is determined

automatically by the compiler.

e SML has a module system supporting abstract data types, hiding of representations,

and type-checked interfaces.

e SML is a mostly functional language. Although SML programs are mostly written

using immutable data structures only, side effects are still allowed.

CHAPTER 2. BACKGROUND 20

2.3 Compiling functional languages

As mentioned in Chapter 1, the major challenges in compiling functional languages are on
how to compile function call and return efficiently and how to optimize the runtime data
representations. On many other aspects, compiling functional languages can be attacked
using the same techniques described in the “Dragon” book [ASUS6|.

This section reviews the basic issues involved in compiling function call and return for
functional languages. The background about efficient data representations is discussed later

in Section 3.2 and Section 6.1.

2.3.1 Stack allocation and heap allocation

Stack allocation is the most commonly used method to implement function call and return.
In the stack scheme, a contiguous region of memory is used as a runtime stack. An activation
record is pushed onto the stack at each function call and then popped off the stack when
the function returns. Each activation record normally contains formal parameters, returned
values, access link, saved registers, temporaries, and local data. The access link is a pointer
from the activation record of a function to the activation record of its enclosing function;
this can be decided at compile time. By following the access links, each function can access
non-local variables stored in the activation records of outer functions. Another region of
memory is for static data and code segment; this area is of fixed size (for each program)
and is used to store code segment and global variables. A third region is the “heap;”
all the dynamically allocated data are stored here. In languages such as C and Pascal,
programmers are responsible for freeing the dead data objects by explicitly calling the
“free” or “dispose” library function in their programs. In functional languages, memory
allocation and deallocation are often done implicitly; dead data objects are reclaimed by a
garbage collector.

Function call and return can be implemented using either the stack-based scheme or the
heap-based scheme. The stack-based scheme pushes an activation record on the stack at
each function call and pops the activation record off the stack when the function returns.
The heap-based scheme allocates an activation record in the heap at each function call and
does nothing at the function return; the activation record is left on the heap, and later

reclaimed by the garbage collector.

CHAPTER 2. BACKGROUND 21

fun f(v,w,x,y,z) =
let fun g() =
let val u = hd(v)
fun h() =
let fun i() = wtx+y+z+3
in (i,u)
end
in h
end
in g
end

fun big(n) = if n<l then [0] else n :: big(n-1)

fun loop (n,res) =
if n<1 then res
else (let val s = £(big(N),0,0,0,0)()
in loop(n-1,s::res)
end)

val result = loop(N,[])

Figure 2: Higher-order functions and space safety

2.3.2 Higher-order functions and closures

Because functions in functional languages are first-class values that may be passed as ar-
guments, returned as results, and put into data structures, implementing function call and
return is more complicated than in imperative languages such as C and Pascal.

For example, Figure 2 presents an example in SML that uses higher-order functions.
The function f returns as its result a nested function ¢, which returns a nested function A,
which returns a nested function ¢ and a value u computed by selecting the head of the list
v. The function big(n) makes a list of length n, and loop makes a list of n copies of function
h, that is, the result of the function application f(big(N),0,0,0,0)().

Higher-order functions such as g, h, ¢ cannot be implemented just using a LIFO stack
because they may be called later even though their environments (i.e., activation records)
have been popped off the stack. The usual solution to this problem is to represent functions
as closures [Lan64]. A function with free variables is said to be open; a closure is a data
structure containing both the machine code address of an open function, and bindings

for all the non-local variables (i.e., free variables) of that function. The machine-code

CHAPTER 2. BACKGROUND 22

implementation of the function knows to find the values of non-local variables in the closure

data structure.

Table 1: Flat closures and linked closures

Flat Closures Linked Closures

G—lelv[wlx]y]e] | e——lelv]w]x]y]7]
& m——n[u]> |
!

For example, Table 1 shows two commonly used closure representations: flat closure
and linked closure. A flat closure [Car84b] is a record that holds only the free variables
needed by the function. For example, the flat closure for h (denoted as H) contains just
the code pointer (denoted by k) plus the values for variable u, w, z, y, and 2. A linked
closure [Lan64] is a record that contains the bound variables of the enclosing function,
together with a pointer to the enclosing function’s closure. For example, the linked closure
for h contains the code pointer h, the locally bound variable u, and the pointer to the

enclosing function g’s closure.

2.3.3 Space safety

In any language, it is common for the programmer to have variables in scope that are
“dead;” that is, their current values will never again be needed. In a garbage-collected
language, the garbage collector need not use such variables as “roots” of live data. Several
implementors have independently discovered that this is really important: if the collector
traverses too many dead variables, the memory use of the program can increase by a large
factor [Bak76, Cha88, RW93, App92, Jon92].

In fact, a collector that starts from only the (statically determinable) live variables can
often keep asymptotically less data live than a less careful collector; that is, one system
might use O(N) space where another uses O(N?) space, where N is the size of the input.
This theorem, examples, and a description of compiler techniques that are “safe for space
complexity” are described by Appel [App92, Chapter 12].

We can use the example shown in Figure 2 to illustrate this problem. With flat closures,

each evaluation of f(...)() yields a closure s for h that contains just a few integers u, w, z,

CHAPTER 2. BACKGROUND 23

y, and z; the final result (i.e., result) contains N copies of the closure s for h, thus it uses
at most O(N) space.

With linked closures, each closure s for i contains a pointer to the closure for g, which
contains a list v of size N. Since the final result keeps N closures for different instantiations
of h simultaneously—each with a different (large) value for the variable v—it requires O(N?%)
space consumption instead of O(N). This space leak is caused by inappropriately retaining
some “dead” objects (v) that should be garbage collected earlier.

Such space leaks are unacceptable. Closure (and frame) representations must not cause
space leaks (see Chapter 4). In 1992, we found several instances of real programs whose
live data size (and therefore memory use) was unnecessarily large (with factors of 2 to 80)
when compiled by early versions of our compiler that introduced this kind of space leak.
All recent versions of SML/NJ have obeyed the “safe for space complexity” (SSC) rule,
and users really did notice the improvement. The SSC rule is stated as follows: any local
variable binding must be unreachable after its last use within its scope (see Appel [App92]
for a more formal definition).

Assumption: all discussions in this dissertation are based on the assumption that the

compiler must satisfy the “safe for space complexity” rule.

2.4 Experimental measurements

All measurements in this dissertation are done on a DEC5000/240 workstation with 128
mega-bytes of memory (under Ultrix 4.3). Table 2 shows the set of benchmarks we use; for
each benchmark, we also show the source program size (in number of lines) and the degree of
modularity (in number of modules and files!). In our measurements, a file is a basic separate
compilation unit. Among these 12 benchmarks, MBrot, Nucleic, Simple, Ray, and
BHut involves intensive floating-point operations; Sieve and KB-Comp frequently use
first-class continuations or exceptions; VLIW and KB-Comp make heavy use of higher-
order functions.

The execution time is measured using the standard UNIX timer facility (using the
interface provided by the SML/NJ compiler). Each benchmark is run 20 times by a specific

compiler. Since the performance of different runs are rather different,? we pick the fastest

!In all the measurements, we treat each file (not module) as a separate compilation unit.

?According to our experience, the difference between the fastest run and the slowest run of the same
executable can be as much as a factor of two, depending on where and how the executable is put into the
main memory.

CHAPTER 2. BACKGROUND

24

Table 2: General information about the benchmark programs

Program

Lines

Modules

Files

Description

BHut

Boyer

Sieve

KB-Comp

Lexgen

Life

Simple

VLIW

YACC

MBrot

Nucleic

1258

919

1356

655

1185

148

874

990

3658

7432

60

3307

9

24

56

9

26

“Barnes-Hut” N-body problem solver [BH86],
translated from C into Standard ML by John

Reppy.
Standard theorem-prover

mark [BM72], translated
Gabriel benchmark [Gab85].

CML implementation of prime number gener-

bench-

from the

ator written by John Reppy [Rep91].

An implementation of the Knuth—Bendix
completion algorithm, implemented by
Gerard Huet, processing some axioms
of geometry.

A lexical-analyzer generator, imple-
mented by James S. Mattson and David
R. Tarditi [AMT89], processing the lexical de-
scription of Standard ML.

The game of Life, written by Chris Reade and
described in his book [Rea89], running 50 gen-
erations of a glider gun.

A simple ray tracer written in C by Don
Mitchell, translated into Standard ML by
John Reppy.

A spherical fluid-dynamics program, devel-
oped as a “realistic” FORTRAN bench-
mark [CHR78], translated into ID [EAS87],
and then translated into Standard ML by Lal
George.

A Very-Long-Instruction- Word
tion scheduler written by John Danskin.

instruc-

A LALR(1) parser generator, implemented by
David R. Tarditi [TA90], processing the gram-
mar of Standard ML.

The Mandelbrot curve construction written
by John Reppy.

The pseudoknot program that computes the
three-dimensional structure of part ofa nu-
cleic acid molecule [FTL94], translated from
Scheme into Standard ML by Peter Lee.

CHAPTER 2. BACKGROUND 25

run as its final performance data (as recommended, for example, by the SPEC benchmark
consortium [Sta89]).

All compilers mentioned in this dissertation use a simple two-generation copying garbage
collector [App89]. Available memory is divided into two half-spaces, and allocation occurs
at the low end of the upper space (called new space). When the new space becomes full, all
live data in the new space is appened into the other, old space, but it typically does not fill
up the old space. The allocator then reset to begin filling the new space again. After some
number of these minor collections, the old space occupies half the total available memory,
though much of its data will no longer be live.

Garbage collection time can be very much dependent on heap size. In our measurements,
for each benchmark, every version of the compiler is run in the same amount of memory
(not the same ratio) so that improvements in space usage become improvements in garbage
collection time. The amount of memory used for each benchmark is based on a ratio of 5

for the “base case” version.

Chapter 3
Type-Directed Compilation

Compile-time type information should be valuable in efficient compilation of statically typed
functional languages such as Standard ML. But how should type-directed compilation work
in real compilers, and how much performance gain will type-based optimizations yield? In
order to support more efficient data representations and gain more experience about type-
directed compilation, we have implemented a new type-based middle end and back end for
the Standard ML of New Jersey compiler. This chapter describes the basic design of the
new compiler, identify a number of practical issues, and then compare the performance of
our new compiler with the old non-type-based compiler. Our measurement shows that a
combination of several simple type-based optimizations reduces heap allocation by 36%;
and improves the already-eflicient code generated by the old non-type-based compiler by
about 19% on a DECstation 5000.

3.1 Introduction

Compilers for languages with run-time type checking, such as Lisp and Smalltalk, must often
use compilation strategies that are oblivious to the actual types of program variables, simply
because no type information is available at compile time. For statically typed languages
such as Standard ML (SML) [MTH90], there is sufficient type information at compile time
to guarantee that primitive operators will never be applied to values of the wrong type.
But, because of SML’s parametric polymorphism, there are still contexts in which the types
of (polymorphic) variables are not completely known. In such cases, the program can
still manipulate values without inspecting their internal representation. But to manipulate
them (pass them as arguments, store them in data structures, etc.), it is necessary to know

their size. The usual solution is to discard all the static type information and adopt the

CHAPTER 3. TYPE-DIRECTED COMPILATION 27

approach used for dynamically typed languages, that is, to represent all program variables
using a standard bozed representation. This means that every variable, every function
closure, and every argument to a function, is represented in exactly one word. If the natural
representation of a value does not fit into one word (as with a floating-point number, etc.),
a pointer to a heap-allocated object is used instead. This is a source of great inefficiency.
Leroy [Ler92] has recently presented a representation analysis technique (for core-ML)
that does not always require variables be boxed in one word. In his scheme, data objects
whose types are not polymorphic can be represented in multiple words or in machine reg-
isters; only those variables that have polymorphic types must use boxed representations.
When polymorphic functions are applied to monomorphic values, the compiler automati-
cally inserts appropriate coercions (if necessary) to convert polymorphic functions from one

representation to another. For example, in the following SML code:

fun quad (£, x) = (£(£(£(£(x)))))
fun h x = x * x * 0.50 + x * 0.87 + 1.3

val res = h(3.14) + h(3.84) + quad(h , 1.05)

quad is a polymorphic function with type Va.(((o — a) *) — a); all of its four calls
to f must use the standard calling convention—passing its argument in a general-purpose
register. On the other hand, & is a monomorphic function with type real — real, so all
monomorphic applications of & (e.g., in ~(3.14) and h(3.84)) can use a more efficient calling
convention—passing its argument z in a floating-point register. When A is being passed
to the polymorphic function quad (e.g., in quad(h,1.05)), h has to be wrapped to use the
standard calling convention so that f will be called correctly inside gquad.

Representation analysis makes possible many interesting type-based compiler optimiza-
tions. But, since no existing compiler has fully implemented representation analysis for the
complete SML language, many practical implementation issues are still unclear. For exam-
ple, while Leroy [Ler92] has shown in detail how to insert coercions for core-ML, he does
not address the issues in the ML module system, that is, how to insert coercions for functor
application and signature matching (see Section 2.2.7). Propagating type information into
the middle end and back end of the compiler can also incur large compilation overhead if
it is not done carefully, because all the intermediate optimizations must preserve the type
consistencies. In order to answer these questions and to gain more experience with type-
directed compilation, we have implemented a new type-based middle end and back end for

the Standard ML of New Jersey compiler (SML/NJ) [AMO91]. In this chapter, we describe

CHAPTER 3. TYPE-DIRECTED COMPILATION 28

the basic design of our new compiler, identify and solve a number of practical problems in-
volved in the implementation, and then present a detailed performance evaluation of various

type-based compilation techniques. The major contributions of this chapter are as follows:
e Our new compiler is the first type-based compiler for the entire Standard ML language.

o We extend Leroy’s representation analysis to the SML module language to support

module-level abstractions and functor applications.

o We improve compilation speed and code size by using partial types at module bound-

aries, and by memo-izing coercions.

e We evaluate the utility of minimum typing derivations [Bjo94]—a method for elimi-

nating unnecessary “wrapper” functions introduced by representation analysis.

e We show how the type annotations can be simplified in successive phases of the com-
piler, and how representation analysis can interact with the Continuation-Passing

Style used by the SML/NJ compiler’s optimizer.

e We compare representation analysis with the crude (but effective) known-function

parameter specialization implemented by Kranz [Kra87].

e OQur measurements show that a combination of several type-based optimizations re-
duces heap allocation by 36%, and improves the already-efficient code generated by
the old non-type-based compiler by about 19%.

3.2 Data representations

The most important benefit of type-directed compilation is to allow data objects with spe-
cialized types to use more efficient data representations. In this section, we explain in detail
what the standard boxed representations are, and what other more efficient alternatives one
can use in type-based compilers.

Non-type-based compilers for polymorphic languages, such as the old SML/NJ com-
piler [AM91], must use the standard boxed representations for all data objects. More
specifically, primitive types such as integers and reals are always tagged or boxed; every
argument and result of a function, and every field of a closure or a record, must be either
a tagged integer or a pointer to other objects that use the standard boxed representations.
For example, in Figure 3, the value z is a four element record containing both real numbers

and strings, each field of z must be boxed separately before being put into the top-level

CHAPTER 3. TYPE-DIRECTED COMPILATION 29

val x = (451, " hello", 3.14, " world") val y = (451, 3.14, 2.87)

val z = [(4.51, 3.14), (4.51, 2.33), ..., (7.81, 3.45)]

451 || 314| | am || 233 | 7.81

Figure 3: Standard boxed representations

record. Similarly, y is record but containing only real numbers, but each field still has to
be separately boxed under standard boxed representations. For concrete data types such
as variable z in Figure 3, each element of z must again be boxed using standard boxed

representations.

val x = (4.51, "hello", 3.14, "world") valy = (4.51, 3.14, 2.87)

Y7 a5 | 314 | 267

Figure 4: Flat unboxed representations with simple descriptors

In a type-based compiler, because we know the types of program variables, we can use

much more efficient data representations, depending on how complicated a descriptor we

CHAPTER 3. TYPE-DIRECTED COMPILATION 30

want to support at runtime!. For example, in the SML/NJ compiler [App90, Rep93, AM91],
the descriptor for runtime objects is just a kind tag plus the length of the object; each object
may contain tagged/boxed objects, or untagged /unboxed objects, but not both. Under this
scheme, records that contain only real numbers can be represented as real vectors (e.g., y in
Figure 4); records that contain both unboxed values (i.e., real numbers) and boxed values
(i.e., pointer to a string, etc.) must be still represented using two layers, with an extra box

around each real number (e.g., z in Figure 4).

val x = (4.51, " hello", 3.14, "world") val x = (4.51, " hello", 3.14, "world")

S FTARETIN RENETINN

“world’| *hello” | | "world"

(a) naiveway with bitmap descriptor (b) reordering fields, with more compact descriptor

Figure 5: Flat unboxed representations with sophisticated descriptors

If more sophisticated object descriptors are used, z can be represented even more effi-
ciently, as shown in Figure 5. A naive way is to use a bitmap descriptor to indicate the
boxity of each field, then the unboxed real numbers can just be mixed arbitrarily with other
pointers (see Figure 5a); the problem with this is that it is quite expensive for the garbage
collector to interpret the descriptor. Because we know the type of each element statically
at compile time, a better way is to reorder all the fields to put all unboxed fields ahead of
boxed fields (see Figure 5b); the descriptor for this kind of object is just two integers: one
indicating the length of the unboxed part, another indicating the length of the boxed part.

For concrete data types such as the list z in Figure 3, more efficient data representations
are also possible. If we know z has type (real*real) list, z can be represented more compactly
as shown in Figure 6a or Figure 6b. The major problem with these is that when z is passed

to a polymorphic function such as the unzip function:

fun unzip 1 = let fun h((a,b)::r,u,w) = h(r,a::u,b::w)
| h([d,u,w) = (rev u, rev w)
in h(1,01,0[D)

end

! For statically typed languages such as SML, the descriptors kept at runtime are only used by the garbage
collector to trace pointer data structures.

CHAPTER 3. TYPE-DIRECTED COMPILATION 31

val z = [(4.51, 3.14), (4.51, 2.33), ..., (7.81, 3.45)]

@ z

451 | 233 781 | 345

(b)

| 451 | 314 | }—= 451 | 233 | |+ 781 | 345 0]

Figure 6: More compact representations for concrete data type such as list

the list z needs to be coerced from the more efficient representations (shown in Figure 6a
and 6b) into the standard boxed representation (shown in Figure 3). These coercions can
be very expensive because their costs are proportional to the length of the list. There are

two solutions to solve this problem:

e The first approach—proposed by Leroy [Ler92]—is to use standard boxed representa-
tions for concrete data type objects. In other words, even though we know z has type
(real * real) list, we still represent z in the way shown in Figure 3, with each car cell
pointing to an object that uses standard boxed representation. For example, if pairs
such as (4.51,3.14) are normally represented as flat real vectors, when they are be-
ing added to (or fetched from) a list, they must be coerced from flat representations to
(or from) standard boxed representations. The type-based compiler described in this
paper also uses this approach. The LEXP language described later in Section 3.5.1
has special type called RBOXEDty to express such requirements.

e Another approach, described by Harper and Morrisett [HM95], is to represent concrete
data types using more efficient representations as shown in Figure 6. When 2z is being
passed to unzip, we also pass a type descriptor to unzip indicating how to extract each
car field of z. How well this approach behaves in practice is still not clear (see more

discussion in Section 3.8).

3.3 Overview of the compiler

This section gives an overview of our new type-based compiler. The overall organization of
the new compiler is very similar to the old Standard ML of New Jersey compiler described

by Appel and MacQueen [AM91]. Compilation of an SML program is grossly divided into

CHAPTER 3. TYPE-DIRECTED COMPILATION 32

Standard M. Source Program

lexical analysisand syntactic analysis - -------------~ | Lexer and Parser |
Raw Abstract Syntax
elaboration of the module and core language 1,

type inference and type checking
minimum typing derivations

************** | El aborat or and Type-checker

Abstract Syntax (Absyn) _._._...___. ML Semantic Objects and Types
inserting coercions for representation analysis v
trandating Absyninto LEXPwithLTY _______________ | Lanbda Transl at or |
inlining primitive operations
compilation of pattern matches W
Typed Lanbda Language (LEXP)---------------- LEXP Types (LTY)

representations for records and concrete datatypes
converting LEXPinto CPSwithCTY --------------- |

CPS Converter |

argument-passing conventions for function calls W

Conti nuation-Passing Style (CPS)--------------~ CPS Types (CTY)
contractions, eta-reductions, beta-reductions 1' /// 1//
classic dataflow optimizations ~ -~ - -------- | CPS Opti mi zer |)
uncurrying, inline expansions, loop-unrolling W e)/

Conti nuati on-Passing Style (CPS)------ ’ //'
closure strategies and representations - -------------- | Cl osure Converter |)/

Cl osure-Passing Style (CLO-------- !

register spilling and allocation ~~ _______________ | Machi ne Code Gener at or |
machine code scheduling and generation W

Target Binary Machi ne Code

Figure 7: Overview of the new type-based SML/NJ compiler

the following seven phases (as shown in the center column of Figure 7), with each phase

denoting certain set of program transformations:

Parsing The input stream of the SML source program is broken into tokens by a lexical
analyzer, and then parsed according to a context-free grammar. This phase rewrites
the source program into the raw abstract syntazx tree (Ast)—an intermediate language
that looks very much like the concrete syntax except that all of its punctuation tokens

are discarded.

Elaboration and Type-Checking The raw abstract syntax tree does not contain any

static semantic information; furthermore, it contains syntactic sugar and derived

CHAPTER 3. TYPE-DIRECTED COMPILATION 33

forms. This phase elaborates all program declarations and specifications (e.g., mod-
ules, module interfaces, type and value declarations, etc.) into semantic objects ac-
cording to the static semantics [MTH90]; the types of all program variables are in-
ferred and checked using the ML type inference algorithm [DM82, MTH90]. The raw
abstract syntax tree is rewritten into a more compact form called abstract syntaz (Ab-
syn). Each declaration in Absyn is annotated with its corresponding static semantic
or type information calculated during elaboration. To support representation analy-
sis, the Absyn in our new compiler also remembers the details? of each abstraction

and instantiation in the program. The details are described in Section 3.4.

Lambda Translation In this phase, the abstract syntaz Absyn, annotated with static se-

CPS

mantic information, is translated into a strict call-by-value lambda calculus (LEXP)
augmented with data constructors, records, and primitive operators. Unlike the un-
typed lambda language used in the older SML/NJ compiler [AM91], LEXP is explicitly
typed using a simple monomorphic type system (to be described in Section 3.5). The
type information in LEXP is converted directly from the static semantic information
attached to the Absyn. Coercion functions (in the same style as Leroy’s [Ler92]) are
inserted at each abstraction and instantiation site to correctly support abstraction
and polymorphism. In addition, this phase also inserts the proper implementation
of each equality test and assignment operator, and does pattern-match compilation.

The details are described in Section 3.5.

Conversion In this phase, the typed lambda language LEXP is converted into
continuation-passing style (CPS). The CPS language is designed to match the execu-
tion model of a von Neumann register machine: functions in CPS can have multiple
arguments, and variables (and function arguments) correspond closely to machine
registers. Like the LEXP language, the CPS language here is also typed, but with
an even simpler set of types (i.e., CTY, described in Section 3.6). With all the LTY
information available in LEXP, this phase also determines the argument-passing con-
vention for all function calls and returns, and the representation for all records and

concrete data types. The details are described in Section 3.6.

2More specifically, everytime a polymorphic object is referenced, the compiler remembers its type instan-
tiation in the Absyn; everytime a type abstraction occurs (e.g., in functor application or signature matching),
both the actual type and the abstract type are recorded in the Absyn.

CHAPTER 3. TYPE-DIRECTED COMPILATION 34

CPS optimizations The resulting CPS expression is then fed into many rounds of CPS
optimizations [App92] such as contraction, eta-reduction, beta-reduction, inlining ex-
pansion, loop unrolling, and so on. Type correctness must be preserved during all

optimizations and transformations.

Closure Conversion This phase makes explicit the access to nonlocal variables by con-
verting CPS expressions into closure-passing style (CLO) [AJ89, App92]. CLO is al-
most the same as CPS, except that all functions in CLO do not contain free variables,
so they can be translated into machine code directly. The new closure conversion al-
gorithm described in Chapter 4 can be extended to utilize the CPS type information

to support even more efficient closure representations (see Section 3.6.4).

Machine Code Generation Finally, based on the CLO expression and the CTY infor-
mation, the compiler does register allocation and instruction scheduling, and then

writes out the machine code.

In summary, the new type-based compiler achieves type-directed compilation by per-
forming a sequence of program transformations on several typed intermediate languages.
First, the source program (Absyn) annotated with static semantics is translated into an
intermediate lambda language (LEXP) annotated with simple monomorphic types (LTY);
all module constructs and polymorphic functions are translated into simple lambda func-
tions and records using Leroy’s representation analysis [Ler92]. The lambda expression is
then converted into continuation-passing style (CPS) annotated with an even simpler CPS
types (CTY); this conversion also determines the representation of records and concrete
data types, and the argument-passing convention for function calls and returns, based on
the LTY information. The very back end of the compiler then uses the CTY information

to help generate more efficient code.

fun square (x : real) = x * X

fun sumsquare (1 : real list) = let fun h ([1, s : real) = s
| h (a::r, s) = h(r, ats)
in h(map square 1, 0.0)
end

Figure 8: Front end issues in core language

CHAPTER 3. TYPE-DIRECTED COMPILATION 35

3.4 Front end issues

The main task of the front end (the first two phases in Figure 7) is parsing and elaboration.
Elaboration determines whether the source program is well-typed and well-formed according
to the Definition [MTH90], and records relevant semantic or type information in the static
environment. In a type-based compiler, elaboration must also remember the details of each
abstraction and instantiation (for both types and modules) in the program in order to

implement module constructs and polymorphic functions.

signature SIG = sig type t
val p : t
val £ : t > (t * t)
end

structure S = struct type t = real * real

val p = (3.0, 4.0)
fun f x = (x, p)
val q = 1.0

end

functor F(A : SIG) = struct val r = (A.£(A.p), A.p)
end

structure U : SIG

abstraction V : SIG
structure W = F(S)

Figure 9: Front end issues in module language

3.4.1 Core language

Previous ML compilers cannot take advantage of static type information because they do
not know how to deal with polymorphism. Leroy’s representation analysis technique [Ler92]
solves this problem by memorizing the actual instantiation of every polymorphic type and
then inserting proper coercions later. Qur compiler does the same. FEach polymorphic
variable and data constructor expression (or pattern) in the abstract syntaz (Absyn) is
annotated with two ML types (gathered during type inference): one is the polymorphic
type itself, the other is its actual instantiation at this particular use. For example, in
the SML program shown in Figure 8, where map is the standard map function on lists

with polymorphic type VaV§.(a — §) — (a list — (list); map is annotated with this

CHAPTER 3. TYPE-DIRECTED COMPILATION 36

polymorphic type, plus its instantiation (real — real) — (real list — real list). Similarly,

(A5

the data constuctor, “::”, is also annotated with its original polymorphic type Va.(a *

a list) — a list plus its instantiation (real x real list) — real list.

Table 3: Signature matching is transparent

type in structure U type in structure §
f | (real x real) — ((real * real) * (real * real)) | Va.ao — (a (real x real))
p | real * real real * real

Table 4: Abstraction matching is opaque

type in structure V | type in structure §
flt—=(txt) Va.oo — (a * (real * real))
p |t real * real

3.4.2 Module language

The SML module language contains many instances of type abstractions and type instanti-
ations, all of which must be dealt with carefully in order to correctly support type-directed
compilation. In SML, basic modules, called structures, are encapsulated environments; mod-
ule interfaces, called signatures, are environments associating specifications with component
names and are used to both describe and constrain structures. Parameterized modules,
called functors, are functions from structures to structures. A functor’s argument is speci-
fied by a signature and the result is given by a structure expression, which may optionally
be constrained by a result signature. There are four module constructs where abstraction
and instantiation may occur: signature matching, abstraction declaration, functor applica-
tion, and functor signature matching (used by higher-order modules [Tof92, MT94]). In the
following, we use the example in Figure 9 to explain what information must be recorded in

the abstract syntax tree during the elaboration phase:

e Signature matching checks that a structure fulfills the constraints specified by a sig-
nature, and creates a new instantiation structure that is a restricted “view” of the
original structure. The elaboration phase automatically generates a thinning func-

tion that specifies all the visible components and their types (or thinning functions

CHAPTER 3. TYPE-DIRECTED COMPILATION 37

if there are substructures) in the original structure, and their new types in the in-
stantiation structure. For example, in Figure 9, U is bound to the result of matching
structure S against signature SIG. Because signature matching in SML is transpar-
ent [MT91, Ler94, HL94], f and p in the instantiation structure U respectively have
type (real * real) — ((real * real) = (real * real)) and real * real (see Table 3). These
new types and their old types in structure S (shown in Table 3) will be recorded in

its thinning function.

e Abstraction is treated the same as signature matching. Because matching for ab-
straction is opaque [MT91, Ler94, HL94], the elaboration phase also records the result
signature in addition to the thinning function. For example, in Figure 9, V is an
abstraction of structure S on signature SIG. V remembers the thinning function gen-
erated for doing signature matching of 5" against SIG, plus the actual signature SIG.
During the elaboration of this abstraction, the type of fin S, Va.a — (ax(realxreal)),
is first instantiated into (real+real) — ((realxreal)*(real+real)) in signature matching,

and then abstracted into ¢t — (¢ x¢) (see Table 4).

e Each functor application must remember its argument thinning function and its actual
instantiation functor. For example, functor F’ in Figure 9 takes SIG as its argument
signature, and returns a body structure that contains a value declaration r; the type
of ris (Al+ Al)* Al. When F is applied to structure 5, first, S is matched against
the argument signature SIG to get the actual argument instance, say S'; then, the
elaborator reconstructs a new body structure (for F'), say B’, assuming 5’ is the
argument A. The component r in B’ has type ((real * real) * (real * real)) * (real *
real). The elaborator records both the thinning function generated when S is matched
against SIG, and the actual functor instance of F, which has S’ as its argument, B’

as its result.

e Functor signatures are essentially “types” of functors. Given a functor signature
FSIG = (X : ASIG) : RSIG, and a functor F', elaborating functor signature matching
“functor G : FSIG = F” is equivalent to elaborate the functor declaration “functor
G(X: ASIG) : RSIG = F(X).” Therefore, for each functor signature matching,
the elaborator memorizes everything occurred in functor application F(X) (see the
case for functor application) plus the thinning function generated for matching F(X)

against the result signature RSIG.

CHAPTER 3. TYPE-DIRECTED COMPILATION 38

3.4.3 Minimum typing derivation

Like the Damas-Milner type assignment algorithm W [DMS82], The elaboration phase in
our compiler also infers the most general type schemes for all SML programs. As a result,
local variables are always assigned the most polymorphic types, even though they are used

much less polymorphically. For example,

fun f(u,v) = let fun equal(x, y, z) = ((x=y) andalso (y=z))
in equal(u*2.0, v#3.0, u+v)
end
variable f has type realxreal — bool, the let-bound function equalis assigned a polymorphic
type, Va.(a* axa) — bool (assuming « is an equality type variable), even though it is only
used monomorphically with type (real * real * real) — bool.

We have implemented a “minimum typing derivation” phase in our compiler to give
all local variables “least” polymorphic types. The derivation is done after the elaboration
so that it is only applied to type-correct programs. Qur algorithm, which is similar to
Bjorner’s algorithm M [Bjo94], does a bottom-up traversal of the abstract syntax Absyn.
During the traversal, we mark all variables that are local (e.g., let-bound) or hidden because
of signature matching. For each marked polymorphic variable v, we gather all of its actual
type instantiations, say 7, ..., T, and reassign v a new type—the least general type scheme
that generalizes 7y, ..., 7,. The new type assigned to v is then propagated into v’s declaration
d, constraining other variables referenced by d.

In the above example, the let-bound equal function will be reassigned a new type (real*
realxreal) — bool. Thus, the “=" operator can now be implemented as the primitive equality
function on real numbers, which is much more efficient than the polymorphic equality
operator. Moreover, because equal is no longer polymorphic, no coercion is necessary when

it is applied to monomorphic values.

3.5 Translation into LEXP

The middle end of our compiler translates the abstract syntax Absyn into a simple typed
lambda language called LEXP. During the translation, all the static semantic objects in Ab-
syn, including types, signatures, structures, and functors, are translated into simple Lambda
types (LTY); coercions are inserted at each abstraction and instantiation site (marked by
the front end) to correctly support representation analysis. In this section, we explain the
details of our translation algorithm, and present solutions to several practical implementa-

tion problems.

CHAPTER 3. TYPE-DIRECTED COMPILATION 39

datatype 1ty = INTty | REALty | RECORDty of 1ty list
| ARROWty of 1ty * 1ty | BOXEDty | RBOXEDty

type var = int
datatype ’a option = NONE | SOME of ’a
type dataconstr = conrep * 1ty

datatype con = DATAcon of dataconstr | INTcon of int
| REALcon of string | STRINGcon of string
datatype lexp = VAR of var | INT of int | REAL of string
| STRING of string | PRIM of primop * lty
| FN of var * 1ty * lexp | APP of lexp * lexp
| FIX of var list * 1ty list * lexp list * lexp
| SWITCH of lexp * conrep list * (con * lexp) list * lexp option
| CON of dataconstr * lexp | DECON of dataconstr * lexp
| RECORD of lexp list | SELECT of int * lexp
| RAISE of lexp * 1ty | HANDLE of lexp * lexp
| WRAP of 1ty * lexp | UNWRAP of 1ty * lexp

Figure 10: The typed lambda language LEXP

3.5.1 The typed lambda language LEXP

An Lambda expression (LEXP) (i.e., the data type lezp shown in Figure 10) can be any of
the following;:

e a variable (VAR), a integer (INT), a real number (REAL), a string (STRING), or a prim-
itive operator (PRIM);

e a lambda abstraction FN(v,t,e) where v is the argument, { is the argument type,

and e is the function body;
e a function application (APP);

e a set of mutually recursive function definitions (FIX) where where var list denotes
the function names, 1ty list denotes the types of these functions, and lexp list

denotes the corresponding function definitions;

e a SWITCH expression that detects which constant or data constructor (from the
(conxlexp) list) was used to build a data type value, and then evaluates the cor-

responding expression (see Appel [App92] for details);

CHAPTER 3. TYPE-DIRECTED COMPILATION 40

e a data constructor applied to an argument (CON, the injection), or a value-carrying
data constructor removed from an argument (DECON, the projection), where each data
constructor (dataconst) is essentially a constructor representation (conrep) plus its

Lambda type information;
e a RECORD expression with each field being an evaluated expression;
e a SELECT(i,e) expression that selects the ith field of an evaluated expression e;

e the RAISE-ing of an exception (annotated with the result type), or the evaluation of

an expression in the scope of an exception HANDLETr;

e a primitive wrapper expression WRAP(t,e) that wraps an evaluated expression e with

type t into exactly one word;

e a primitive unwrapper expression UNWRAP (t,e) that unwraps an evaluated expression

e into the natural unboxed representation with type ¢.
A Lamda-type LTY (i.e., the data type Ity shown in Figure 10) can be:

e a primitive integer type INTty, or a primitive real type REALty;

a record type RECORDty (1) where the types of its fields are specified by I;

a functor type ARROWty(t,s) where { is the argument type and s is the result type;

a machine-level pointer type BOXEDty that points to objects with arbitrary represen-

tations;

e a special machine-level pointer type RBOXEDty that can only point to objects with
standard boxed representations; the details of how and where to use RBOXEDty are

discussed in Section 3.5.2

The LTY information essentially characterizes all the possible data representations used
at runtime. In order to support coercion of data objects from one representation to another,
we define a coerce operation on our lambda language, just like the “wrap” and “unwrap”
functions used by Leroy [Ler92]. More specifically, coerce is a compile-time operation; given
two LTYs ¢; and ¢, coerce(ty,13) returns a coercion function that coerces one lexp with

type t; into another lexp with type t5:

o If {1 and {3 are equivalent, no coercion is necessary, coerce(ty,13) returns the identity

function.

CHAPTER 3. TYPE-DIRECTED COMPILATION 41

o If one of {; and {; is BOXEDty, this requires coercing an arbitrary unboxed object
into a pointer (or vice versa); the coercion here is a primitive WRAP or UNWRAP op-
eration, written as coerce(BOXEDty,{2) = Ae.UNWRAP({3,€) and coerce(t;,BOXEDty) =
Ae.WRAP(1q,€e).

o If one of {; and ¢, is RBOXEDty, this requires coercing an arbitrary unboxed object
into a pointer (or vice versa); moreover, the object itself must be coerced into stan-
dard boxed representation (or vice versa); this coercion is similar to the recursive
wrapping operations defined by Leroy [Ler92]. It is defined as coerce(RBOXEDty, {3) =
coerce(dup(tz),12), and coerce(t;,RBOXEDty) = coerce(ty, dup(ty)), where the function
dup is defined as follows:

— dup(RECORDty[z1, ..., 2,,]) = RECORDty[RBOXEDty, ..., RBOXEDty];
— dup(ARROWty(z1,z2)) = ARROWty(RBOXEDty, RBOXEDty);
— dup(z) = BOXEDty, for all other LTY =.

e If {; = RECORDty[ay, ..., @] and {3 = RECORDty[ry, ..., 7], we first build a list of coer-
cions [c1, ..., ¢,] for every field, where ¢; = coerce(a;,r;) for ¢ = 1,...,n. Assume v is
a new lambda variable that corresponds to the old record, then the coercion from t;
to ty is Ae.LET(v, e, RECORD[f1, ..., f]) where each field of the new record is defined as
fi = ¢;(SELECT(7,VAR v)) for ¢ = 1, ..., n. Here the LET(x,y,2z) expression is an LEXP
idiom, equivalent to the expression APP(FN(x,BOXEDty,z),y).

e If t; = ARROWty(ay,71) and t; = ARROWty(ag,72), we first build the coercions ¢,
and ¢, for both the argument and the result, that is, ¢, = coerce(az,a;) and ¢, =
coerce(ry,T3); then assume w and v are two new lambda variables, the coercion from

11 to ty is Ae.FN(u,aq,LET(v, APP(e,c, (VAR u)),cp(v))).

3.5.2 Translating static semantic objects into LTY

The abstract syntax (Absyn) is translated into the lambda language LEXP through a
simple top-down traversal of the Absyn tree. During the traversal, all static semantic types
used in Absyn must be translated into LTYs. A signature or structure object s is translated
into RECORDty where each field is the LTY translated from the corresponding component
in s; a functor object is translated into ARROWty with the argument signature being the
argument LTY, and the body structure being the result LTY. The translation of an ML
type t into LTY is done using the following algorithm (see the function ty2lty in Figure 11
for the pseudo code):

CHAPTER 3. TYPE-DIRECTED COMPILATION 42

fun ty2lty(t) =
(mark all type variables in t that ever appear in a constructor type;
return 1ty(t))

fun 1ty(Va.o) = lty(o)

ey({ly: 7, ..., ln:73}) = RECORDty[1lty(m), ..., 1ty(m,)]
1ty(r — m) = ARROWty(1lty(m),lty(m))

lty(int) = INTty

lty(bool) = INTty

lty(unit) = INTty

lty(real) = REALty

1ty(a) = if « is a marked type variable then RBOXEDty else BOXEDty
1ty(t) = if the constructor type ¢ is rigid then BOXEDty else RBOXEDty

Figure 11: Translating ML type into LTY

signature VECTOR = sig type ’a vec
val tabulate : (int -> ’a) -> ’a vec
val vdotvp : real vec * real vec —> real
end

functor F(V : VECTOR) = struct val v
val z

V.tabulate(fn
V.vdotvp(v,v)

=> 1.0)

end

structure V3 = struct
type ’a vec = ’a * ’a * ’a
fun tabulate f = (£ 0, £ 1, f 2)
val vdotvp((xl:real,x2,x3),(y1,y2,y3)) = (x1*yl+x2%y2+x3*y3)
end

structure S = F(V3)

Figure 12: Flexible constructor type must be recursively boxed

e Type variables in ¢ are divided into two kinds: those that ever appear in constructor
types,® such as a in type (a * a list) — « list or 3 in type (8 ref * 3) — unit,
are translated into RBOXEDty; all other type variables, such as v in v* v — 7, are

translated into BOXEDty;

«

*Record type constructors and function type constructors (“—7”) are not counted here.

CHAPTER 3. TYPE-DIRECTED COMPILATION 43

o If ¢ is a polymorphic type, with the form as Vay...Ya,,.7, all quantifications are just

ignored; the LTY for ¢ is just the LTY translated from 7.

e Primitive types int, bool and unit are translated into INTty; real is translated into

REALty; all other primitive types are translated into BOXEDty;

e The arrow type constructor “—” for functions is translated into ARROWty; the record

type constructor is translated into RECORDty, with its fields by symbolic label.

e All rigid constructor types,* such as ByteArray, a list, and (real * real) ref, are trans-

lated into BOXEDty;
o All flexible constructor types are translated into RBOXEDty.

For example, the signature VECTOR in Figure 12 is translated into the LTY #; =
RECORDty [lg,13], in which the component tabulate has the LTY ¢, and the component
vdotvp has the LTY t3, where

t, = ARROWty (ARROWty (INTty,RBOXEDty),RBOXEDty),

{3 = ARROWty (RECORDty [RBOXEDty, RBOXEDty],REALtY).

Functor F' is translated into the LTY ¢4 = ARROWty ({1, t5), where the result type is the
LTY t5:

{5 = RECORDty [RBOXEDty, REALty].
Structure V3 has the LTY {g = RECORDty [{7,{g], in which the component tabulate has the
LTY t7 and the component vdotvp has the LTY tg where

{7 = ARROWty (ARROWty (INTty,BOXEDty), RECORDty[BOXEDty, BOXEDty, BOXEDty]),
ts = ARROWty (RECORDty [to, fg], REALtY),

to = RECORDty [REALty, REALty, REALtY].
Finally, the result structure S from functor application F(V3) has the LTY ¢;o where

t10 = RECORDty [tg, REALty].

To understand why flexible constructor types (with arity > 0) must be translated into
RBOXEDty, let us look at the functor F' in Figure 12 more closely. Here, the type ’a vec

in the argument signature is flexible, and we do not know its exact data representation

*Following the Definition and Commentary [MTH90, MT91], all type constructor names, defined as type
specification in signatures, are flexible; all other type constructor names are rigid.

CHAPTER 3. TYPE-DIRECTED COMPILATION 44

until we know the actual instantiation of ’a vec at functor application time. But, in the
body of functor F, the type ’a vec may be instantiated into real vec, as is done in the

function application “V.tabulate(fn _ => 1.0).” Clearly, since we do not know how to

coerce between ’a vec and int vec, they must use exactly the same data representation,
that is, the standard boxed representation.

Flexible constructor types are abstract; during the signature matching or functor appli-
cation, they may be instantiated into any type. For example, type ’a vec in the functor
signature of F' is instantiated intto a tuple type “’a * ’a * ’a” (see the definition of
structure V3in Figure 12) during functor application F(V3).

Rigid constructor types, however, can only be concrete data types. This is because if
a rigid constructor type is bound to a non-data-type SML type, it must be done through
type abbreviation. But all type abbreviations are expanded during elaboration (see Defini-
tion [MTHO90]).

As we discussed in Section 3.2, concrete data types—whether they are polymorphic or
not—always use the same data representations. If a data object needs to be put into or
fetched out of a certain concrete data type representation, it must be recursively “wrapped”
or “unwrapped.” This is why type variables that appear in constructor types are translated
into RBOXEDty. By doing this, expensive coercions between polymorphic and monomorphic

data type objects can be avoided.

3.5.3 Translating Absyn into LEXP

Now that we have explained how to translate static semantic objects into LTY and how to

coerce from one LTY to another, the translation of Absyn into LEXP is straightforward:

polymorphic variables: Given a polymorphic variable » in Absyn, the front end has
annotated every use of v with its polymorphic type o plus its actual instantiation 7.
Assume that ¢ and 7 are translated into LTYs s and ¢, variable v is then translated

into the LEXP expression coerce(s,t)(VAR v).

pattern matching: Pattern matches are compiled in the same way as in the old com-
piler [AR92, AM91, App92]. The only difference is that we have to insert coercions

around polymorphic data constructor projections (DECON) (see the next item).

polymorphic data constructors: Polymorphic data constructors are treated the same
as polymorphic variables except that coercions are applied to data constructor injec-

tions (CON) and projections (DECON). For example, the projection function for the list

CHAPTER 3. TYPE-DIRECTED COMPILATION 45

cons constructor “::” appearing in function h in Figure 8 has the polymorphic type

Va.a list — (o « list); this is translated into the LTY:
s = ARROWty(BOXEDty,RECORDty [RBOXEDty, BOXEDty]).

But this projection function for :: is instantiated into type real list — (real* real list),

which is translated into the LTY:
{ = ARROWty(BOXEDty RECORDty [REALty, BOXEDty]),

so the :: projection must be coerced from s to ¢ before being applied to the actual

argument list.

polymorphic primitive operators: Polymorphic primitive operators whose implemen-
tations are known at compile time can be specialized based on their actual type
instantiations. For example, polymorphic equality, if used monomorphically, can be
translated into primitive equality; integer assignments and updates can use unboxed
update;® the function composition operator can be nicely specialized, avoiding many

expensive coercions.

signature matching: Suppose structure S is matched against signature SIG, and U is the
result instantiation structure; then the thinning function generated by the front end
is translated into a coercion ¢, which fetches every component from .5, and coerces it
to the type specified in U. If S is denoted by v, then the translation of this signature

matching is simply ¢(v).

abstraction: Abstraction is translated in the same way as signature matching, except that
the result ¢(v) must also be coerced into the LTY for the signature SIG. Assume that
the LTYs for U and SIG are respectively u and s, then the abstraction of structure

S under SIG is (coerce(u,s))(c(v)).

functor application: Suppose the argument signature of functor F is SIG and F is applied
to structure S. The front end has recorded the thinning function for matching 5
against SIG and the actual functor instance F’ for F. As before, assume the result
of matching S against SIG is ¢(v), and F is denoted by the LEXP expression f, and
the LTYs for F and F’ are respectively s and ¢, then the LEXP expression for F” is
f = (coerce(s,t))(f), and functor application F(9) is translated into APP(f’, ¢(v)).

°In order to support generational garbage collection [LH83, Ung86], most compilers must do some book-
keeping at each update so that the pointers from older generation to youngest generation are correctly
identified. Unbozed update is a special operator that always assigns an unboxed value into a reference cell;
unlike other updates, unboxed updates will not introduce any new pointers, thus no extra bookkeeping is
necessary.

CHAPTER 3. TYPE-DIRECTED COMPILATION 46

3.5.4 Practical issues

In practice, a naive implementation of the above translation algorithm can lead to partic-
ularly large LEXP expressions, because of large LTYs and excessive coercion code. This
problem is extremely severe for programs that contain many of the functor applications,
and large structure and signature expressions. For example, the top-level linking program
for the SML/NJ compilation manager CM [HLPR94] contains only 78 lines of source code
and 9 functor applications, but many signatures involved (they are externally defined) are
extremely large. As a result, its LEXP expression is several orders of magnitude larger
than its Absyn form. This makes the compilation of such programs become several orders
of magnitude slower, and makes it consume an intolerably large amount of memory.

The simplest way to decrease the size of coercion code is to avoid unnecessary eta
redezes introduced by the coerce procedure. We make sure that coercing two equivalent
LTYs never introduces any coercion code. For example, suppose t; = RECORDty[aq, ...,]
and t3 = RECORDty[ry, ..., 7], then coerce(ty,t2) first builds a list of coercions for each field
¢; = coerce(a;,r;) where ¢t = 1,...,n. If all of the ¢;s are identity functions, then no coercion
code is built; otherwise everything proceeds as usual. This check is also done for coercing
two ARROWtys.

In certain cases, naive translation may drag in some large LTYs that are mostly useless.

For example, to compile the following code,

val _ = (Compiler.Control.CG.calleesaves := 3;
Compiler.AllocProf.reset())

we really only need know that variable calleesaves has type int, and variable reset has
type unil — wunil. However, our translation algorithm will have to include the type of
structure Compiler which may contain hundreds of components. So we extend the Ity and

lexp language in Figure 10 with the following new constructs:

datatype 1ty = | GRECty of (int * 1lty) list | SRECORDty of 1ty list

datatype lexp = | SRECORD of lexp list

Here, SRECORDty and SRECORD are same as RECORDty and RECORD, except that they are
used particularly for module constructs (i.e., structure and signature objects). The GRECty
LTY is used to type external structures such as the above Compiler structure; each GRECty
specifies a subset of its actual fields (and their corresponding LTYs) that are interesting to
the current compilation unit. The LTYs for all external structure identifiers are inferred

during the translation phase, rather than being translated from their corresponding static

CHAPTER 3. TYPE-DIRECTED COMPILATION 47

semantic objects. For example, the LTY for structure Compiler in the above example will

be:
GRECty[(3, GRECty[(0, GRECty[(43,INTty)])]), (7, GRECty[(0, ARROWty(INTty,INTty))])]

where we assume that Control and AllocProf are respectively the 3th and 7th fields of
Compiler, CG is the Oth field of Control, calleesaves is the 43th field of CG, and reset is
the Oth field of AllocProf.

The most effective way to avoid excessive coercions is to share coercion code between
equivalent pair of LTYs. More specifically, we build a hash table during the translation
phase, with a pair of LTYs (s,?) as the index; the contents of the hash table is a lambda
variable that corresponds to a “shared” coercion code from s to ¢, expressed in an LEXP
expression as FN(z, s, (coerce(s,t))(z)). Every time we need to insert a coercion from s and
t, we check the hash table, and retrieve the corresponding lambda variable if it is in the
table; otherwise we add a new entry for this (s,?) to the table. Finally, at the end of the
translation phase, all “shared” coercions are defined in the top-level of the resulting LEXP
expression.

Coercions introduced in the coerce procedure are normally inlined in the CPS optimiza-
tion phase, because they are applied just once. “Shared” coercions are often not inlined,
because they may cause excessive code explosion. Because “shared” coercions can be more
expensive than general “inlined” coercions, we only use this hashing approach for coercions
between module objects. This compromise works extremely well in practice, mainly because
it is large module objects that are causing the “excessive coercion code” problem. Moreover,
since module-level coercions are not executed often, the generated code is not noticeably

slower.

3.6 Typed CPS back end

One nice thing about our compiler is that all seven phases (as shown in Figure 7)
are completely independent of each other. Each phase is a collection of transformations
from one intermediate form to another, thus the internal interfaces are very clean. For
example, the front end checks the source program and verify that it is well typed and
well formed according to the static semantics. The middle end, which translate Absyn
into LEXP, makes the implementation decision for pattern matching, module constructs,
and polymorphic functions; this requires translating static semantic objects into LTYs and

inserting proper coercions at all instantiation and abstraction sites, but it does not need

CHAPTER 3. TYPE-DIRECTED COMPILATION 48

datatype value = VAR of var | INT of int | REAL of string | STRING of string
datatype accesspath = DIRp | SELp of int * accesspath

datatype cexp
= RECORD of record_kind * (value * accesspath) list * var * cexp
| SELECT of int * value * var * cty * cexp
| APP of value * value list
| FIX of function list * cexp
| SWITCH of value * var * cexp list
| BRANCH of branch_prim * value list * var * cexp * cexp
| SETTER of setter_prim * value list * cexp
| LOOKER of looker_prim * value list * var * cty * cexp
| ARITH of arith_prim * value list * var * cty * cexp
| PURE of pure_prim * value list * var * cty * cexp
withtype function = fun_kind * var * var list * cty list * cexp

datatype cty = INTt | PTRt of int option | FUNt | FLTt | CHNTt

Figure 13: The typed CPS language

to worry about how records and functions (i.e. those with LTYs such as RECORDty and
ARROWty) are actually represented at runtime.

The CPS back end of our compiler contains four phases: conversion of LEXP into CPS,
CPS optimization, closure conversion, and machine code generation. The CPS conversion
phase not only converts the LEXP expression into continuation-passing style (CPS), but also
makes the implementation decisions for records, data constructors, function applications,
and switch statements.® The resulting CPS expression, annotated with CPS types (CTY),
is fed into many rounds of CPS optimization (described by Appel [App92]), and then
converted into closure-passing style (CLO) by the closure converter. Finally, based on the
CLO expression and the CTY information, the compiler does the register allocation and

instruction scheduling, and writes out the machine code.

3.6.1 The typed CPS language

Figure 13 presents the new typed CPS language (defined as the data type cezp) and the new
CPS types “CTY” (defined as the data type cty). As in the old CPS language [App92], the

9See Appel [App92] for details on how to CPS-convert data constructors and switch statements.

CHAPTER 3. TYPE-DIRECTED COMPILATION 49

arguments to a function (or primitive operators) are always values (variables or constants,

defined as the data type value). A CPS expression can be:

e a RECORD(k,ul,v,ce) expression; here, k specifies the record kind (i.e., vector, clo-
sure, etc.); ul is a list of its elements, each can be a direct value (DIRp), or a value
accessible through certain path (SELp); the result binds to a CPS variable v, which
can be referenced in the rest of the CPS expression ce; notice that the CTY of v is

not specified here, but it can always be reconstructed;

e a SELECT(i,u,v,t,ce) expression which binds the ¢th field of u to v; the CTY of v

is 1;
e a function (or a continuation) application (APP);

e a set of function definitions (FIX); each function (the type function) specifies its func-
tion kind fun_kind (i.e. continuation, escaping function, etc.), its function variable

name, its list of arguments, and the CTYs of these arguments, and the function body;
e a primitive SWITCH expression (switches on integers);
e a set of branch primitive operations (BRANCH);
e a set of primitive operations with side-effects (SETTER);

e a set of access (LOOKER), arithmetic (ARITH), and other miscellaneous (PURE) primitive
operations; each of these operations takes several arguments (value list), and binds
the result to a CPS variable with a CTY specified. The PURE operators include special
primitive “wrapper” and “unwrapper” operators for integers (iwrap and iunwrap),

reals (fwrap and funwrap), and other pointer objects (wrap and unwrap).

The CPS type language CTY is even simpler than LTY. It only specifies whether a CPS
variable is an integer (INTt), a real (FLTt), a function (FUNt), a continuation (CNTt), or a
pointer to another heap record (PTRt). The pointer type PTRt carries a length value option,
which denotes the length of the heap object it points to; if the object length is unknown
at compile time (e.g., for objects such as concrete data types or polymorphic objects), the
length field contains nothing. The translation from LTY to CTY is quite straight-forward,
as shown by the following 1ty2cty function:

CHAPTER 3. TYPE-DIRECTED COMPILATION 50

fun lty2cty(INTty) = INTt

lty2cty(REALty) = FLTt

lty2cty (ARROWty _) = FUNt
1ty2cty(BOXEDty) = PTRt (NONE)
1ty2cty(RBOXEDty) = PTRt(NONE)
1ty2cty(RECORDty 1) PTRt(SOME(length 1))

More specifically, INTty is translated into INTt, REALty into FLTt, ARROWty into FUNt,
BOXEDty and RBOXEDty into PTRt (NONE), and RECORDty 1 to PTRt(SOME k) where k is the
length of the record. Notice since the CPS conversion phase has made implementation
decisions for records and functions, the CTY is not concerned with the details of RECORDty

and ARROWty.

3.6.2 Converting LEXP into CPS

The overall structure and algorithm of our CPS conversion phase is almost same as the one
described by Appel [App92]. The conversion function F takes two arguments: an LEXP
expression I and a “continuation” function ¢ of type value — cezp; and returns a CPS
expression as the result. Unlike Appel [App92], during the conversion process, we also
gather the LTY information for each LEXP expression, and maintain an LTY environment
for all CPS variables. The LTY information is not only used to help make implementation
decisions for records and function calls, but also is translated into CTY to annotate CPS
variables.

Converting LEXP records is the most interesting case. Given an LEXP expression
RECORD[uy, ug, ..., U], suppose the LTY for each u; is ¢; (¢ = 1,...,n), we can represent the

record using virtually any layout:

e The simplest way is to box every field, with integers tagged and reals boxed (see
Figure 3). This is the approach used in the old non-type-based SML/NJ com-
piler [AM91, App92]. This approach is is clearly inefficient.

o If all ;s are REALty, the record can be represented as a “flat” real vector (as shown

in Figure 4 in Section 3.2).

e If the runtime system supports descriptors such as bitmaps that specify the boxity of
each field, the boxed and unboxed field can be simply mixed; the bitmap descriptor

for this record can be inferred from its LTY (as shown in Figure 5a in Section 3.2).

e Another way to layout boxed and unboxed values is to reorder the fields so that all

unboxed values are put ahead of all boxed values (as shown in Figure 5b in Section 3.2).

CHAPTER 3. TYPE-DIRECTED COMPILATION 51

The advantage is that we can use a simple descriptor that specifies the length of the
unboxed chunk and the boxed chunk. This kind of descriptor is also cheaper for the

garbage collector to interpret than a bitmap.

Clearly, the LEXP SELECT expressions must be converted following the layout convention
used for records.

The CPS conversion also decides the argument-passing convention for all function calls
and returns. Given an LEXP function f = FN(v,?,e€), depending on what ¢ is, we can
convert f into a multi-argument function; these arguments essentially correspond to target-
machine registers. If ¢ is a record type RECORDty [/, and the length of the record (say n)
is sufficiently small,” we pass all arguments of f in n registers. Assume vy, ..., v, are n
new CPS variables, where each v; denotes the i-th field of v with type {;, and suppose
vl = vy, ...,0,), ¢l = [t1,...,1,], and that & is the return continuation for f, then

F(FN(v,t,e), ¢c) = FIX([(fk,f,k::0l,CNTt::cl, ce)], ¢(VAR f)),
where ce is the CPS conversion of the lambda expression LET(v,RECORD [VAR vy, ... VAR v,,],
e) (with return continuation k), and fk is f’s function kind.

Similarly, if f is the function defined as above, vy, ..., v, are n new CPS variables, and

ul = [VAR vy, ..., VAR v,], converting the function application of f is defined as
F(APP(f,e),c) = FIX(kL(F (e, Au.hdr(APP(f,k :: ul)))))

where k£ is the return continuation defined by kl from ¢, and hdr is a series of SELECT

expressions that fetch out all » fields from u into vy, ..., v,.

CPS conversion of function definition and application may introduce redundant record
creation and selection code. Fortunately, they can be eliminated by the CPS optimization
phase [App92].

Finally, the primitive coercion operations, WRAP(Z,e) and UNWRAP(Z,e), are converted into
corresponding CPS primitive operations. Based on whether ¢ is INTty, REALty, or other
pointer types, WRAP and UNWRAP are translated into iwrap and iunwrap, fwrap and funwrap,

or wrap and unwrap.

3.6.3 CPS optimizations

When the CPS conversion phase is finished, the compiler has made most of the implemen-
tation decisions for almost all program features and objects: structures and functors are
compiled into records and functions; polymorphic functions are coerced properly if they

are being used less polymorphically; pattern matches are compiled into switch statements;

"A compilation parameter serves as a threshold value; the current value we use is 10.

CHAPTER 3. TYPE-DIRECTED COMPILATION 52

concrete data types are compiled into tagged data records or constants; records are laid out
appropriately based on their types; and the function calling conventions are mostly decided.

The resulting CPS program, however, is very ineflicient. The job of the CPS optimizer is
to apply many simple transformations (such as g-reduction, constant folding, n-reduction,
uncurrying), and to rewrite the CPS program into a smaller and more efficient one with the
same semantics.

Because CPS is now annotated with CTY information, the CPS optimizer must faithfully
preserve and propagate the CTY information in all transformations. This turns out to be
very easy, since all CPS optimizations are naturally carried out in a “type-consistent”
fashion. The only extra work is to copy the CTY information, when a function is being
inlined or unrolled; this overhead is minimal since we have such a simple set of CPS types.

Besides those described by Appel [App92], two new CPS optimizations are performed:

e One is to cancel pairs of “wrapper” and “unwrapper” operations as long as they are of
the same kind, that is, between iwrap and iunwrap, fwrap and funwrap, or wrap and
unwrap. This optimization is very useful in eliminating extra cocercions introduced

in the lambda translation phase.

e Another is to eliminate record copying operations; for example, suppose u is a CPS
value, v; is SELECTed from the ¢-th field of u where : = 1, ...,n, and w is a record built
from these v; with all fields in the same order, then if » has the CTY PTRt (SOME n),
we can tell that w is just another copy of v. Because there is no object identity for
records in ML, we can replace all uses of w by v and eliminate all copying operations.
This is impossible in the old compiler [AM91, App92] where the length information

for each record is not known in CPS.

3.6.4 Closure conversion

The representations of CPS functions (FIXes) are not exactly as a von Neumann machine
would like them, since functions are nested with lexical scope. The closure conversion
phase makes explicit the access to nonlocal variables by converting CPS expressions into
closure-passing style (CLO). CLO is really a subset language of CPS, but each CLO function
contains extra arguments that denote its environment for all non-local variables.

Our compiler uses the new space-efficient closure conversion algorithm described in
Chapter 4. The only new problem caused by the typed CPS language is to decide where
and how to put unboxed values (e.g., untagged integers or unboxed reals) in heap-allocated

closures or machine registers. This can be divided into the following three cases:

CHAPTER 3. TYPE-DIRECTED COMPILATION 53

e Lor all known functions (i.e., those whose call sites are all known at compile time), their
environment can be allocated in both general purpose and floating-point registers,

depending on the CTY information of all free variables.

o For all continuation functions, we assign several floating-point registers as callee-save
registers, using the same approach described in Chapter 4. The floating-point portions
of the closure (e.g., those with type FLTt) can be allocated in floating-point callee-save

registers.

o If a closure containing both boxed and unboxed values has to be allocated on the
heap, we can use any layout scheme used for normal program records (described in

Section 3.6.2).

One optimization commonly used in closure conversion is to share closures among sev-
eral functions. Unfortunately, closure sharing, if not done carefully, is not safe for space
complexity [App92] (see Section 2.3.3). In our typed CPS back end, the object size informa-
tion for each CPS variable is known most of the time (from its CTY, except those with type
PTRt (NONE)), so we can easily identify whether it is safe to share two closures or not. As
long as the extra objects being held are of constant size, sharing two closures would never

cause asymptotic increase of the space usage.

3.6.5 Machine code generation

Since every variable in CLO is annotated with proper type information, register allocation
and spilling are straightforward. If real numbers use unboxed representations, all variables
with CTY FLTt will be assigned a floating-point register. If the number of free variables (of
the same register class) at a certain point of the program exceeds the number of available
registers, spilling is necessary.

We also believe that the CTY information can benefit the instruction scheduler, but we

have not yet explored this in our current implementation.

3.7 Performance evaluation

Type-directed compilation should support much more efficient data representations. In or-
der to find out how much performance gain we can get for different type-based optimizations,
we have measured the performance of six different compilers on twelve SML benchmarks

(see Section 2.4).

CHAPTER 3. TYPE-DIRECTED COMPILATION 54

The six compilers we use are all simple variations of the Standard ML of New Jersey
compiler version 1.03z. All of these compilers use the new closure conversion algorithm
(described in Chapter 4), and with three general purpose callee-save registers [AS92], and
all use tagged 31-bit integer representations. Other aspects of these compilers are close to

those described by Appel [App92].

sml.nrp This version does not support representation analysis. No type information is
propagated into the compiler middle end and back end. All data objects use uniform
standard boxed representations. All functions take exactly one argument and return

one result.

sml.fag This is the sml.nrp compiler with the argument flatlening optimization turned
on [App92]. More specifically, given a function f, if all of its call sites are known
at compile time, the CPS optimizer can check if its argument is always a length-n
record (or tuple); if this is the case, the argument record for f is flattened, and f is

transformed into a n-argument function.

sml.rep This is our new type-based compiler that supports very basic representation anal-
ysis. This version does not use minimum typing derivations (see Section 3.4.3 and
Bjgrner [Bjo94]). Moreover, all floating point numbers still use boxed representations.

Functions do not pass arguments and return results in floating-point registers.

sml.mtd This is the sml.rep compiler plus the implementation of minimum typing deriva-

tions.

sml.ffb This is the sml.mtd compiler extended with support for unboxed representations
for floating point numbers. Function call and return now pass floating-point argu-
ments in floating-point registers. Records that contain just float-point numbers are
represented as “flat” real vectors (see Figure 4).® Records that contain both boxed
and unboxed values are still represented as two layers, with each unboxed value being

boxed separately (see Figure 4).

sml.fp3 This version is completely same as the sml.ffb compiler except three floating-point

callee-save registers are used.

8 Unfortunately, the SML/NJ version 1.03z still uses the old runtime system [App90]. Memory fetch
(or store) of a floating-point number is implemented using two normal (one-word) memory-load (memory-
store) instructions. Because of this, the “flat” real vectors we used need not be aligned at the double-word
boundary.

CHAPTER 3. TYPE-DIRECTED COMPILATION 55

o smlnrp % sml.mtd
o sml.fag ¢ sml.ffb
* sml.rep a4 sml.fp3
1.5 1
e
X
e
¢
u
t
i 4
0o
n
t 1.0 < Q * 8 9 o) ° o) ° o) o) [
. * °
1 2 * g . * L
m [] & 8 §
? Fl * ; 8 *
a i
t
1
0o
0.5 4
N
o
&
0.0

BHut Boyer Sieve KB-C LexgenYacc Life SimpleRay VLIW MBrot Nucleic
name of benchmark programs

Figure 14: A comparison of execution time (illustration)

All measurements are done on a DEC5000/240 workstation with 128 mega-bytes of
memory, using the methodology described in Section 2.4. In Figure 14 and Table 5, we list
and compare the execution time of running all the benchmarks using the above six compilers.
Only the execution time (user time plus system time, in seconds) for the sml.nrp compiler
is shown; the performance for all other compilers are denoted by a relative ratio to the
sml.nrp compiler. Similarly, Table 6, Table 7, and Table 8 respectively compares the total
amount of heap allocation (in mega-bytes), the compilation time (in seconds), and the code

size (in kilo-bytes). We can draw the following conclusions from these comparisons:

CHAPTER 3. TYPE-DIRECTED COMPILATION 56

Table 5: A comparison of execution time

Program Base sml.nrp | sml.fag | sml.rep | sml.mtd | sml.ffb | sml.fp3
(seconds) (ratio) (ratio) (ratio) (ratio) (ratio) (ratio)
BHut 28.0 1.00 0.90 0.82 0.82 0.79 0.83
Boyer 2.4 1.00 0.95 0.93 0.93 0.93 0.99
Sieve 30.6 1.00 0.99 0.96 0.99 0.99 1.14
KB-Comp 6.8 1.00 0.94 0.89 0.88 0.89 1.01
Lexgen 11.3 1.00 0.97 0.93 0.92 0.93 0.94
Yacc 4.8 1.00 0.96 0.88 0.88 0.87 0.89
Life 10.7 1.00 1.00 0.84 0.11 0.11 0.11
Simple 22.6 1.00 0.91 0.82 0.81 0.82 0.85
Ray 23.1 1.00 1.00 0.94 0.93 0.87 0.85
VLIW 14.0 1.00 0.90 0.88 0.86 0.87 0.87
MBrot 15.8 1.00 0.92 0.92 0.92 0.40 0.45
Nucleic 5.0 1.00 1.00 0.89 0.85 0.76 0.78
Average 1.00 0.95 0.89 0.83 0.77 0.81

Table 6: A comparison of total heap allocation

Program Base sml.nrp | sml.fag | sml.rep | sml.mtd | sml.ffb | sml.fp3
(Mbytes) (ratio) (ratio) (ratio) (ratio) (ratio) (ratio)
BHut 506.0 1.00 0.76 0.57 0.57 0.54 0.54
Boyer 30.8 1.00 0.83 0.75 0.75 0.75 0.88
Sieve 186.0 1.00 0.97 0.89 0.96 0.96 1.13
KB-Comp 122.1 1.00 0.87 0.77 0.76 0.76 1.01
Lexgen 102.5 1.00 0.97 0.60 0.60 0.60 0.65
Yacc 63.1 1.00 0.94 0.70 0.70 0.70 0.71
Life 148.6 1.00 1.00 0.58 0.05 0.05 0.05
Simple 378.9 1.00 0.77 0.47 0.47 0.55 0.49
Ray 512.6 1.00 0.99 0.78 0.78 0.60 0.60
VLIW 172.9 1.00 0.84 0.65 0.65 0.66 0.66
MBrot 596.8 1.00 0.86 0.86 0.87 0.00 0.00
Nucleic 84.5 1.00 1.00 0.74 0.74 0.76 0.86
Average 1.00 0.90 0.70 0.66 0.58 0.63

e The type-based compilers perform uniformly better than older compilers that do not
support representation analysis. The sml.ffb compiler gets nearly 19% speedup in
execution time and decreases the total heap allocation by 36% (on average) over the
older SML/NJ compiler (i.e., sml.fag) that uses uniform standard boxed represen-
tations. This comes with an average of 6% increase in the compilation time. The

generated code size remains about the same.

CHAPTER 3. TYPE-DIRECTED COMPILATION 57

Table 7: A comparison of compilation time

Program Base sml.nrp | sml.fag | sml.rep | sml.mtd | sml.ffb | sml.fp3
(seconds) (ratio) (ratio) (ratio) (ratio) (ratio) (ratio)
BHut 49.1 1.00 1.01 1.00 1.12 1.16 1.20
Boyer 21.9 1.00 1.03 1.06 1.12 1.16 1.20
Sieve 28.5 1.00 1.02 1.04 1.08 1.08 1.13
KB-Comp 18.0 1.00 1.04 1.01 1.04 1.06 1.14
Lexgen 32.3 1.00 1.03 1.01 1.00 1.01 1.15
Yacc 1141 1.00 1.04 1.07 1.08 1.10 1.20
Life 4.3 1.00 1.02 1.05 1.14 1.10 1.18
Simple 35.3 1.00 1.17 1.40 1.45 1.49 1.55
Ray 14.6 1.00 1.04 0.97 1.01 1.04 1.13
VLIW 161.7 1.00 1.02 1.06 1.09 1.05 1.12
MBrot 0.5 1.00 1.06 0.98 1.06 1.00 1.02
Nucleic 122.1 1.00 1.01 1.11 0.90 0.97 1.06
Average 1.00 1.04 1.06 1.09 1.10 1.17

Table 8: A comparison of code size

Program Base sml.nrp | sml.fag | sml.rep | sml.mtd | sml.ffb | sml.fp3
(Kbytes) (ratio) (ratio) (ratio) (ratio) (ratio) (ratio)
BHut 85.1 1.00 0.92 0.95 0.95 0.98 1.01
Boyer 97.4 1.00 1.00 1.00 1.01 1.01 1.02
Sieve 66.0 1.00 0.96 0.94 0.93 0.93 0.98
KB-Comp 41.6 1.00 0.99 0.97 0.97 0.98 1.00
Lexgen 87.3 1.00 0.98 0.95 0.95 0.96 0.97
Yacc 320.0 1.00 0.99 0.98 0.98 0.97 0.98
Life 13.1 1.00 0.99 0.98 0.96 0.97 0.98
Simple 91.3 1.00 0.97 1.12 1.12 1.19 1.16
Ray 49.3 1.00 0.96 0.91 0.91 0.92 0.94
VLIW 349.5 1.00 0.98 0.95 0.95 0.95 0.96
MBrot 2.0 1.00 1.00 0.95 0.95 0.80 0.85
Nucleic 238.4 1.00 1.00 0.98 0.98 1.23 1.23
Average 1.00 0.98 0.97 0.97 0.99 1.01

e The simple, non-type-based argument flattening optimization in the sml.fag com-
piler gives an impressive 5% speedup. The optimization itself does slow down the

compilation a little bit (4%).

e The sml.rep compiler, which supports passing argument in registers (but not floating-
point registers), only improves the performance of the non-typed-based sml.fag com-

piler by about 6%. It does decrease heap allocation by an impressive 20%. We believe

CHAPTER 3. TYPE-DIRECTED COMPILATION 58

that most computation intensive parts (i.e., loops and recursions) are often known
Sfunclions, so argument flattening can get most performance benefits of a type-based

compiler such as sml.rep.

o The minimum typing derivation technique was intended to be useful in eliminating
coercions; however, the major speedup of the sml.mtd compiler over sml.rep is
from the Life benchmark where with minimum typing derivation, the polymorphic
equality in a tight loop (testing membership of an element in a set) is successfully
transformed into a monomorphic equality operator. Because the polymorphic equality
implementation in SML/NJ is extremely slow (it uses runtime intepretation), Life is
about 10 times faster. For all other benchmarks, sml.mtd performs about the same
as sml.rep. Although there are much larger number of coercions in the lambda
language in sml.rep, most these coercions are eliminated by the CPS optimization

phase [App92] (through eta-reduction, inlining, constant folding, etc.).

e Another observation is that the sml.mtd compiler did not make the compilation
any faster than sml.rep either. This is probably because the extra pass of deriving

minimum types took away all the gains from coercion eliminations (in sml.mtd).

o Using three floating-point callee-save registers (i.e., the sml.fp3 compiler) is not any
better than using no floating-point callee-save registers. The slowdown mostly comes
from benchmarks such as Sieve and KB-Comp whose tight loops frequently use
first-class continuations and exception handlers, because more callee-save registers
make the register state bigger (see Section 4.6 for more discussions). In addition,
certain floating benchmarks such as BHut, MBrot and Nucleic also gets slower.
We believe this is because the current implementation of closure conversion heuristic

is not well-tuned for floating-point callee-save registers.

3.8 Related work

Statically typed languages with Hindley-Milner polymorphism have long been compiled us-
ing the uniform boxed representations, just like the dynamically typed languages such as
Lisp and Scheme. The representation analysis technique, first proposed by Leroy [Ler92] (for
ML-like languages) and Peyton Jones and Launchbury [PL91] (for Haskell-like languages),
allows data objects whose types are not polymorphic to use more efficient unboxed represen-

tations. Leroy [Ler92] has also implemented representation analysis in his Gallium compiler

CHAPTER 3. TYPE-DIRECTED COMPILATION 59

for the Caml Light dialect of ML, and shown that it can result in important speedups on
certain benchmarks. The work described in this chapter is a re-implementation of Leroy’s
techniques in the Standard ML of New Jersey compiler [AM91]. Unlike Leroy [Ler92], we
concentrate more on practical issues such as how to implement type-directed compilation
for the entire SML language (Caml has a much simpler module system than SML), and
how to efficiently propagate type information through many rounds of transformations and
optimizations.

Many people have worked on eliminating unnecessary “wrapper” functions introduced
by representation analysis. Poulsen [Pou93] proposes a way to tag each type with a boxity
annotation, and then statically determine when to use boxed representations and when to
use unboxed representations. The major problem of his technique is that it is not easy to ex-
tend to the SML module system. Henglein and Jorgensen [HJ94] presents a term-rewriting
method that translates a program with many coercions into one that contains “minimum?”
number of coercions (statically). Once again, it is not clear how their technique can easily
be extended to the SML module language. Our compiler uses a simple minimum lyping
derivation [Bjo94] round in the front end to decrease the degree of polymorphism for all lo-
cal and hidden functions. This is very easy to extend to the module system. We believe our
approach can almost achieve the same result as “formally optimal unboxing” [HJ94]. Actu-
ally, we have shown that “wrapper” eliminations do not have much effect on performance
in a highly optimizing compiler such as SML/NJ, simply because a simple compile-time
contraction can eliminate most of the wrap and unwrap pairs (see Section 3.6.3).

Peterson [Pet89] presents a way to decide when to use boxed and unboxed representa-
tions using data flow analysis. It is not clear how much performance gain we can get from
this kind of expensive analysis.

Harper and Morrisett [HM95] have recently proposed a type-based compilation frame-
work called Compiling with Intensional Type Analysis for the core-ML language. They use a
typed lambda calculus with explicit type abstractions and type applications as the interme-
diate language. Their scheme avoids recursive coercions by passing explicit type descriptors
whenever a monomorphic value is passed to a polymorphic function. Since they have not
implemented their scheme yet, it is unclear how well it would behave in practice. Because
their proposal only addresses the core-ML language, we still do not know how easily their

scheme can be extended to the SML module language.

CHAPTER 3. TYPE-DIRECTED COMPILATION 60

3.9 Summary

We believe that type-based compilation techniques will be widely used in compiling stati-
cally typed languages such as ML in the future. The beauty of type-based representation
analysis is that it places no burdens on the user: the source language does not change, pro-
grammers do not need to write coercions, and separate compilation works cleanly because
interfaces are speficied using types.

By implementing a fully working type-based compiler for the entire SML language, we
have gained experience with type-directed compilation, and solved many practical prob-
lems involved in the implementations. Our performance evaluation shows that type-based
compilation techniques can achieve significant speedups on a range of benchmarks.

The number of ways to use type information to help generate better code seems to be
endless; this chapter only discusses and evaluates a very small number of these optimiza-

tions. I intend to evaluate other optimizations in the future.

Chapter 4

Space-Efficient Closure

Representations

Many modern compilers implement function calls (or returns) in two steps: first, a closure
environment is properly installed to provide access for free variables in the target program
fragment; and second, control is transferred to the target by a “jump with arguments

-

(or results).” Closure conversion, which decides where and how to represent closures at
runtime, is a crucial step in compiling functional languages. We have a new algorithm
that exploits the use of compile-time control and data-flow information to optimize closure
representations. By extensive closure sharing and by allocating as many closures in registers
as possible, our new closure conversion algorithm reduces heap allocation by 32% and
memory fetches for local/global variables by 46%, and improves the already-efficient code
generated by the Standard ML of New Jersey compiler by about 14% on a DECstation

5000. Moreover, unlike most other approaches, our new closure allocation scheme satisfies

the strong “safe for space complexity” rule, thus achieving good asymptotic space usage.

4.1 Introduction

Many compilers of functional languages take great efforts to optimize function calls and
returns because they are the fundamental control structure. Before a function call, context
information is saved from registers into a “frame.” In a compiler based on Continuation-
Passing Style (CPS), this “frame” is the closure of a continuation function [Ste78].

In a CPS-based compiler, a closure environment is constructed at each function (or

continuation) definition site; it provides runtime access to bindings of variables free in the

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 62

function (or continuation) body. Each function call is then implemented by first installing
the corresponding closure environment, setting up the arguments (normally in registers),
and then jumping to the target. Function returns are implemented in the same way, because
in CPS, they are represented as calls to continuation functions.

A closure can be any combination of registers and memory data structures that gives
access to the free variables [KKR*86, AS92]. The compiler is free to choose a closure
representation that minimizes stores (closure creation), fetches (to access free variables),
and memory use (reachable data).

We have developed a new algorithm for choosing good closure representations. As far
as we know, our new closure allocation scheme is the first to satisfy all of the following

important properties:

o Unlike stack allocation and traditional linked closures, our shared closure representa-
tions are safe for space complexity (see Section 4.2); at the same time, they still allow

extensive closure sharing.

e Our closure allocation scheme exploits extensive use of compile-time control and data

flow information to determine the closure representations.

e Source-language functions that make several sequential function calls can build one
shared closure for use by all the continuations, taking advantage of callee-save regis-

ters.

e Because activation records (i.e., frames) are also allocated in the heap, they can
be freely shared with other heap-allocated closures. Under stack allocation, this is
impossible since stack frames normally have shorter lifetimes than heap-allocated

closures.

e Tail recursive calls—which are often quite troublesome to implement correctly on a

stack [Han90]—can be implemented very easily.

o All of our closure optimizations can be cleanly represented using continuation-passing

and closure-passing style [AJ89] as the intermediate language.

e Once a closure is created, no later writes are made to it; this makes generational
garbage collection and call/cc efficient, and also reduces the need for alias analysis in

the compiler (since there are less side-effect operations).

o Because all closures are allocated either in the heap or in registers, first class contin-

uations call/cc are very efficient, requiring no complicated stack hackery [HDB90].

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 63

Our new closure allocation scheme does not use any runtime stack. Instead, all closure
environments are either allocated in the heap or in registers. This decision may seem
controversial, because stack allocation is widely believed to have better reference locality,
and deallocation of stack frames can be cheaper than garbage collection. Moreover, because
heap allocated closures are not contiguous in memory, an extra memory write and read (of
the frame pointer) is necessary at each function call. These assumptions do not hold in our

algorithm for three reasons:

1. As we will show in Section 4.4, because most parts of continuation closures are allo-
cated in callee-save registers [AS92], the extra memory write and read at each call can
often be avoided. With the help of compile-time control and data flow information,
the combination of shared closures and callee-save registers can often be comparable

to or even better than stack allocation.

2. In Chapter 5, we show that stacks do not have a significantly better locality of reference
than heap-allocated activation records, even in a modern cache memory hierarchy.
Stacks do have a much better wrile miss ratio, but not a much better read miss ratio.
But on many modern machines, the write miss penalty is approximately zero [Jou93,

DTMO94, Rei94].

3. The amortized cost of collection can be very low [App87] (also see Chapter 5), espe-

cially with modern generational garbage collection techniques [Ung86].

The major contribution of this chapter is a “safe for space” closure conversion algorithm
that integrates and improves most previous closure analysis techniques [Kra87, AS92, Ste78,
Roz84, Han90, Joh85], using a simple and general framework expressed in continuation-
passing and closure-passing style [AJ89, AS92]. Our new algorithm extensively exploits
the use of compile-time control and data flow information to optimize closure allocation
strategies and representations. Our measurements show that on a DECstation 5000/240
the new algorithm reduces heap allocation by 32% and memory fetches for local/global
variables by 46%; and improves the already-efficient code generated by the Standard ML
of New Jersey compiler by about 14%.

4.2 Safely linked closures

Optimization of closure representations is sometimes dangerous and unsafe for space us-

age (see Section 2.3.3). Traditional stack allocation schemes and linked closures obviously

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 64

fun £(v,w,x,y,2) =
let fun g() =
let val u = hd(v)
fun h() =
let fun i() = w+x+y+z+3
in (i,u)
end
in h
end
in g
end
fun big n = if n<1l then [0] else n :: big(n-1)
fun loop (m,res) =
if n<1 then res
else (let val s = £(big(N),0,0,0,0)()
in loop(n-1,s::res)

end)

val result = loop(N,[])

Figure 15: An example in Standard ML

Table 9: A comparison of three closure representations

Flat Closures Linked Closures | Safely Linked Closures

o[| o[l | o,
. o] N i e rIEY
1

I

violate the SSC rule (see Section 2.3.3) because local variable bindings are live until the
function exits its scope, which may be after their last use. Flat closures do satisfy the SSC
rule, but they require that variables be copied many times from one closure to another.
Many of the closure strategies described by Appel and Jim [AJ88] and most stack-frame
implementations also violate SSC, since dead variables remain in the frame until a function

returns.

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 65

Obeying SSC can require extra copying of pointer values from an old closure that con-
tains them (but also contains values not needed in a new context) into a new closure. One
cannot simply “zap” the unneeded values in the old closure, since it is not known whether
there are other references to the old closure. The challenge is to find eflicient closure strate-
gies that obey SSC while minimizing copying.

Our new algorithm uses safely linked closures (the 3rd column in Figure 9), which contain
only those variables actually needed in the function, but avoids closure copying by grouping
variables with same [lifetime into a sharable record.

For example, consider the SML program in Figure 15 (this is same as the program shown
in Figure 2 in Section 2.3.3). In Figure 9, we use GG, H and [to denote the closure, and
g, h, and ¢ for code pointers. With flat closures (the 1st column in Figure 9), variables w,
X, y, and z must be copied from the closure of g into the closure of h, and then into the
closure of i, this is very expensive. With traditional linked closures (the 2nd column in
Figure 9), closures for h and i are unsafely re-using the closure for g, retaining the variable
v that is not free in h or i; moreover, accessing variables w, x, y and z inside [is quite
expensive because at least two links needs to be traversed. By noticing that w, x, y, and z
have same lifetime, the safely linked closure for g puts them into a separate record, which
is later shared by closures for h and i. Unlike linked closures, the nesting level of safely

linked closures never exceeds two, so they still enjoy very fast variable access time.

4.3 Continuations and closures

We will illustrate CPS-conversion (which is not new [Plo75, Ste78, Kra87, App92]), and our
new closure analysis algorithm, on the example in Figure 16. The function iter iteratively

applies function f to argument z until it converges to satisfy predicate p.

fun iter(x,p,f) =
let fun h(a,r) = if p(a,r) then a
else h(f(a),a)
in h(x,1.0)
end

Figure 16: Function iter in Standard ML

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 66

|4 variable

I = integer constant

R = real constant

P = arithmetic operator

A = VI|I|R

Foou= Vo(W,Va,. V) = E | Fy and F;

D == Dy Dy|fun F|val V = select(/,A)
| val V = (Al,AQ,. . ,An)
| val V = P(Al,AQ,. . ,An)

FE = 1if V then F; else F,
| let D in F; end | Ao(Al,AQ,. . ,An)

Figure 17: Abstract syntax of CPS

4.3.1 Continuation-passing style

Continuation-passing style (CPS) is a subset of A-calculus with certain syntactic proper-
ties. Unlike the A-calculus, the order of evaluation in CPS is pre-determined. For the
purposes of this chapter, we express CPS using ML notation, albeit severely constrained
— see Figure 17. An atom A is a variable or a constant; a record is constructed from a
sequence (Aq, Agz,...,A,) of atoms. If v is bound to an n-element record, then the ith
field is fetched using select(7,v); The syntax for building records, selecting fields, applying
primitive arithmetic operators, and defining mutually recursive functions (fun and F') must
specify a continuation expression E that will use the result (via let expressions).! On the
other hand, function application (shown in the last line on the right of Figure 17) does
not specify a continuation expression — functions never return in the conventional sense.
Instead, it is expected that many functions will pass continuation funclions among their
arguments. This function can be defined in the ordinary way (by fun), and will presumably
be invoked by the callee in order to continue the computation.

Figure 18 shows the code of the function iter after translation into CPS, and after the

loop-invariant continuation argument of h has been hoisted out of the loop [App94b]. Such

!Later in this chapter , we use let Ey Es ... E, in ... end. to denote a sequence of let expressions,
e.g., let £y in (let E in ... (let F, in ... end) ... end) end.

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 67

fun iter(C,x,p,f) =
let fun h(a,r) =
let fun J(z) = if z then C(a)
else (let fun Q(b) = h(b,a)

in £(Q,a)
end)
in p(J,a,r)
end
in h(x,1.0)

end

Figure 18: Function iter after CPS-based optimizations

optimizations are performed after CPS-conversion, but before the closure analysis that is
the subject of this chapter.

To ease the presentation, we use capital letters to denote continuations (e.g., C, J, and
Q). We call those functions declared in the source program user functions (e.g., iter, h),
and those introduced by CPS conversion continuation functions (e.g., J, Q). Continuation
variables are those formal parameters (commonly placed as the first argument) introduced
in CPS conversion to serve as return continuations (e.g., C). Functions such as iter, p and
f are called escaping funclions, because they may be passed as arguments or stored in data
structures, which means that the compiler cannot identify all the places where they are
called. All functions that do not escape are called known functions (e.g., h). We can do
extensive optimizations on known functions since we know all of their call sites at compile

time.

4.3.2 Closure-passing style

Continuation-passing style is meant to approximate the operation in machine language; a
“function” in machine language is just an address in the executable program, perhaps with
some convention about which registers hold the parameters—very much like a “jump with
arguments.” The notion of function in CPS is almost the same, except that CPS have
nested lexical scope and may contain free variables. This problem is solved by adding a
closure which makes explicit the access to all nonlocal variables.

Kranz [KKR*86, Kra87] showed that different kinds of functions should use different
closure allocation strategies. For example, the closure for a known function (e.g., h in

Figure 18) can be allocated in registers, because we know all of its call sites at compile

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 68

time and can require that the caller always pass its free variables as extra arguments; on
the other hand, the closure for an escaping function may have to be allocated as a heap
record that contains both the machine code address of the function plus bindings for its
free variables.

Conventional compilers use caller-save registers, which may be destroyed by a procedure
call, and callee-save registers, which are preserved across calls. Variables that are not live

after the call should be allocated to caller-save registers, which cuts down on register-saving.

01 fun iter(I,C0,C1,C2,C3,x,p,f) =

02 let fun h(a,r,CR,p) =

03 let fun JO(J1,J2,J3,z) =

04 if z then

05 (let val CO = select(0,J1)
06 val C1 = select(1,J1)
o7 val C2 = select(2,J1)
08 val C3 = select(3,J1)
09 in €0(C1,€2,C3,J2)

10 end)

11 else

12 (let fun Q0(Q1,Q2,Q3,b)

13 = h(b,Q2,Q1,Q3)
14 val £ = select(4,Q1)
15 val fO = select(0,f)
16 in £0(£,Q0,J1,J2,J3,J2)
17 end)

18 val p0 = select(0,p)

19 in p0(p,JO0,CR,a,p,a,r)

20 end

21 val CR = (C0,C1,C2,C3,f)

22 in h(x,1.0,CR,p)

23 end

Figure 19: Function iter in after closure conversion

We wanted to adapt this idea to our continuation-passing intermediate representation.
We did so as follows [AS92]: each CPS-converted user function f is passed its ordinary
arguments, a continuation function ¢g, and k extra arguments cq, ..., cx. The function “re-
turns” by invoking ¢ with a “result” argument r and the additional arguments cq, ..., cg.
Thus, the “callee-save” arguments ¢y, ..., ¢ are handed back to the continuation. When this
CPS code is translated into machine instructions, ¢y, ..., ¢ will stay in registers throughout

the execution of f, unless f needed to use those registers for other purposes, in which case

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 69

J must save and restore them. One could also say that the continuation is represented in
k + 1 registers (cg, ..., Ck).

In our previous work [AS92], we outlined this framework and demonstrated that it
could reduce allocation and memory traflic. But, we did not have a really good algorithm
to exploit the flexibility that callee-save registers provide.

Closure creation and use can also be represented using the CPS language itself [AJ89,
KHB89]. We call this closure-passing style (CLO). The main difference between CLO and
CPS is that functions in CLO do not contain free variables, so they can be translated
directly into machine code. In CLO, the formal parameters of each function correspond to
the target machine registers, and heap-allocated closures are represented as CPS records.

Figure 19 lists the code of function iter after translation into CLO. Each continuation
function and variable (e.g., C,J,Q) is now represented as a machine code pointer (e.g.,
€0,J0,Q0) plus three extra callee-save arguments (e.g., C1-C3,J1-J3,Q1-Q3).

The original function J (in Figure 18) had free variables C,f,a,h. With three callee-save
registers, C becomes the four variables C0,C1,C2,C3, for an effective total of seven. When
J is passed to p (line 19), these seven free variables—plus the machine code pointer for J’s
entry point—must be squeezed into four formal parameters JO,J1,J2,J3. Where there are
more than three free variables, some of the callee-save arguments must be heap-allocated
records containing several variables each; thus, the CR closure-record appears as J1 in the
call on line 19.

Previous closure conversion algorithms [Ste78, KKR*86, AJ89] require memory stores
for each continuation function. An important advance in our new work is that we allocate
(in this example) only one record CR for the functions J,Q,h, and this record is carefully
chosen to contain loop-invariant components, so that it can be buill outside the loop.

An escaping user function (iter,p,f) is now represented as a closure record (I,p,f),
with its 0*! field being the machine code pointer (iter,p0,f0). An escaping function call
is implemented as first selecting the 0" field, placing the closure itself in a special register

(the first formal parameter), and then doing a “jump with arguments” (lines 15-16, 18-19).

4.4 Closure conversion

In this section, we present our new closure conversion algorithm using the framework defined
in Section 4.3. Our algorithm takes a CPS expression F as the argument, determines the

closure representation for each function definition in £, and then converts F into a CLO

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 70

expression E’ where each function definition is closed. The presentation of our algorithm is

organized in five steps:

1. Construct an eztended CPS call graph that captures the control flow information in

the CPS expression.

2. Gather the set of raw free variables and their lifetime information for each CPS func-

tion.

3. Use closure strategy analysis to determine where in the machine to allocate each

closure.

4. Use closure representation analysis to determine the actual structure of each closure

at runtime.
5. Find out the variable access path for all non-local variables of each CPS function.

Each step here does not necessarily correspond to a separate pass in the real implementation,

for example, steps 3 through 5 are actually done in a single pass.

4.4.1 Extended CPS call graph

Given a CPS expression F, we can divide the set of function definitions in £ into four
categories: escaping user functions, known user funclions, escaping continuation functions,
and known continuation functions (see the last paragraph of Section 4.3.1 for definitions).
Given two CPS variables v and w, v directly calls w if w is possibly the first function call
inside the function definition of v. For example, in Figure 18, J directly calls C and £ but
not h, because h cannot be the first call inside J.

The ezxtended CPS call graph G of F is a directed graph with the set of function definition
variables in £ as nodes; there is an edge from v to w in G if v directly calls w, or v directly
calls some function with w as its return continuation. For example, the extended CPS call
graph for the function iter in Figure 18 is as follows:

iter h J
® {]
\'(%/

Although J is not directly called by h, we conservatively assume that the function p will

always call its return continuation, i.e., J.

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 71

The extended CPS call graph GG of E essentially captures a very simple set? of control
flow information in £. Cycles in the graph imply loops or recursions (e.g., the path from h to
J to Q). The nested hierarchies of loops and recursions in £ can be revealed by running the
Tarjan interval analysis algorithm [Tar74, RP86] on GG, assuming G is a reducible flow graph.
Given a flow graph G, a Tarjan interval is essentially a single-entry, strongly connected
subgraph of GG; the interval analysis [RP86] partitions the set of nodes in G into disjoint
intervals, with each interval representing a proper loop (or recursion) layer.

For the purpose of our closure analysis, this control flow information is used to choose
closure representations that allow more efficient variable accesses in frequently executed
program fragments (e.g., loops).

For every function definition v in F, we define its loop level L(v) as the nesting depth of
its interval in the extended CPS call graph for £, with the outmost interval at depth 0. For
variables that are not actually defined in £ (e.g., C,f,p in Figure 18), their loop levels are
defined as 0. The loop level of each call from v to w is defined as L(v, w) = min(L(v), L(w)).
The loop level for an arbitrary CPS expression inside a function definition v is inductively

defined as follows:
o L(if V then Ey else Ey) = maz(L(F4), L(Ey));
e [(let D in Fy end) = L(Ey);

o L(Ap(A1,Az,...,A,)) = L(v, Ap) if Ag is a continuation, and maz(L(v, Ag), L(v, A1))

if Ag is a user function and A; is its return continuation.

The loop level number can be used as a guide for static branch prediction of control flow
in E. For example, in function iter, the loop level of h,J,Q is 1, and the loop level of

” in J’s definition, J

iter,C,f,pis 0. In the CPS expression “if z then ... else ...
either calls £ with the return continuation Q, or it calls the continuation variable C. Clearly,
the call to £ and Q is inside a loop because L(J,Q) = 1, while the call to C is not, because
L(J,C) = 0. The closure representations for J and h should be biased towards the “else”
branch, because it is more likely to be taken at runtime.

For each function definition w in the expression F, we also define pred(w) as its pre-

decessor set; i.e., the set of all variables v such that there is an edge from v to w in E’s

extended CPS call graph.

2Shivers [Shi91] presents more sophisticated techniques that can find even better approximations of
control flow information.

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 72

Table 10: Raw free variables and closure strategies

Function | Stage Number Raw Free Variables Closure Strategy
iter 1 0] 1 slot
h 2 {(p,2,2),(C,3,3),(£,3,3),(h,4,4)} 2 slots
J 3 {(¢,3,3),(£,3,3),(a,3,4),(h,4,4)} 3 slots
Q 4 {(a,4,4),(h,4,4)} 3 slots

4.4.2 Raw free variables with lifetime

To implement the safely linked closures described in Section 4.2, we want to group variables
into closure records if they have similar lifetimes. If v is defined much later than w,z,y,
then we may not have enough registers to hold w, z, y while waiting for ». If y’s last use is
much earlier than w’s or z’s, then the record (w, z,y) might not obey the SSC rule.

Most closure conversion algorithms [App92, Kra87, Ste78] start with a phase to gather
the set of raw free variables for each function definition in . These free variables are called
raw free variables because some of them may be substituted by a set of other free variables
later during the closure representation analysis phase; we use the term lrue free variables
to denote the set of variables that are finally put in the closure environment.

Our algorithm gathers the raw free variables together with their lifetime information.
To define the lifetime for a variable, we first assign a stage number (denoted as SN) for each

function definition w using the following method:

e if w is the outmost function definition, then SN(w) = 1;

e if w is a user function, then SN(w) = 1 + SN(f) where f is the nearest enclosing

function definition;

e if w is a continuation function, then SN(w) = 1+ maz{ SN(v) | v € pred(w) }; this

definition is valid because continuation functions are never recursive.

Intuitively, the stage number is meant to characterize the temporal relation among different
CPS functions. The definition of SN is based on the observation that each user function is
often called after its enclosing function is called. In addition, we also make sure (by using
the call graph) that within each particular user function, continuations that have higher
stage numbers are always called later than those with lower stage numbers.

With the stage number, we can define the use lime for each use of every CPS variable

v as SN(f) where f is the nearest enclosing function definition for this use of v. The set

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 73

of free variables for each function definition f is now a set of triples (v, fut, lut) where v is
the variable, ful is the first use time of v denoting the smallest stage number of all uses of
v inside f, and [ut is the last use time of v denoting the largest stage number of all uses of
v inside f.

To reflect the control flow, the [ut and fut numbers of v can also be calculated based on
the (predicted) execution frequency of each use of v. For example, for a CPS expression
if V then F, else E;, we can ignore all uses of v in Fy (or Ey) if L(£q) > L(E3) (or
L(E3) > L(Ey)) during the calculation. The higher preference for those uses inside a loop
body would likely lead to more efficient closure representation at runtime.

For example, the stage number and the set of raw free variables for all function definitions
in Figure 18 are shown in Table 10. Notice that a variable can have different lut and fut

numbers inside different function definitions (e.g., a in J and Q).

4.4.3 Closure strategy analysis

Closure stralegy analysis essentially determines where in the machine to allocate each clo-
sure. Unlike previous CPS compilers [Kra87, Ste78], we do not do any escape analysis,>
because we simply do not use a runtime stack. Our closure strategy analysis only decides
how many slots (i.e., registers) each closure is going to use, denoted by S(f) for each func-
tion f. We calculate S(f) using the following simple algorithm (see Figure 20 for the pseduo
code):

If f is an escaping user function, then S(f) = 1. This essentially means that all its free
variables must be put in the heap. The closure for f is a pointer to a linked data structure
in the heap.

If f is an escaping continuation function, then S(f) = k where k is the number of
callee-save registers. Because their call sites are not known at compile time, most con-
tinuation functions have to use the uniform convention; that is, always use k callee-save
registers [AS92]. In special cases, some escaping continuation functions can be represented
differently; this is discussed in Section 4.5.3.

For known functions, since their call sites are known at compile time, their closures (or
environments) may be allocated completely in registers. The number of registers on the
target machine can be limited, however, and it may not always be desirable to allocate all
free variables in registers (see Section 4.5.2). We run the following iterative algorithm to

calculate the appropriate number of slots (registers) used for each known function:

*The escape analysis here refers to the analysis that decides whether a function’s environment can be
allocated on the stack or not.

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 74

Notations:
free(v) is the set of raw free variables of v

T(v,f) = maz(l, S(v) — |[free(v)\ free(f) |)

Algorithm:
all S(f) are initialized to m where m is the number of target machine registers;

repeat
foreach f do
V is the set of variables in pred(f) that do not enclose f’s definition;
foreach v € V do
S(f) = min(T(v,), S():
end
end
until (all S(f) reach a fixpoint)

Figure 20: Closure strategy analysis for known functions

K1 Initially, each known function f is assigned m slots, that is, S(f) = m, where m is the
maximum number of available registers on the target machine minus the number of

formal parameters of function f (assuming they will be passed in registers);

K2 Then, for each known function f, we substitute S(f) by min({T'(v1, f), ..., T'(vn, f),
S(f)}). Here vy, ..., v, are the subset of the functions in pred(f) that do not enclose f’s
definition, that is, f must be free in these vy, ...,v,. The value T'(v, f)is maz(1, 5(v)—
j), where j is the number of variables that are free in v but not in f. This substitution

process is then repeated until S(f) no longer changes and a fixed point?* is reached.

Here step K2 is based on the observation that if f is called inside a function v, and f is
also free in v, then the number of slots assigned to f should not be bigger than the number
of slots available for v’s environment, otherwise, some kind of spilling will be inevitable.

When choosing which subset of v; to use in calculating S(f) at step K2, we again take
advantage of the control flow information in the extended CPS call graph. More specifically,
we want to favor those program fragments that are likely executed more often than others,
so we always choose those v; that have a higher L(wv;, f) value (i.e., the call from v; to f is
within a loop).

Let us apply this algorithm to the function iter in Figure 18. Suppose we use 3 callee-

save registers, then both S(Q) and S(J) are 3; S(h) is initially 14. Assuming that there are

*This iterative process clearly terminates because T(v, f) > 1, S(f) > 1, and the sum of S(f) (for all
functions) gets smaller in each round.

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 75

16 available registers on the target machine; then since Q calls h, and a is free in Q but not
in h, S(h) should be min(3 — 1,14), which is 2, as shown in Table 10. Notice that the call

from iter to h is not considered here because h is not free in iter.

4.4.4 Closure representation analysis

Closure representation analysis solves the following problem: “Given a function f, if f
contains m free variables and is assigned n slots, how to place these m values into n slots?”

Given a CPS expression F/, the closure representation analysis is done by processing each
function definition through a preorder traversal of F; during the traversal, we maintain and

update the following three data structures:

whatMap A static environment that maps every function definition processed so far to its

closure representation.
whereMap A list of currently visible closures and variables.

baseRegs The current contents of callee-save registers.
When traversing and processing each function definition f, we do the following:

1. Suppose the set of raw free variables of f found in the last step (i.e., Section 4.4.2) is
RFV.If f is recursive or mutually recursive with some other function, and then we
compute the transitive closure RF'V™ of f’s raw free variables. For example, as shown
in Table 10, function h is recursive and its RF'V'is {(p, 2,2),(C, 3,3),(£,3,3),(h,4,4)};
we remove h and replace it by its raw free variables. We also propagate h’s ful and lul
numbers into each of its free variables by taking the minimum of their fut numbers

and the maximum of their [uf numbers. As the result, the transitive closure RFV™* of

his {(p,2,4),(C,3,4), (£,3,4)).

2. Next, we find the set of true free variables (TFV) of f by replacing each continua-
tion variable in RF'V* by its corresponding callee-save variables, and each function
definition by its closure contents (or slot variables). For example, suppose we use
three callee-save registers, each continuation variable C is then represented by a code
pointer CO and its three callee-save variables C1,C2,C3. The set of true free variables
TFV for his {(p,2,4), (C0,3,4), (C1,3,4), (C2,3,4), (C3,3,4), (£,3,4)}. Notice that
€0,C1,C2,C3 here naturally inherit C’s fut and lut numbers.

3. Now assume that TFV of f contains m variables, and f is assigned n slots by closure

strategy analysis in Section 4.4.3. If m = n, then we are done. If m < n, f is

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 76

assigned more slots than its number of free variables,?, the unused slots are just filled
with integer zeros. If m > n, we search through the current list of visible closures
maintained in the whereMap data structure, and see if there is any closure record
that we can reuse (or share). The SSC rule mentioned in Section 4.1 is satisfied by
making sure that we only reuse those closures whose contents are a subset of TFV.
Because all closures in the heap are safely linked closures, certain closure sharings
had already been anticipated while processing the enclosing function definitions.® If
there are multiple sharable closures, we use a “best fit” heuristic to decide which one
to reuse. In the example of function iter, the closure CR (line 21 in Figure 19) is

sharable by the continuations J and Q.

4. If the size m of TFV after closure sharing is still larger than n, we have to heap
allocate part of the closure. We do this by putting n — 1 variables into individual
slots, and packing the remaining m — n + 1 variables into the heap closure. The
criteria in choosing these n — 1 variables is based on the following priorities: the first
priority is smaller Jut number (i.e., variables that die earlier); the second is smaller fut
number (i.e., variables that are referenced earlier); the third is whether the variable
is already in the current callee-save registers (i.e., baseRegs) or not. We also use the
contents of baseRegs to decide which variable goes to which slot to reduce register
moves. For example, the function h is assigned 2 slots but h has 6 true free variables,
we put the free variable p in the register because it has the smallest fut number (all

variables have the same lut number).

5. Finally, we decide the actual layout of the spilled heap closure of the above m —n + 1
variables based on each variable’s [ut number. To satisfy SSC with shared closures,
each distinct lult number requires a separate record. For example, the closure for G in
Figure 9 was split into two records because v’s lut number was different from those of

W,X,V,2.

We finish processing the function definition f by updating the whatMap, whereMap and
baseRegs environments based on f’s closure representation.

Not only is CR shared in Figure 19, but its creation is outside the h loop. Thus, each
iteration of h manages to call two unknown (escaping) functions without any memory traffic!

This is one of the most important strengths of our new algorithm.

“This case is only possible for escaping continuation functions.
SMore specifically, suppose g is the function that encloses f, the safely linked closure built for ¢ must
contain separate chunks for those free variables of g that are also free in f; these chunks are very likely

shared by f later.

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 77

4.4.5 Access path for non-local free variables

Computing the access path for each non-local free variable v is done by a breadth-first search
of v in the whereMap environment. We use the “lazy display” technique [Kra87] to keep
a cache of access paths, so that loads of common paths can be shared. More specifically, let
us look at the function i (the innermost function inside £) in Figure 15: assuming that i
uses the safely linked closure shown in Figure 9, then accessing each non-local variable (e.g.,
W,X,y,2) inside i requires traversing two links; but we can first load the 2nd field of the
closure I into a register r, and then access w, x, y, and z directly from r via one load. These
intermediate variables (e.g., register r) may use up all the available machine registers and
cause unnecessary register spilling, but this can always be avoided by selectively keeping

limited number of intermediate variables in the “lazy display” (registers).

4.4.6 Remarks

Graph-coloring global register allocation and targeting [Cha82, BCKT89], which have
been implemented for SML/NJ by Lal George et al [GGR94], accomplishes most control
transfers (function calls) (such as line 12 and 13 in Figure 19) without any register-register
moves. This allows a more flexible boundary between callee-save and caller-save registers
than is normal in most compilers.

Programs, in our scheme, tend to accumulate values in registers and only dump them
into a closure at infrequent intervals. It may be useful to use more callee-save (and fewer
caller-save) registers to optimize this (e.g., to reduce total heap allocation)

Our closure scheme handles tail calls very nicely, simply by re-arranging registers. Han-
son [Han90] shows how complicated things become when it’s necessary to re-arrange a stack
frame.

A source-language function that calls several other functions in sequence would, in
previous CPS compilers (including our own), allocate a continuation closure for each call.
The callee-save registers and safely linked closures allow us to allocate a simple shared
closure.

General deep recursions are handled very efficiently in our scheme. A conventional stack
implementation tends to have a high space overhead per frame, because each frame contains
all variables that are live in the current scope (this violates the SSC rule, see Section 4.2).
Our safely linked closures—which only contains variables that are actual live—are quite

concise. Thus, memory usage from deep recursion will be much less.

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 78

4.5 Case studies

A good environment allocation scheme must implement frequently used control structures
very efficiently. Many compilers identify special control structures at compile time, and
assign each of them a special closure allocation strategy. For example, in Kranz’s Orbit
compiler [Kra87], all tail recursions are assigned a so-called “stack/loop” strategy, and all
general recursions are assigned a “stack/recursion” strategy. Our new closure conversion
algorithm, on the other hand, uniformly decides the closure strategy (i.e., number of slots)
and the closure representation for each function solely based on the lifetime information of
its free variables and simple control flow information.

In Section 4.3, we described how our algorithm implements tail recursion very efficiently
(i.e., function iter). In this section, we use several more examples to show how our new
algorithm effectively deals with other common control structures such as a sequence of

function applications, calling a known function, and general recursion.

4.5.1 Function calls in sequence

One common control structure in functional programs is making a sequence of function

applications, as shown in the following example:

fun f(g,u,v,w) =
let val x = g(u,v)
val y = g(x,w)
val z = g(y,x)
in x+yt+z+v+l
end

Here the function g (a formal parameter of £) is called three times in a row inside the function
f. Under the traditional stack scheme, when function f is called, an activation record for
f—containing formal parameters (i.e., g,u,v,w) and local variables (i.e., x,y,z)—will be
pushed onto the stack. Each time before g is called, certain local variables in registers must
be saved onto the stack. For example, assuming all function arguments (i.e., g,u,v,w) and
return results (i.e., x,y,2z) are passed in registers, then before the first call to g, the registers
holding g and w must be saved so that they can still be retrieved later after g returns.

If activation records are allocated on the heap, things get much worse. Every time
registers need to be saved before a function call, a closure record has to be built on the
heap. Because heap allocated closures are not contiguous in memory, an extra memory

write (and later a memory read) of the frame pointer is necessary at each function call.

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 79

fun £(C,g,u,v,w) =
let fun J(x) =
let fun K(y) =
let fun Q(z) =
let val r = x+y+z+v+l

in C(r)
end
in g(Q,y,x)
end
in g(K,x,w)
end
in g(J,u,v)
end
Figure 21: Function f in CPS
Table 11: Raw free variables and closure strategies for function f
Function | Stage Number Raw Free Variables Closure Strategy
f 1 0 1 slot
J 2 {(C,4,4),(v,4,4),(g,2,3),(w,2,2)} 3 slots
K 3 {(C,4,4),(v,4,4),(g,3,3),(x,3,4)} 3 slots
Q 4 {(C,4,4),(v,4,4),(y,4,4),(x,4,4)} 3 slots

With our new closure analysis technique to make good use of callee-save registers, heap-
allocated activation records can be made almost as efficient as stack allocation (see Chap-
ter 5). The idea is that we can allocate most parts of the current activation record in
callee-save registers. With careful lifetime analysis, register save/restore around several
function calls can often be eliminated or amalgamated, so that function calls in sequence
need to allocate only one heap record.

Figure 21 and 22 list the CPS and CLO code for function £. Table 11 lists the stage
numbers, raw free variables, and closure strategies for function f and continuations J,
K, and Q. During the closure conversion of f (as shown in Figure 22), continuations are
still represented as one code pointer plus three callee-save registers, all denoted by capital
letters. As before, escaping function calls (i.e., calls to g on line 14,17,21) are implemented

Oth

as first selecting the field, placing the closure itself in a special register (the first formal

parameter), and then doing a “jump with arguments” (lines 13-14,16-17,20-21). Before the

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS

80

01 fun £(C0,C1,C2,C3,g,u,v,w) =

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

let fun JO0(J1,J2,J3,x) =
let fun KO(K1,K2,K3,y) =
let fun Q0(Q1,Q2,Q3,z) =
let val v = select(4,Q1)
val r Q3+Q2+z+v+1
val CO = select(0,Q1)
val C1 = select(1,Q1)
val C2 = select(2,Q1)
val C3 = select(3,Q1)
in €0(C1,€2,C3,r)
end
val g0 = select(0,K2)
in g0(K2,Q0,K1,y,K3,y,K2)
end
val g0 = select(0,J2)
in g0(J2,K0,J1,J2,x,x,J3)
end
val CR = (C0,C1,C2,C3,v)
val g0 = select(0,g)
in g0(g,JO,CR,g,w,u,v)
end

Figure 22: Making a sequence of function calls

first call to g (line 21), we put variables that have smaller lut numbers (i.e., g, w) callee-save

registers (i.e., J2,J3), and spill the rest (i.e., CO-C3,v) into a heap record CR (line 19). At

the second and the third calls to g (line 17,14), no register save/restore are necessary. This

is because the lifetime of w and x (also g and y) does not overlap, so they can just share

one callee-save register (i.e., J3 and K3, K2 and Q2).

4.5.2 Lambda lifting on known functions

Lambda lifting [Joh85] is a well-known transformation that rewrites a program into an

equivalent one in which no function has free variables. Lambda lifting on known functions

essentially corresponds to the special closure allocation strategy that allocates as many free

variables in registers as possible. But this special strategy does not always generate efflicient

code [Kra87]. For example, in the following program, assume that £ is a known function,

and p,w,x,y, and z are its free variables.

fun f u = (p u, utwtx+y+z+1)

fun g(x,y) = (p x, £ x, £y)

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 81

If the closure for £ is allocated in registers, then before the call to p inside g, some of £’s free
variables must be saved in the heap (assuming there are only three callee-save registers).
When the call to p returns, these variables must be reloaded back into registers, and passed
to function f; after entering £, some of them again have to be saved when £ calls p, and
so on. Clearly, allocating £’s environment in registers dramatically increases the need for
more callee-save registers inside g. This leads to more memory traffic when there are only
a limited number of callee-save registers.

The closure strategy analysis described in Section 4.4.3 uses an iterative algorithm to
decide the number of registers assigned to each known function. The number of registers
assigned to £ will be restricted by those of its callers, that is, the return continuation for
p x and the return continuation for the first call to £. As a result, £ is only assigned one

slot, and its closure will be allocated in the heap.

4.5.3 General recursion

The closure strategy analysis algorithm described in Section 4.4.3 conservatively represents
all continuation functions using the same (fixed) number of callee-save registers. In some
cases, this restriction can be relaxed: continuations that are passed to known functions
can be represented in any number of callee-save registers. This special calling convention is
especially desirable for general recursion, such as in the case of the following CPS translation

of the map function:

fun map(C,f,1) =
let fun m(J,z) =
if (z=[1) then []
else let val a = car z
val r = cdr z
fun K(b) =
let fun Q(s) =
let val y = b::s

in J(y)

end
in m(Q,r)

end

in £(K,a)

end
in m(C,1)
end

Notice that the recursive function m is called only at two places: one by function map with
C as the return continuation, one inside K with Q as the return continuation. Because the

second call to m is a recursive call, it will be executed much more often than the first. We

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 82

can represent all normal continuation functions in three callee-save registers, but represent
continuations J and Q in two callee-save registers. Figure 23 lists the code of function map

after translation into CLO using the above special calling convention.

01 fun map(C0,C1,C2,C3,£,1) =
02 let fun RO(R1,R2,x) =

03 let val CO = select(0,R1)

04 val C1 = select(1,R1)

05 val C3 = select(2,R1)

06 in €0(C1,R2,C3,x)

07 end

08

09 fun m(JO0,J1,J2,z,f) =

10 if (z=[1) then J0(J1,J2,[1)

11 else (let val a = car z

12 val r = cdr z

13 fun KO(K1,K2,K3,b) =

14 let fun Q0(Q1,Q2,s) =

15 let val y = Q2::s

16 val JO = select(0,Q1)
17 val J1 = select(1,Q1)
18 val J2 = select(2,Q1)
19 in J0(J1,32,y)

20 end

21 in m(Q0,K1,b,K2,K3)

22 end

23 val CR = (J0,J1,J2)

24 val fO = select(0,f)

25 in £0(f,KO0,CR,r,f,a)

26 end)

27 val ¢C = (C0,C1,C3)

28 in m(RO,CC,C2,1,%)

29 end

Figure 23: Function map using special calling conventions

Here m is a known function, and the environment for m (i.e., the free variable f) is
allocated in a register (i.e., is treated as an extra argument of m, see line 9,21,28). Since
continuation C still uses the normal calling convention, when it is passed to the function
m (line 28), a new “coercion” continuation (i.e., RO on line 2-7) has to be built to adjust
the normal convention (three callee-save registers CO-C3) into the special convention (two

callee-save registers RO-R2). Because the return continuation J of m is represented in two

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 83

callee-save registers (i.e., J0-J2), we can build a smaller heap closure (of size 3, on line 23)
for continuation K.
If both J and Q are represented in three callee-save registers, the heap closure for K

would at least be of size 4.

4.6 Measurements

We have implemented our “space-eflicient” closure conversion algorithm in the Standard
ML of New Jersey compiler version 1.03z. In order to find out how much performance gain
we can get from our new closure conversion algorithm, we have measured the performance
of six different compilers on ten SML benchmarks (see Table 2 in Section 2.4).

The six compilers we use are all simple variations of the SML/NJ compiler version 1.03z.
All six compilers satisfy the “safe for space complexity” rule, and all use the type-directed
compilation techniques described in Chapter 3 to allow arguments being passed in registers
and to support more efficient data representations. The “lazy display” technique is imple-
mented in all six compilers, but it is used more effectively in compilers that use the new

closure conversion algorithm, because of their more extensive use of shared closures.

sml.occ This version uses the old closure conversion algorithm [App92, AS92]. More specif-
ically, it uses the linked closure representation if it is space safe, otherwise it uses the
flat closure representation. Continuation closures are represented using three callee-

save registers.

sml.gpl,sml.gp2,sml.gp3,sml.gp4 These compilers all use the new closure conversion al-
gorithm described in this chapter. They respectively use one, two, three, four (general-
purpose) callee-save registers to represent continuation closures. The sml.gp3 com-

piler is exactly same as the sml.ffb compiler used in Chapter 3.

sml.fp3 This compiler uses the new closure conversion algorithm described in this chapter.
Continuation closures are represented using three general-purpose callee-save registers

and three floating-point callee-save registers.

All measurements are done on a DEC5000/240 workstation with 128 mega-bytes of
memory, using the methodology described in Section 2.4. In Figure 24 and Table 12,
we illustrate and list the execution time of running the benchmarks using the above six
compilers. Only the execution time (user time plus garbage collection time plus system

time, in seconds) for the sml.occ compiler is shown; the performance for all other compilers

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 84

1.5
e
X
e
C
ltl 1.0+
i S —— 2 3
0 — - —$
n S0 MU
t G*—*——QHMM____@
1
m o BHut
? 0.5 1 e Boyer
% * Sieve
i * KB-Comp
0 ¢ Lexgen

0-0 T T T T T T

sml.occ sml.gpl sml.gp2 sml.gp3 sml.gp4 sml.fp3

1.5-
e
X
e
C
ltl 1.0% e . . 4
: —_—— e —— ;
o)
n
b
Ih o Yacc
e 0.51 o Life
a * Simple
t * Ray
B o VLIW

O-O T T T T T T

sml.occ sml.gpl sml.gp2 sml.gp3 sml.gp4 sml.fp3

Names of compilers
Figure 24: A comparison of execution time (illustration)

are denoted by a relative ratio to the sml.occ compiler. The garbage collection time
(corresponding to the data in Table 12 is listed separately in Table 13. Similarly, 14, 15,
and 16 respectively compare the heap allocation (in mega-bytes), the compilation time (in

seconds), and the code size (in kilo-bytes).

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 85

Table 12: A comparison of execution time

Program Basis || sml.oce | sml.gpl | sml.gp2 | sml.gp3 | sml.gp4 | sml.fp3

(seconds) (ratio) (ratio) (ratio) (ratio) (ratio) (ratio)
BHut 30.5 1.00 0.77 0.76 0.73 0.75 0.76
Boyer 2.5 1.00 0.92 0.91 0.90 0.90 0.96
Sieve 35.6 1.00 0.84 0.86 0.85 0.86 0.98
KB-Comp 7.5 1.00 0.87 0.85 0.81 0.81 0.92
Lexgen 11.5 1.00 0.91 0.89 0.91 0.88 0.93
Yacc 4.4 1.00 1.02 0.97 0.95 0.96 0.98
Life 1.3 1.00 0.91 0.92 0.90 0.89 0.89
Simple 22.2 1.00 0.88 0.84 0.83 0.94 0.86
Ray 20.3 1.00 0.97 0.99 0.98 0.98 0.97
VLIW 16.1 1.00 0.81 0.77 0.76 0.76 0.76
Average 1.00 0.89 0.88 0.86 0.87 0.90

Table 13: A comparison of garbage collection time

Program Basis | sml.oce | sml.gpl | sml.gp2 | sml.gp3 | sml.gp4 | sml.fp3

(seconds) (ratio) (ratio) (ratio) (ratio) (ratio) (ratio)
BHut 1.61 1.00 0.81 0.85 0.78 0.80 0.83
Boyer 1.03 1.00 0.98 0.97 0.93 0.93 1.01
Sieve 17.9 1.00 0.70 0.72 0.72 0.73 0.85
KB-Comp 0.94 1.00 0.98 0.98 0.98 0.99 0.99
Lexgen 0.83 1.00 0.90 0.89 0.83 0.88 0.94
Yacc 1.05 1.00 1.12 1.02 1.04 1.04 1.07
Life 0.02 1.00 1.00 1.50 0.00 1.00 1.00
Simple 3.43 1.00 0.90 0.89 0.90 0.91 0.90
Ray 0.05 1.00 1.80 1.60 2.20 2.00 1.80
VLIW 0.53 1.00 0.94 0.83 0.96 0.94 1.06

In Table 17, we have also listed the number of memory fetches (in millions) for lo-
cal/global variables and the allocation profile of various kinds of closures for the sml.oce
and sml.gp3 compilers. Here, “escape”, “known”, and “cont” are respectively the total
size of closures (in mega-words) allocated for escaping user functions, known user functions,
and continuation functions; heap allocation for other non-closures is not listed in Table 17
(but is included in Table 14).

We can draw the following conclusions from these comparisons:

e The sml.gp3 compiler has the exactly same setup as the sml.occ compiler except that
one uses the new closure conversion algorithm, and the other uses the old algorithm.

On average, the sml.gp3 compiler reduces heap allocation by 32% (closure allocation

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 86

Table 14: A comparison of total heap allocation

Program Basis || sml.occ | sml.gpl | sml.gp2 | sml.gp3 | sml.gp4 | sml.fp3

(Mbytes) (ratio) (ratio) (ratio) (ratio) (ratio) (ratio)
BHut 619.0 1.00 0.55 0.50 0.44 0.44 0.45
Boyer 30.8 1.00 0.86 0.80 0.75 0.73 0.88
Sieve 253.9 1.00 0.72 0.72 0.70 0.70 0.83
KB-Comp 156.7 1.00 0.79 0.70 0.59 0.57 0.79
Lexgen 96.9 1.00 0.78 0.71 0.64 0.49 0.69
Yacc 57.5 1.00 0.89 0.81 0.77 0.75 0.78
Life 10.2 1.00 0.77 0.73 0.68 0.63 0.68
Simple 323.5 1.00 0.82 0.68 0.64 0.70 0.57
Ray 331.6 1.00 0.92 0.96 0.93 0.92 0.93
VLIW 160.8 1.00 0.80 0.75 0.70 0.71 0.71
Average 1.00 0.79 0.74 0.68 0.66 0.73

Table 15: A comparison of compilation time

Program Basis | sml.oce | sml.gpl | sml.gp2 | sml.gp3 | sml.gp4 | sml.fp3

(seconds) (ratio) (ratio) (ratio) (ratio) (ratio) (ratio)
BHut 59.1 1.00 0.99 0.92 0.96 0.95 1.01
Boyer 26.4 1.00 0.99 0.96 0.96 0.98 1.01
Sieve 31.8 1.00 0.99 0.98 0.97 0.99 1.02
KB-Comp 194 1.00 1.03 0.97 0.98 1.01 1.03
Lexgen 37.8 1.00 0.91 0.92 0.86 0.89 0.99
Yacc 132.2 1.00 0.98 0.93 0.95 0.95 1.01
Life 4.8 1.00 1.04 1.01 0.98 1.02 1.04
Simple 64.6 1.00 0.85 0.83 0.82 0.78 0.86
Ray 15.5 1.00 1.01 0.98 0.97 0.98 1.06
VLIW 185.9 1.00 0.98 0.90 0.91 0.97 0.98
Average 1.00 0.98 0.94 0.94 0.95 1.00

by 40%) and memory fetches for local/global variables by 46%; and improves the
already efficient code generated by the sml.occ compiler by 14%. The sml.gp3
compiler also uniformly generates more compact code, achieving an average of 19%
reduction in code size over the sml.occ compiler. BHut and VLIW achieve up to
respectively 27% and 24% speedup in execution time, because they get significant

benefits from using safely linked closures.

o Varying the number of callee-save registers under the new closure conversion algorithm

has little effect on the execution time (within 6% range, 3% on average), but has a

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 87
Table 16: A comparison of code size

Program Basis || sml.oce | sml.gpl | sml.gp2 | sml.gp3 | sml.gp4 | sml.fp3

(Kbytes) (ratio) (ratio) (ratio) (ratio) (ratio) (ratio)
BHut 103.1 1.00 0.83 0.81 0.81 0.76 0.83
Boyer 107.2 1.00 0.93 0.92 0.92 0.93 0.92
Sieve 74.1 1.00 0.85 0.83 0.83 0.84 0.87
KB-Comp 471 1.00 0.91 0.86 0.86 0.88 0.88
Lexgen 105.5 1.00 0.83 0.80 0.79 0.79 0.80
Yacc 418.2 1.00 0.81 0.76 0.75 0.75 0.75
Life 14.5 1.00 0.91 0.88 0.88 0.87 0.88
Simple 183.1 1.00 0.64 0.61 0.59 0.56 0.58
Ray 53.5 1.00 0.87 0.84 0.85 0.85 0.87
VLIW 426.9 1.00 0.82 0.78 0.78 0.78 0.78
Average 1.00 0.84 0.81 0.81 0.80 0.82

Table 17: Breakdown of closure access and allocation
Closure Access Closure Allocation
(mem-reads in millions) (escape+known+cont in mega-words)

Program sml.occ | sml.gp3 | saving sml.occ sml.gp3 saving
BHut 87.57 37.08 | 57.66% || 0.2240.18476.0 | 0.124+1.59+36.6 | 49.91%
Boyer 4.58 2.58 | 43.64% || 1.914+4.8840.95 | 1.18+0.48+43.18 | 37.56%
Sieve 47.20 27.49 | 41.76% || 7.28411.4426.5 | 7.2848.29+9.84 | 43.71%
KB-Comp 16.00 13.01 | 18.71% || 12.540.044+24.2 | 5.99+1.07+12.9 | 45.57%
Lexgen 15.89 7.57 | 52.38% || 1.4740.18417.1 | 0.48+40.674+6.90 | 56.92%
Yacc 9.75 4.21 | 56.78% || 0.10+2.71+8.03 | 0.09+2.07+5.33 | 30.89%
Life 1.57 0.66 | 57.97% || 0.0640.00+1.50 | 0.06+0.064+0.73 | 46.05%
Simple 76.47 45.78 | 40.14% || 3.47+0.55+62.4 | 2.644+4.13+35.5 | 36.45%
Ray 20.20 13.64 | 32.49% || 0.0040.014+15.2 | 0.00+2.11+11.5 | 10.35%
VLIW 40.65 16.79 | 58.70% || 7.3842.60+33.5 | 6.7843.07+15.8 | 40.89%
Average 46.02% 39.83%

large effect on the total heap allocation. The sml.gp3 compiler is about 3-4% faster

than the sml.gp1 compiler, but its total heap allocation is more than 11% less.

o The effect of the new closure algorithm on the garbage collection time (g.c. time,
see Table 13) varies dramatically depending on the benchmarks. FEight of the ten
benchmarks we measured spend less time in garbage collection (because of less heap
allocation), however, the g.c. time for Ray is almost doubled. This is not surprising
since the new closure algorithm has complete different allocation behavior from the

old algorithm. Having more callee-save registers (especially the sml.fp3 compiler)

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 88

generally increases the g.c. time, which sort of reflects the heap allocation data in

Table 14.

e From the allocation profiling data in Table 14, we can see that most of the reduction
in heap allocation is from the continuation closures; closure analysis has almost no

effect on non-closures.

e The new closure conversion algorithm surprisingly improves the compilation time
by nearly 6%. This is probably because that the old algorithm used in sml.oce
compiler contains expensive ad-hoc heuristics, while the new algorithm is much more
systematic. Another reason might be that the new algorithm generates less code, thus

requires less instruction scheduling time.

e Using three floating-point callee-save registers (i.e., the sml.fp3 compiler) does not
achieve any better performance than using no floating-point callee-save registers. The
slowdown mostly comes from benchmarks such as Sieve and KB-Comp that fre-
quently use first-class continuations and exception handlers. First-class continuations
and exceptions may be put into a record or stored into some reference cell, so they
must be representable in just one word, not as k separate callee-save registers; when a
continuation is captured, the k-register representation has to be packaged into a single
word by making a record on the heap; when a continuation is triggered (by throw),
the single-word representation must be unpackaged into k callee-save registers. This

overhead is higher if more callee-save registers are used.

4.7 Related work

Guy Steele’s Rabbit compiler [Ste78] is the first compiler that uses the continuation-
passing style as the intermediate language; it is also the first one that represents the “stack
frames” using continuation closures. Rozas’s Lias compiler [Roz84] used closure analysis
to choose specialized representations for different kinds of closures; Kranz’s Orbit com-
piler [KKR*86, Kra87] uses six different closure allocation strategies for different kinds of
functions; Appel and Jim investigated closure-sharing strategies [AJ88] and proposed many
alternative closure representations. Unfortunately, all these closure analysis techniques
violate the “safe for space complexity” rule due to unsafe closure sharing. The closure
conversion algorithm described in this chapter combines all of these analyses (except stack

allocation) and more, while still satisfying the “safe for space complexity” rule.

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 89

Hanson [Han90] showed the complexity of implementing tail calls correctly and efficiently
on a conventional stack. In our heap-based scheme, the correctness is straightforward
because dead frames are automatically reclaimed by the garbage collector; the efficiency
is achieved by using the loop-header technique [App94b] to hoist the loop-invariant free
variables out of the tail recursion, and using the callee-save registers [AS92] to simulate the
top reusable stack frames.

Some compilers [Ste78, KKR*86, Car84a] perform closure conversion and closure anal-
yses as part of their translation from lambda calculus or continuation-passing style into
machine code. But it is useful to separate the closure introduction from machine code
generation so that the compiler is more modular; this has been done in compilers based on
ordinary A-calculus (through lambda lifting) [CCM85, Joh85] and on continuation-passing
style (using closure-passing style) [AJ89, KH89].

Many have tried to make call/cc efficient, but this is very hard to achieve in traditional
stack-based schemes. With an ordinary contiguous stack implementation, the entire stack
must be copied on each creation or invocation of a first-class continuation. Clinger [CHO88b]
and Hieb [HDB90] presented several mixed stack/heap strategies intended to support call/cc
efficiently in the presence of stacks. Their basic idea is to make a “stack chunk” that holds
several stack frames; if this fills, it is linked to another chunk allocated from the heap.
This turns to be complicated to implement. Danvy [Dan87] proposed to use a free list of
re-usable frames (or “quasi-stack”) to support fast call/cc; but his method may incur extra
overhead at each function call (or return).

Both Chow [Cho88a] and Steele [SS80] observed that dataflow analysis can help decide
whether to put variables in caller-save or callee-save registers. We are the first to show how
to represent callee-save registers in continuation-passing style [AS92, App92] and how to
use compile-time variable lifetime information to do a much better job of it.

Local variables of different functions with nonoverlapping live ranges can be allocated
to the same register or global without any save/restore [GS91, Cho88a]. We achieve this
by allocating part of the closures (for known functions and continuations) in both caller-
and callee-save registers, and then using the graph-coloring global register allocation and

targeting algorithms [Cha82, BCKT89, GGR94].

4.8 Summary

Our new closure conversion algorithm is a great success. The closure conversion algorithm

itself is faster than our previous algorithm (see Table 15). It makes programs smaller (by an

CHAPTER 4. SPACE-EFFICIENT CLOSURE REPRESENTATIONS 90

average of 19%) and faster (by an average of 14%). It decreases the rate of heap allocation
by 32%, and by obeying the “safe for space complexity” rule and keeping closures small, it
helps reduce the amount of live data preserved by garbage collection.

The closure analysis technique introduced in this chapter can also be applied to compilers
that do not use CPS as their intermediate language. Both safely linked closures and good
use of callee-save registers are essential in building compilers that satisfy the “safe for space

complexity” rule.

Chapter 5

Heap vs. Stack

It has been proposed that allocating procedure activation records on a garbage collected
heap is more efficient than stack allocation. But, previous comparisons of heap vs. stack
allocation have been over-simplistic, neglecting, for example, frame pointers, or the better
locality of reference of stacks.

In this chapter, we present a comprehensive analysis of all the components of creation,
access, and disposal of heap-allocated and stack-allocated activation records. Among our

results are:

o Although stack frames are known to have a better cache read-miss rate than heap
frames, our simple analytical model (backed up by simulation results) shows that the

difference is too trivial to matter.

e The cache write-miss rate of heap frames is very high; we show that a variety of
miss-handling strategies (exemplified by specific modern machines) can give good

performance, but not all can.

e The write-miss policy of the primary cache is much more important than the write-

miss policy of the secondary cache.

o Stacks restrict the flexibility of closure representations (for higher-order functions) in

important (and costly) ways.
o The extra load placed on the garbage collector by heap-allocated frames is very small.

e The demands of modern programming languages make stacks quite complicated to

implement efficiently and correctly.

CHAPTER 5. HEAP VS. STACK 92

Table 18: Cost breakdown of different frame allocation strategies

Stack Quasi-

Component Heap Stack Chunks Stack see:
(see §5.9) (see §5.9)

Creation 3.1 1.0 3.0 3.0 §5.2
Frame pointers 2.0 0.0 0.0 2.0 §5.3
Copying and sharing 0.0 3.4 3.4 3.4 §5.4
Cache write misses 0.0or 5.3 0.0 0.0 0.0 §5.6.1
Cache read misses 1.0 0.0 0.0 0.0 §5.6.2
Disposal (pop) 1.4 1.0 1.0 4.0 §5.7
Total Cost 7.50r 128 5.4 7.4 12.4
Call/cc o(1) O(N) O(X) o(1) §5.9
Implementation easy hard hard hard §5.10

Overall, the execution cost of stack-allocated and heap-allocated frames is similar; but

heap frames are simpler to implement and allow very efficient first-class continuations

(call/cc).

5.1 Garbage-collected frames

In a programming language implementation that uses garbage collection, all procedure
activation records (frames) can be allocated on the heap. This is convenient for higher-
order languages (Scheme, ML, etc.) whose “closures” can have indefinite extent, and it is
even more convenient for languages with first-class continuations.

One might think that it would be expensive to allocate, at every procedure call, heap
storage that becomes garbage on return. But not necessarily [App87]: modern generational
garbage-collection algorithms [Ung86] can reclaim dead frames efficiently, as cheap as the
one-instruction cost to pop the stack.

But there are other costs involved in creating, accessing, and destroying activation
records—whether on a heap or a stack. In Table 18, the cost for each component of frame
creation, access, and disposal for heap-allocated and stack-allocated frames is shown, mea-
sured in instructions per frame (tail recursions and leaf procedures do not make frames).
The numbers for cache write misses depend critically on the design of the machine’s primary
cache; we show the cost of two alternatives. The last column has references to the section
number (in this chapter) of the explanation of each component. In the last row, N is the
stack depth; X is the size of one stack chunk. These costs are explained and analyzed in

the remainder of this chapter.

CHAPTER 5. HEAP VS. STACK 93

The numbers in Table 18 depend on many assumptions. The most critical assumptions

are these:

e The language in question has static scope, higher order functions, and garbage col-
lection. The only question being investigated is whether there is an activation-record

stack in addition to the garbage collection of other objects.

e The compiler and garbage collector are required to be “safe for space complexity;”
that is, statically dead pointers (in the dataflow sense) do not keep objects live. (See

Section 2.3.3.)

o There are few side effects in compiled programs, so that generational garbage collection

is efficient.

These assumptions, and others, are explained in the rest of this chapter.
Table 18 clearly shows that there are three important criteria in the choice between a

stack or heap representation:

1. The write-miss policy of the machine’s primary cache (discussed in Section 5.6.1).
On machines with fetch-on-write or write-around write-miss policies, heap-allocated

frames are significantly more expensive.

2. Stacks are harder than heaps to implement without space leaks, as explained in Sec-

tion 5.10.

3. If the programming language supports first class continuation (call/cc [Lan65])—a
primitive often used to support multi-threading, exceptions, and so on—stacks have

a much higher cost (see Section 5.9).

The (perhaps) startling result is that heap-allocated frames have almost the same cost
as stack frames.

Finally, we point out that the absolute differences are small: two instructions per frame
is less than 2% of total execution cost, as can be calculated from Figure 20.

We count instructions rather than cycles. In general, load and store instructions for
frame management can usually be scheduled to avoid stalls (they are rarely in the critical
path of a loop, for example). The branch instructions for heap-limit testing will be at
least 99% predictable—because hundreds of frames are allocated (heap limit not exceeded)
between garbage collections (heap limit exceeded); so branches for heap-limit tests will
cause almost no stalls. Thus, instruction counts, plus a separate accounting of the cache

misses, form a suitable cost model.

CHAPTER 5. HEAP VS. STACK 94

Table 19: Shared limit checks

Many frame allocations are in the same (extended) basic block as other
non-frame allocations. In these cases the heap limit check would have to be
done anyway, and should not be charged to the frame allocation. This table
shows the proportion of frame allocations that are not in the same block as
a non-frame allocation. The results shown are from measurements of ML
benchmark programs (see Table 2 in Section 2.4 for details) as compiled by
the Standard ML of New Jersey [AM91] compiler.

Program Limit Checks per Frame

Boyer 717
Knuth-B 783
Lexgen .864
Life 456
YACC .631
Simple .665
VLIW .695
Average .687

5.2 Creation

To allocate a stack frame, the program must add a constant to the stack pointer. This
takes one instruction. It is also necessary to check for stack overflow; but since overflow is
so rare, this can usually be done at no cost using an inaccessible virtual memory page.

Allocating a heap frame is more complicated:

1. Heap overflow must be checked. As explained by Appel and Li [AL91], and contrary
to the ideas of Appel [App89], this should not be done by a virtual memory fault:
(1) operating-system fault handling is too expensive, (2) heap overflow is unrelated to
locality of reference, and (3) the technique is almost impossible on machines without

precise interrupts.

Thus, a comparison and a conditional branch are required; by keeping the free-space
pointer and the limit pointer in registers, this takes about two instructions. However,
many of the frame allocations occur in the same extended basic block! as other (non-
frame) allocations, which would require limit checks anyhow (see Table 19). The

actual cost is therefore 2 - 0.687 = 1.374.

! An extended basic block has one entry point, followed by a tree of control flow with several exits.

CHAPTER 5. HEAP VS. STACK 95

2. The free-space pointer must be incremented. This costs one instruction. But when
the frame allocation is in the same basic block as another allocation, the increment

can be shared. So the cost is 0.687 instructions per frame, on the average.

3. A descriptor word must be written to the frame, so the garbage collector can under-
stand it. However, the frame usually contains a return address; the garbage collector
can have a mapping of return addresses to descriptors, so frame need not explicitly

contain the descriptor.?

4. The free-space pointer must be copied to the frame pointer; this takes one move

instruction.

The total cost is about 3.1 instructions, on the average.

5.3 Frame pointers

When a stack frame is popped, the frame pointer must be set back to the caller’s frame.
Some implementations of stack frames have put a copy of the (previous) frame pointer in
each frame, and this is fetched back upon function return. But for contiguous stack frames
of known size, this is clearly unnecessary; the stack pointer itself can be used as the frame
pointer, and the pop can just be a subtraction from the stack pointer. This is the common
modern practice.

But when frames are not contiguous (e.g., when they are heap-allocated), then each
frame must contain a pointer to the caller’s frame. Omne instruction will be necessary to
store the (previous) frame pointer into a new frame; and one instruction will be necessary
to fetch it back.

Thus, heap-allocated frames have a 2-instruction cost, per frame, for frame pointer

manipulation; stack-allocated frames incur no such cost.

Other registers

Efficient heap allocation uses a free-space pointer and a free-space limit which should be kept
in registers.®> However, the cost of reserving these registers should not be charged to heap

allocation of frames, because we are assuming that the implementation in question already

2 Actually, SML/NJ does write an explicit descriptor to each frame, for simplicity.

®Some implementations use a BIBOP (Blg Bag Of Pages [Han80]) scheme that allocates each kind of
object in a different contiguous space, so that only one g.c.-descriptor is required per space, instead of per
object. This requires a free-space pointer and a limit pointer per space.

CHAPTER 5. HEAP VS. STACK 96

has garbage collection (presumably with efficient allocation) for other purposes (lists and

closures, for example).

5.4 Copying and sharing

A language (such as Scheme, ML, Smalltalk) with higher-order functions needs closures
to hold the free variables of functions that have been created but not yet called. If one
function’s free variables overlap with another’s, then one closure might point to another
(which saves the expense of copying the contents).

So there are two kinds of objects: activation records, whose lifetimes have last-in first-
out behavior; and higher-order function closures, which have indefinite extent. The former
can be stack allocated (or heap allocated), but the latter must be allocated on a garbage-
collected heap. Furthermore, stack frames may point at heap closures, but heap closures
may never point at stack frames, otherwise there will be dangling pointers.

This means that if the compiler wants to build a closure containing free variables (z,y, z)
which are available in a stack frame, all three variables must be copied into the closure; the
closure cannot just point to the stack frame.

But if all activation records are heap-allocated, then closures may point at them. This
flexibility allows the closure analysis phase of a good compiler to choose much better
(smaller, shallower) representations for closures, with more sharing and less copying (see
Chapter 4).

The restriction that heaps cannot point to stacks must be counted as a “cost” of using
stack-allocated frames. To quantify this cost, we measured two versions of the Standard ML
of New Jersey compiler [AM91, App92] outfitted with the new closure conversion algorithm
described in Chapter 4.

The version shown as Ordinary Heap in Table 20, allocates all frames and closures on
the heap. The “Stacklike Heap” obeys the restriction that closures cannot point to frames
(though frames can point to closures). “Frames” are those objects with LIFO lifetimes.
But “Stacklike heap” proceeds to allocate frames and closures on the heap; it does not use
a stack, and does not gain any advantages of using a stack.

The difference in execution time between the two versions is attributable only to the
slightly more cumbersome representations that are imposed by the “closures cannot point
to frames” restriction. The frames themselves are not much bigger, but the closures are:

since they can’t point to the frames, data from frames must be copied into the closures.

CHAPTER 5. HEAP VS. STACK

Table 20: Copying and sharing cost

The “Stacklike Heap” allocates all frames on the heap, but is careful to
divide into two kinds: “stack” frames, which can point only to other “stack”
frames; and “heap” frames, which can point to either kind. This lack of
flexibility has a significant cost, as shown in the table. The first two columns
show thousands of instructions executed; the third column shows thousands
of frames created.

We count frames rather than calls because tail calls and leaf procedures do
not make frames (stack or heap).

Ordi- “Stack- Extra

nary like” Stack Instrs Instrs
Program Heap Heap Frames per per

i/103 i/10> f/10% Frame Frame
Boyer 61966 65770 662 94 5.75
Knuth-B 212702 222376 3465 61 2.79
Lexgen 310522 316813 1873 166 3.36
Life 48016 48437 201 239 2.09
YACC 114687 119065 1187 97 3.69
Simple 469543 492126 5516 85 4.09
VLIW 285370 292474 3274 87 2.17
Average 119 3.42

Table 21: Heap allocation data

This table shows the amount of frame allocation, the amount of non-frame allo-
cation, and the proportion of allocation due to heap frames for the heap-based
compiler. The last column shows the average frame size, calculated from the
previous columns.

Even though the number of frames used by the heap-based compiler is slightly
less than the number used by the stack-based compiler (because of improved
copying/sharing) we use the stack-frame count for calculation, to make compar-
ison between the two compilers more meaningful.

Heap Avg.

Stack Frame Other Frame

Program Frames Alloc. Alloc. F_{_LO Size
f/10® words/10° words/10° words

Boyer 662 3.17 2.61 0.55 4.8
Knuth-B 3465 12.92 11.55 0.53 3.7
Lexgen 1873 6.90 1.87 0.79 3.7
Life 201 0.63 0.99 0.39 3.1
YACC 1187 5.92 4.16 0.59 5.0
Simple 5516 25.23 13.09 0.66 4.6
VLIW 3274 15.72 1590 0.50 4.8

Average 0.57 4.2

97

CHAPTER 5. HEAP VS. STACK 98

Some programs suffer more from this than others, but on the average the difference is
quite significant: about 3.4 extra instructions are executed per every frame creation because
of this restriction. Perhaps our lambda-lifting (closure analysis) algorithm is better tuned
for heaps than it is for stacks, and this “copying vs. sharing” cost is overstated; it is difficult

to tell.

5.5 Space safety

Assumption: The results of Table 20 are based on the assumption that the compiler must
be “safe for space complexity” (see Section 5.5), which does put some restrictions on both
the heap-allocated and stack-allocated frames.

It is possible to allow dead variables in frames and closures, if the garbage collector knows
they are dead. This can be accomplished using special descriptors, which would reduce the
“copying and sharing” penalty for stack frames.

For example, in the Chalmers Lazy ML compiler [Aug89] or the Gallium compiler
[Ler92], associated with each return address is a descriptor telling which variables in the
caller’s frame are live after the return.* But this is not sufficient; heap closures still cannot
point to stack frames. A fully flexible system must be able to let the stack frame point to a
heap closure that contains several variables, some of which may die before the frame itself.
The return-address descriptor would need to indicate not only which variables in the frame
are dead, but which live variables point to records in which some of the fields are dead.

This is complicated to implement, and we do not know of anyone who has done it.

5.6 Locality of reference

Stacks have excellent locality of reference: they are almost always moving up and down in
a small region of memory, so access to the stack should almost always hit the cache, no
matter how small that cache is.

But heap-allocated frames are scattered throughout memory, so creating and accessing
them should cause more cache misses.

Since some machines these days have primary caches as small as 8k bytes, and secondary

caches with miss penalties as long as 100 cycles, this is a serious concern.

*The bibliographic citations are merely pro forma; the author of neither paper has actually described
this technique in print.

CHAPTER 5. HEAP VS. STACK 99

The analysis of cache behavior of garbage collected systems differs qualitatively depend-

ing on the size of the cache.

Large Caches For large (e.g., secondary) caches, a generational garbage collection algo-
rithm [Ung86] can keep its youngest generation entirely within the cache [WLM92, Zor91].
Only the (rare) objects that survive a collection (or two) will be promoted into an older
generation where they can cause cache misses. The collector itself helps to improve the
locality of reference of the mutator. Thus, locality of reference in a large cache is basically
a solved problem.

Furthermore, activation records die especially young. It will be extremely rare for an
activation record to be promoted to a higher generation [SM94]. Since only the higher
generations can cause cache misses®, heap-allocated frames will (almost) never cause cache
misses. Thus, while there may be secondary cache misses in a garbage-collected system,
these will be on the non-frame objects (closures, records, etc.); the difference between stack-
allocated and heap-allocated frames will be insignificant.

John Reppy has recently made empirical measurements of a multigeneration collector on
a machine with a large (1MB) secondary cache. “The total CPU time reaches a minimum
[significantly less than with the collector used this chapter] when the allocation arena is the
same size as the secondary cache. This provides empirical evidence for the claim that sizing
the allocation space to fit into cache can improve performance.” [Rep93] Unfortunately, the

measurements in this chapter were made using the older two-generation collector [App89].

Small Caches For small (e.g., primary) caches whose size is less than 100 kbytes, it is
impractical to keep the youngest generation in the cache; doing so would cause garbage
collections to be too frequent, and this would be expensive.

Let us consider locality in a small, primary cache. We assume that any cache of only
8 kbytes will have only a 10-cycle miss penalty—because there are many programs that
cannot achieve a better than 90% hit rate in such a small cache, and machine designers will
be forced to make a small miss penalty for “balanced” performance.

The essence of the locality argument against heap allocation is that stacks can exploit
a small primary cache, and heap-allocated frames cannot. Stacks should have good locality
even in a small cache. In a typical sequence of N procedure calls, the stack pointer is

expected to go up and down over the same log(/N) frames, re-using them over and over

“This is a slight oversimplification.

CHAPTER 5. HEAP VS. STACK 100

again. These frames should easily fit even in the smallest cache. Heap-allocated frames can
have good locality in a large cache, but no one has analyzed locality in a small cache.
We will now demonstrate that heap-allocated frames have adequate locality of reference

in a small cache, if the read miss penalty is not too large and the write miss penalty is zero.

5.6.1 Write misses

The Standard ML of New Jersey compiler [AM91] uses no stack; all frames are allocated on
the garbage-collected heap. If any system should have poor cache locality, this is the one.

Diwan, Tarditi, and Moss [DTM94] simulated the memory-hierarchy performance of
SML/NJ on a DECstation 5000, and found two things:

e SML/NJ program executions have an astoundingly high write-miss ratio.
e SML/NJ programs are not much delayed by cache misses.

The reason these two statements are not inconsistent, they discovered, is that the write-
miss penalty on this machine is approximately zero—the write buffer can easily keep up
with an enormous write miss rate.® Read misses stall the processor—which cannot continue
computing until the data shows up—but write misses can be handled by the write buffer
while the CPU continues its work. Many modern machines have a zero write-miss penalty,
especially for their primary caches [Jou93]. Simulating machines with a high write-miss
penalty, Diwan et al. found that SML/NJ performs badly, as might be expected.

Thus: on machines with a zero write-miss penalty, the average cost per frame of write
misses is zero.

On machines with a nonzero write-miss penalty, the cost per frame is high. The average
number of cache write misses caused by the creation of a frame is the ratio of frame size
to cache line size (there is no fragmentation, because heap allocation is sequential and
contiguous). Assuming a cache line size of 8 words (for example), and a frame size of 4.2
words (as in Table 21), the number of write misses per frame is about 0.53.

Thus, the cost of write misses shown in Table 18 is either 0 (for zero write penalty) or
5.3 (for 10-cycle write penalty). But see also Section 5.6.2.

They also found that write-allocate is important: on a write miss, the written data
should be put in the cache. But a cache line is usually larger than a single word; on a write

miss, “traditional” (fetch-on-write) caches read the rest of the line from memory; this can

®Reinhold [Rei94] makes similar observations about the interaction of garbage collection and caches,
though not for a compiler with heap-allocated frames.

CHAPTER 5. HEAP VS. STACK 101

cause write misses to be slow, and also causes unnecessary traffic on the memory bus in the
common case of sequential writes that will overwrite the just-read data. The simulations of
Diwan et al., and our analysis in Section 5.6.3, both show that this policy is costly.

Heap allocation (in a system with copying garbage collection) consists of sequential
writes to a large contiguous free region. Under such a discipline, there are some equally
good cache implementation strategies that will permit (or simulate) write-allocate with zero

write-miss penalty.

Sub-block placement: With sub-block placement (also called write-validate), a write
miss on one word will be written to the cache, and the rest of that cache line will be
marked as allocated but invalid. Thus, a write miss does not require reading the rest
of the written cache line from memory. Subsequent (sequential) writes will fill the

rest of the line.

One-word cache line: The DECstation 5000 has a cache-line size of one word, but four
lines are read on a miss [DTM94]. For some applications this is better than sub-
block placement, but for sequential writes it is equally good. It is more expensive to
implement, since it requires a full tag (not just a valid bit) for each word. Diwan et

al. found excellent memory-subsystem performance for SML/NJ on this machine.

Cache-line zero instruction: On some machines (e.g., IBM R/S6000 [HHH*90] and
PowerPC [AB93], Power2, HP PA) a cache line (64 bytes) can be allocated and zeroed
with a special instruction. This avoids the write miss, with a 0.687-instruction cost

per frame.”

Cache-control hint: On the HP PA7100, a store instruction can have a cache-control hint
specifying that the block will be overwritten before being read; this avoids the read
if the write misses [AAD*93]. But these machines have very large primary caches

anyway, so locality can be handled by generational collection.

Smart write buffer: ® Instead of sub-block placement (which complicates the cache),
one might add a feature to the write buffer: write misses normally bypass the cache,

but if the write buffer accumulates a full cache line, this line is put in the cache.

"In detail: the allocation pointer is made always to point exactly 64 bytes ahead of the next allocatable
word. On each heap-limit check, a cache-line clear is performed. This does not clear the line currently being
stored into (which might overwrite a frame recently allocated) but the line soon to be entered. Because the
heap-limit check is often shared with a non-frame allocation (see Table 19), the average net cost per frame
is only 0.687 instructions.

8This idea is discovered by Andrew Appel.

CHAPTER 5. HEAP VS. STACK 102

For sequential writes this is as good as sub-block placement. On a multiprocessor
with cache coherence, this technique might be easier to implement than sub-block
placement, because no cache line would ever be dirty (but partially full) in two different

caches.

Garbage-prefetch: On a machine with a no-write-allocate (write-around) cache, write-
allocate can be simulated (as long as read misses are nonblocking) by fetching the
cache line (with an ordinary read instruction) in advance of the write [App94a]. This
technique works (providing a modest performance enhancement) on the DEC Alpha

21064 [Dig92], for example.

On any of these machines, heap-allocated data should not incur a write-miss penalty.

Assumption: Any small cache will have write-allocate and no write-miss latency (or
write-allocate can be emulated).

Indeed, this is not true of all machines: the VAX 11/780, VAX 8800, and Pentium
do write-around, bypassing the primary cache on write misses (causing subsequent read
misses); and most pre-1993 designs do fetch-on-write, stalling the processor on a write miss
[Jou93]. In fact, the bad performance of garbage-collected systems on machines with a
write-miss penalty is a good reason not to build such machines.

Finally, note that a write-miss penalty on large caches is not particularly problematic;
as explained above, generational garbage collection solves that problem. The analysis in

the rest of this section applies only to small caches.

5.6.2 Read misses: simulations

To see the effect of small caches on heap-allocated frames, we simulated several “stan-
dard” SML benchmarks (selected from Table 2) in two versions of the SML/NJ compiler: a
Heap version with heap-allocated frames, and a Stack version with stack-allocated frames.
The simulations was run in direct-mapped D-cache (of various sizes) and “infinite” I-cache.
The simulations counted read misses, write misses, and total instruction count of SML pro-
grams compiled to the MIPS instruction set. The total instruction count also includes the
instructions and cache misses of garbage collection.

Diwan et al. [DTM94] measured a heap-only ML system; Reinhold [Rei94] measured a
stack-frame Scheme system. In order to make a more direct comparison, we measured stack
frames vs. heap frames in the same ML system.

We simulated only the primary data cache. We simulated direct-mapped caches of

sizes ranging from 2 kbytes to 2 Mbytes, with a 32-byte line size. Many modern machines

CHAPTER 5. HEAP VS. STACK

Write-Allocate Cache Size (bytes)
211212213214215216217218219220221

Write-Around Cache Size (bytes)

211212213214215216217218219220221

100

i T T T T T T T T T N 60
KB-Comp e Stack — 380

o Heap | 340

— 300

L | bl L 1
(
=N DO
8] \le]
jenjen]en]

11912913914915916917918919920921
Write-Allocate Cache Size (bytes)

[\l

YACC

] o Stack [160
iw_ 140
_Mr 120

. - 100

. Simple — 700

y o Stack
_w— 600

I - 500

1 VLIW e Stack —400
_w— 360 —
-ML 320

- 280 —
9 12122132142152162172182192é0221

. Boyer e Stack - 9(- Boyer e Stack |
[[e] eap [e] eap

4 — 80 s
i '_ 70 —

KB-Comp e Stack

*\‘;z;

= T T T T

Write-Around Cache Size (bytes)

103

Simulations running in direct-mapped D-cache of various sizes and “infinite” I-cache. Vertical axis shows
execution cycles in millions. Cycle count for stack programs is reduced by 6 x number of frames, to discount
the 7-instruction quasi-stack allocation/deallocation sequence.

Figure 25: Simulations: write-allocate vs. write-around cache

CHAPTER 5. HEAP VS. STACK 104

have direct-mapped caches especially at the first level of the memory hierarchy, so that tag
comparison can be overlapped with further computations on the value fetched [Hil88].

Instead of a detailed cycle-level simulation, we use the approximation that each cache
miss stalls the instruction-execution pipeline for p cycles, where p = 10 is the “miss penalty.”
Many modern machines do not stall non-memory instructions on a cache miss; for these
machines our simulation will provide an upper bound on cache delays, which is sufficient
for our analysis.

We did not simulate a conventional, contiguous stack. Instead, we implemented a free
list of 8-word re-usable frames (a quasi-stack). Frames are popped by putting them back
on a free list. This takes more instructions than conventional pushing and popping, but
should not cause more cache misses: programs will still go “up and down” over the same
tiny set of (noncontiguous) frames, and even a small cache should be able to hold these
frames along with other frequently used data.

Measurements of SML/NJ show that most frames are smaller than eight words (see also
Table 21); we do not load frames down with lots of useless overhead. When larger frames
are needed, our “stack” simulation simply links together enough 8-word (32-byte) frames.
Aggregate objects (arrays, records) are never kept in frames.

Free-list handling costs six instructions more than stack-pointer incrementing, so we
subtract this cost when presenting results of the simulation (Figure 25).

Our garbage collector “marks” any frame that survives a collection; marked frames are
not put back on the freelist upon procedure return. This enables our stacks to work well with
generational garbage collection and with first-class continuations. At a youngest-generation
collection, the freelist is set to nil; after the collection, new frames will be obtained from
the heap (and, when freed, put back on the freelist).

Using a free list of frames, there is a considerable cost to allocate and deallocate a frame:

1. Test the freelist register.”

2. Set freelist register to the next free frame.
To deallocate,

3 Fetch the mark field.

4 Wait for fetch to finish.

°If the freelist is empty, one must heap-allocate instead of taking from the freelist (the heap-allocated
frame will be deallocated back onto the freelist). But this case is so rare that we won’t count it in the
average cost.

CHAPTER 5. HEAP VS. STACK 105

5 If marked, stop here (do not put back on free list).
6 Store free list register into newly freed frame.

7 Set the free list register to point to this frame.

Thus, there is an overhead of seven “instructions” for stack allocation. But “ordinary,
contiguous” stacks do not have this seven-instruction penalty—there’s just a single “pop”
instruction. Therefore, we adjust the execution time of the Stack version of the program
by subtracting six cycles per frame.

Figure 25 shows the run times (after adjustment) of several benchmarks using Heap and
Stack frames, running in simulated caches of different sizes. We simulated a write-allocate
cache with partial fill (the left-hand-side of Figure 25), and also a write-around cache (the
right-hand-side of Figure 25).

Jouppi [Jou93] simulated both kinds of cache for C programs without garbage collec-
tion; Diwan et al. [DTM94] simulated both caches for almost purely heap-allocating ML
programs. By simulating both caches on stack and heap allocation for the same programs,
we can compare more straightforwardly.

The results are not too surprising: write-allocate is better on all programs than write-
around; and heap allocation is more sensitive to the cache policy than is stack allocation.

Though there are many differences between the Heap and Stack implementations that
affect the run time, it is clear from the shapes of the curves that the cache locality behavior
of heap and stack in a write-allocate cache is almost identical. (That is, if the two curves
were translated vertically so that the large-cache points coincide, then the rest of the curves
would be extremely close.)

The simulation measurements (Figure 25) show a cache-read-miss cost (for 16k write-

allocate cache) of 1.0 cycles per frame. We calculate this by averaging

((D16k,heap - D2M,heap) - (D16k,stack - DQM,stack)) * P/F

over all the benchmarks, where D, is the number of read misses in data cache size ¢ with
frame strategy , P = 10 is the miss penalty, and F' is the number of frames created (taken
from Table 20).

A nonzero write miss penalty is usually found only on processors that fetch on write.
Such processors will then allocate the line in the cache, so the average read miss cost will
be low (as described in the previous paragraph). For a 10-cycle miss penalty, the write-miss

cost per frame (as explained in Section 5.6.1) should be about 5.3 cycles. When the cost of

CHAPTER 5. HEAP VS. STACK 106

read misses for a write-allocate cache is included, the total cost of read+write misses is 6.3
cycles per frame.

Write-around caches do not need to stall the processor on a write miss, at least for
the well behaved sequential writes performed by a heap allocator. Thus, the write miss
cost will be zero; but since (almost) every newly written cache line will soon be fetched
[SM94, Rei94], we should expect the read-miss cost per frame for write-around caches to
be similar to the cost per frame for fetch-on-write caches. For a 16k write-around cache,
the cost of read misses (calculated from the simulations) is 5.1 cycles per frame—somewhat
smaller than the 6.3-cycle read+write miss cost for fetch-on-write caches. We have not
shown write-around caches in Table 18, but their total cost will be similar (though slightly
smaller, for heap frames) to that of fetch-on-write caches.

Clearly, the small size of frames in SML/NJ is important in achieving good performance,

especially for fetch-on-write or write-around caches.

Figure 26: Execution of 7(7) in a 16-line cache. Every uptick (procedure call) is a write
miss; only the bold downticks (procedure returns) are read misses.

Figure 27: Execution of 7'(6) in a 16-line cache. Only the bold downticks (procedure
returns) are read misses.

5.6.3 Read misses: analytically

Stacks continually re-use recently used frames for new purposes; heap-allocated frames
“thrash” through the cache in sequential order. How could it possibly be the case that—in
a write-validate cache—they both have equally good locality of reference?

Since the simulations give us no analytical understanding of what is really happening,

we focus on three “typical” patterns of procedure call and return:

CHAPTER 5. HEAP VS. STACK 107

1. Tail recursion: each call re-uses the same frame, no allocation is performed.

2. Deep single recursion (as for the recursive factorial function): a deep sequence of calls

followed by the returns from all of them.

9

3. “Towers of Hanoi:” lots of short up-and-down motion, but every Nth call briefly

returns to depth log(N). This is shown graphically in figures 26 and 27.

We claim that these patterns represent “both extremes and the middle” of all procedure-call
patterns. Furthermore, the Towers of Hanoi should be a worst case for heaps (as compared
to stacks)—because the stack implementation has excellent locality—so its analysis will be
instructive.

We assume that the cache is direct-mapped'® and can hold C frames, with a line size
equal to the size of a frame (different line sizes would affect our results by a constant
factor). We assume that heap-allocated frames are allocated at sequential addresses. We
assume that no heap allocations or memory accesses are performed, other than for activation
records.

Then tail recursion is easy to analyze: No new frames are allocated by either the stack
or heap methods. The miss rate for both is zero.

Deep single recursion is bad for both stacks and heaps: If the recursion is depth N, then
there will be no read misses on any of the calls; the first C' returns will hit, and the rest of
the returns will have read misses. The miss ratio approaches 1 as N becomes much larger
than C'.

Towers of Hanoi should be ideal to demonstrate the better locality of reference of stacks

in a small cache. Let us analyze its cache behavior carefully.
fun T(d) = if d>1 then { T(d-1); T(d-1) } else ...

Executing 7(d) requires 2¢ — 1 procedure calls. If d < C, all the stack frames fit in
the cache, so the read-miss rate is zero (we will ignore write misses). If d > C, then there
will be a miss on every return from a call to 7'(e), where e > C. The number of such
returns is 29=¢ — 1. The miss rate is the number of misses divided by the number of calls,
or approximately 27¢. For an 8-kbyte cache, C' = 256, so the miss rate for stacks is indeed
negligible.

Now consider executing 7'(d) with heap-allocated frames. The frames are allocated

sequentially. If a clock counts one tick for each procedure call, then at time ¢ the frame

19The results for these three simple programs would be the same for set-associative caches with LRU
replacement in each set.

CHAPTER 5. HEAP VS. STACK 108

created at time ¢t —C' will be removed from the cache by a newly allocated frame. Therefore,
exactly those procedures that return more than C' time units after they are entered will
cause a cache miss upon return to their callers.

Executing 7'(d) requires 29 _ 1 calls, of which only 297182 ¢ take more than C' time units
to execute. Thus, the amortized number of misses per call is about 271°82¢ that is, one
miss every C' calls.

Figure 26 illustrates 7°(7) running in a tiny cache (C' = 16). The cache misses are
clustered at intervals of 2C' returns, but there are an average of 2 misses in each cluster.

Figure 27 shows a more traditional Towers of Hanoi, that calls print ("move disk 4")
at each step.

In a 16k cache—which can hold 512 thirty-two-byte frames—the stack version will have

2512 calls, but the heap version will have one miss every 512 calls. Assuming

one miss every
that the primary cache miss (with secondary cache hit) costs 10 cycles, this is a cost of one
cycle every 50 calls.

The analytical prediction (0.02 cycles/call) does not completely agree with the simu-
lation (1.0). We believe this is because the simulation cannot directly measure the cache
miss cost, because the “stack” and “heap” programs do not execute the same instructions,
or even the same number of instructions. Instead, we measure the total cost of two differ-
ent implementations (with different frame creation sequences and frame disposal sequences,
different garbage collection times, garbage collectors trashing the cache at different frame
layout, etc.) and attempt to subtract out the components not related to cache behavior.
Small errors in the estimation of any of these components will be additive.

On the other hand, the simulation can capture the effect of “real” programs that cannot
be analyzed in closed form like our three paradigmatic examples. Such programs will have
interference effects from old objects and nonframe objects. Reinhold [Rei94] , however, finds
that such interference does not much affect the cache behavior of recently allocated objects
(such as, in our case, frames).

Therefore, we cannot say with confidence whether the simulation or the analytical pre-
diction more accurately characterizes the cache behavior. To be conservative, we use the
“worse” number (1.0) for Cache read misses in Table 18.

But now consider what happens in a write-no-allocate (e.g., write-around) cache. The
vast majority of reads in the Towers of Hanoi example are to blocks that recently caused
write misses. Even if the write misses themselves do not stall the processor, the read misses
will. This costs about 5 cycles per frame (assuming the average frame size is roughly half

the cache line size, and a 10-cycle miss penalty).

CHAPTER 5. HEAP VS. STACK 109

Future cache designs

What cache write-miss policies can we expect in the future? We must assume that hardware
designs of “commodity” microprocessors will be driven by the sPEC benchmark suite, not
by arguments about what’s best for functional programs or garbage collection.

Jouppi’s measurements of C and FORTRAN programs [Jou93] may perhaps be influential.
He concludes that write-validate (that is, write-allocate, no-fetch-on-write) is the policy with
best performance. This is exactly the policy that we and others [DTM94, Rei94, SM94]
find best for garbage-collected strict functional programs.

On the other hand, as Jouppi points out, write-validate is difficult—though not
impossible—to implement on a shared-memory multiprocessor with cache coherence. Such
machines require each writable cache line to have a single owner. Since manufacturers
will wish to make multiprocessor-compatible CPU chips, and won’t wish to have two dif-
ferent primary-cache designs, this could mean that write-validate will not be common on

multiprocessors or uniprocessors.

5.7 Disposal

To de-allocate a stack frame, one instruction is required to subtract a constant from the
stack pointer. No explicit pop instruction is necessary to deallocate a heap frame. The
(previous) frame pointer must be fetched, but we have counted this already under the
heading “Frame pointers.”

What is the garbage collection cost of heap-allocated frames? There are three compo-

nents:

1. Live heap frames must be copied to an older generation and then scanned, whereas

live stack frames need only be scanned.

2. Allocating frames causes more frequent garbage collection, leading to the premature

promotion of non-frame objects that might have died if given just a little more time.

3. More frequent collections means more frequent executions of the garbage collector’s

entry-exit sequence.

We will analyze these costs separately.

CHAPTER 5. HEAP VS. STACK 110

Copying frames

We will analyze the cost, in instructions, of garbage collection for the three typical call-
return patterns discussed in the previous section. We assume a generational collector with
a youngest generation that holds G frames (for generation size of 128 kbytes, frame size of
32 bytes, G = 4096). On a youngest generation collection, all live frames are promoted to

the next generation.
1. Tail recursion does not allocate, so the amortized cost per call is zero.

2. Towers of Hanoi will garbage-collect every G calls. At this collection, there will be at
most log(d) live frames; but only log(G) of them will be “new” (not already promoted).
The cost of collecting them will be ¢log(G), where ¢ is the cost of copying one frame
(perhaps 20 instructions).!’ The amortized cost per call is clog(G)/G, or about 0.06

instruction per call.

3. A very deep recursion (deeper than 2000 calls) will promote almost every frame, at
a cost of ¢G instructions per G calls, or ¢ instructions per call. This is costly; but
recursions this deep also begin to miss in the secondary cache! This is particularly so,
since the size of the youngest generation should be less than the size of the secondary
cache [Zor91, Rep93]. The secondary cache misses (which occur for both stacks and

heaps) are probably just as important as the garbage-collection overhead.

Summary: 0.06 instructions per frame.

More frequent collections

With stack-allocated frames, N garbage collections of average cost F + L will occur, where
FE is the entry-exit overhead of the collector and L is the cost of copying non-frame live
data.

With heap-allocated frames, N’ collections of average cost F + L'+ F will occur, where
F'is the the cost of copying frames. We have accounted for N’ F in the previous subsection.
We will account for N'L’ — N L in the the next subsection.

Here we calculate F(N'— N). N’ — N is simply the number of frames created divided
by G, the number of frames the youngest generation can hold. Thus the cost per frame is
just F/G; with G = 4096 and assuming E = 800 instructions, this is 0.2 instructions per

frame.

'We do not include the cost of scanning the frame for pointers, because this has to be done for cither the
stack or the heap case.

CHAPTER 5. HEAP VS. STACK 111

Table 22: Garbage collection cost

Mutator time p and garbage-collection time y are shown (in seconds) for each
benchmark. MIPS (p) and garbage-collection overhead per frame (Z; and Z,)
are calculated as shown in the accompanying text.

Heap Q-Heap Stack MIPS G.C.Instrs/Frame

Brh Pq g Bs s P Zn 2y
Boyer 1.11 0.86 1.18 0.87 1.17 0.88 31 -0.95 -0.40
Knuth-B 596 0.86 6.31 093 6.56 0.88 31 -0.20 0.19
Lexgen 9.45 060 956 0.72 9.77 0.59 31 0.03 0.99
Life 1.24 0.04 129 0.06 1.28 0.03 38 2.62 2.20
Yacc 3.02 092 328 1.18 3.21 0.60 29 7.86 8.85
Simple 15.30 0.54 14.42 065 1529 0.55 30 -0.03 0.33
VLIW 11.29 0.54 1539 057 15.05 0.51 24 0.22 0.25
Average 1.36 1.77

Premature promotion of non-frames

In principle, the heap allocation of frames should cause more frequent collection (and un-
desirable promotion) of the non-frame data. We use lifetime statistics!? as reported by
Stefanovic and Moss [SM94] to find those objects that survive G calls but not p-G. (The
proportion p = 0.57 is the proportion of frames to total heap allocation (see Table 21).)
Because of the shape of the object-survival curve, such objects are rare (1 object in 1000
allocations).

Consider a program that allocates one “ordinary” (i.e., non-frame, “random” lifetime)
object per procedure call. One in 1000 of these objects will be promoted “to excess” in the
heap-frame version, because the frame allocations cause more frequent collection. The cost
of each such promotion is about 100 instructions. Thus the average cost per frame is about

0.1 instructions.

Sum of the collection costs

The three components (0.06, 0.2, 0.1) sum to 0.36 instructions per frame attributable to
garbage collection.

Direct measurement of garbage collection

To support our analytical calculations of garbage-collection overhead, we measured the

garbage collection time for stack vs. heap frames on benchmark programs. Table 22 shows

'2The measurements done by Stefanovic and Moss [SM94] are based on an older version of the SML/NJ
compiler which does not use the new closure conversion algorithm described in Chapter 4.

CHAPTER 5. HEAP VS. STACK 112

garbage collection costs for the execution of the benchmark programs on a DEC 5000/240
computer.

For each benchmark, three versions of the program were run: Heap (heap-allocated
frames); Stack (“stack-allocated” frames, implemented as a free-list of re-usable frames,
which have a different frame layout and choice of closures); and ()-Heap (heap-allocated
frames that have exactly the same frame layout (and padding to 8 words) as the Stack
frames).

The mutator time p and garbage-collection time v are shown for each benchmark.
Times were calculated by executing each benchmark command five times consecutively
(from within the same Unix execution) and dividing by five. Ten runs of each such test
were made, and the fastest taken (as recommended, for example, by the sPEC benchmark
consortium [Sta89]).

Time spent in the operating system is not shown, but was small in all cases (and did
not much differ among the three versions of each program).

We calculated p, the effective MIPS (millions of instructions per seconds) for the DEC
5000/240 on each program, by dividing the instructions executed for the heap version of
each program (taken from Table 20) by uy + 74. The peak performance of this machine is
40 MIPS.

To calculate the extra garbage-collection cost attributable to heap-allocated frames, we
compared stack g.c. time from heap g.c. time, converted from seconds to instructions, and

divided by the number of frames F’ taken from Table 21:

Zyp = (e = 7s)p/ F

In many cases this is negative! This indicates that any garbage-collection overhead
of heap-allocated frames is less important than the benefit gained from the copying and
sharing costs.

We then tried an alternate method of calculation. Since @)-Heap and Stack use exactly
the same frame layout, the only difference is the failure of (J-Heap to free its frames. Thus,
the garbage-collection overhead can be more consistently isolated. However, ()-Heap {rames
are all artificially padded to 8 words. This will overestimate the load on the collector; we
expect any added load to be (roughly) proportional to the total size of all heap-allocated
frames. Therefore, in our estimate of the overhead Z we multiply by the proportion of the

frames that are not just padding:

Zy = (U/[8)(vg = 7s)p/ F

CHAPTER 5. HEAP VS. STACK 113

where U is the average frame size of each benchmark, taken from Table 21.

The Yacc benchmark is anomalous in showing a very high cost, in extra garbage col-
lection, for heap-allocated frames. Closer examination of the Yacc execution showed that
there were three major-generation collections with heap frames, but only two with stack
frames.

Excluding Yacc, the average Zj is 0.28 instructions/frame, close to the analytically
predicted value of 0.36. Yacc must do something not foreseen by our analytical methods.

In Table 18 we show the measured value of Z; = 1.4 instructions for disposal of heap-

allocated frames.

5.8 Finding roots

In any garbage-collected system, local variables in activation records (e.g., stack frames)
may point to the heap. At the beginning of each garbage collection, the collector must scan
the frames to locate “roots” of the live data.

In a system with generational garbage collection, there is often very little live data in
the youngest generation. Scanning a large stack would take more time than the rest of the
collection! Therefore, the collector should scan only those stack frames created since the
last collection and not yet popped.

It is trivial to treat heap-allocated frames this way. They are promoted (along with other
live data) to older generations; older-generation data need not be scanned at a youngest-
generation collection. Only the newly allocated (and not yet dead) frames will be scanned
at a typical collection.

With stacks, a special trick is required. After a collection, the collector must mark the
top stack frame. All frames underneath this are known to be “old.” At the next collection,
the stack must be scanned only from the top of the stack down to the “high-water mark;”
for only these frames can contain pointers to the youngest generation.

But there is a complication. Between collections, if the “high-water” frame is popped,
the mark must be moved down to the next-lower frame [Wil91]. The simplest way to do
this would be to test for the mark on every return, but this would be expensive. Instead,
the mark consists of a “special” return address, which replaces the real return address of a

frame. When control returns to this point, the program at this special location executes,

CHAPTER 5. HEAP VS. STACK 114

placing the mark (that is, the special return address) in the next-lower frame, and jumping
to the real return address.!®

The cost of this technique is quite low. The cost of placing and removing the high-
water mark is between 10 and 100 instructions. Every frame that survives its first garbage
collection will eventually hold the high-water mark. The cost of moving the high-water
mark (in a stack-based system) is similar to the cost of promoting a live stack frame to the
older generation (in a heap-based system); and it is exactly the same frames (new frames
live at a collection) that need this service in either case.

The proportion of new stack frames live at a collection is usually extremely low, so
the cost is negligible for both stacks and heaps. In rare cases (very deep one-way recur-
sions) the cost will be higher, but the stack-based systems and heap-based systems will pay
approximately the same price.

Doligez and Gonthier [DG94] have suggested that the collector put a one-bit mark in
every live stack frame that it scans; this mark will be ignored by the collector but will be
cleared in new frames. This is fine, if there is already some word in every frame that has a
free bit.

Keeping track of the high-water mark in heap-based system has no implementation
complexity: it is a natural consequence of garbage-collecting live frames. In contrast, in a

stack-based system similar results can be achieved but it requires extra work.

Updating activation records

In order to guarantee that only “new” heap frames can be roots for garbage collection, it is
necessary to prohibit any writes to frames after they have been allocated. Compilers using
continuation-passing style (such as Rabbit [Ste78], Orbit [KKR*86], and SML/NJ [AJ89])
naturally initialize frames as soon as they are allocated, and then never write to them again.
In effect, they save up any changes in registers, then dump everything out all at once. With
good use of callee-save registers [AS92, App92] (also see Chapter 4), it is even easier to
accumulate any changes in registers and write immutable frames in big chunks.

A stack-based compiler could update the topmost frame at any time, and the collector
could always scan this frame for roots. But a heap-based compiler that wants to support
efficient call/cc (see Section 5.9) should never update a frame after its initialization, because

if a continuation is invoked more than once the two invocations will stomp on each others’

13This complicates the compiler and runtime system, particularly the implementation of exception handlers
that must pop the stack.

CHAPTER 5. HEAP VS. STACK 115

data. In such a compiler, it is best to keep the top frame in callee-save registers and not in

memory at all.

5.9 First-class continuations

The notion of “first class continuations” using the call-with-current-continuation (call/cc)
primitive originated in the Scheme language [RC86] and has since been adopted in other
systems as well [DHMO91]. First class continuations are useful for implementing coroutines
[Wan80] and concurrency libraries [Rep91].

But call/cc is much harder to implement efficiently if there is a stack. With an ordinary
contiguous stack implementation, the entire stack must be copied on each creation or invo-
cation of a first-class continuation. This is unacceptably slow if, for example, call/cc is the
primitive used in implementing a concurrency library or exception-handling system.

With purely heap-allocated frames, which are not updated after their initialization,
call/cc is no more expensive than an ordinary procedure call: the live registers must be
written to a closure record, and that is all.

There have been mixed stack/heap implementations intended to support call/cc effi-
ciently in the presence of stacks [CHO88b, HDB90]. The basic idea is to make a “stack
chunk” that holds several stack frames; if this fills, it is linked to another chunk allocated
from the heap. This turns out to be complicated to implement.

4 g0 creation costs three

Stack chunks require a stack-overflow test on every frame,
instructions (add to SP, compare, branch).

Danvy [Dan87] made a free list of re-usable frames (we call this a “quasi-stack”); these
reduce the load on the garbage collector and have good locality; but they are expensive to
create and destroy, and require a frame pointer. The “stack” implementation that we have
implemented and measured is actually a simplification of Danvy’s method. For applications
using first-class continuations (call/cc) our simplification would need an extra mechanism
to copy part of the continuation, whereas Danvy’s method does not.

Both methods suffer from the same “copying and sharing” penalty as ordinary stacks.
Their performance is summarized in Table 18, and does not appear competitive, especially
given the implementation complexity.

The simplicity and efficiency of call/cc in a pure heap discipline is a strong motivation

for avoiding stacks.

14 «Unfortunately, it has been our experience that memory exceptions are not a tenable means for detecting
stack overflow....” [HDB90]

CHAPTER 5. HEAP VS. STACK 116

5.10 Implementation

One reason to avoid stacks is that they are complicated to implement, especially with all the
tricks that are necessary to achieve good performance. Let us compare the implementation

complexities of heaps vs. stacks, in a garbage-collected environment:

Implementation of Heap Frames

1. To achieve good performance with heap frames, it is necessary to have an sophisticated
algorithm to choose closure representations. This algorithm must preserve space com-
plexity, promote closure sharing, and use callee-save registers to minimize the number
of distinct frames written. Chapter 4 has already described an implementation of such

an algorithm, which is not particularly hairy.

2. To avoid having a descriptor in each frame, the runtime system can maintain a map-
ping of return addresses to frame layout descriptors. Kranz’s ORBIT compiler used
this technique [Kra87]. Standard ML of New Jersey does not bother, so it does indeed

pay the price of a descriptor in each frame.

Implementation of Stacks

1. A good closure analysis algorithm must be used to preserve space complexity while
still trying to avoid too much copying. It is not clear that such an algorithm will
be much simpler than the one for pure heaps. In particular, most conventional stack

implementations are not safe for space complexity.

2. To preserve space complexity and correctly implement tail recursion, certain activation
records require a complicated scheme to determine when they must be popped [Han90].
(Or these frames could be heap allocated, even in a stack discipline; but they must

be identified by static analysis.)

3. A high-water mark must be maintained to achieve efficiency in the generational col-

lector.

4. If call/cc is to be supported, then stack copying or some more complicated technique

must be implemented [HDB90].

5. To avoid having a descriptor in each frame, the runtime system must maintain a

mapping of return addresses to frame layout descriptors.

CHAPTER 5. HEAP VS. STACK 117

6. In a system with multiple threads, each thread must have its own stack. A large

contiguous region of virtual memory must be reserved.!®

7. Stack-overflow detection must be implemented. In most cases this is handled auto-

matically by the operating system using virtual-memory page faults.'®

No stack implementation that we know of handles all of these necessary complexities.
As a result, some are not safe for space complexity; some do not implement call/cc; and
some scan too many frames on each collection. It is an open question whether all of these

tricks can fit together in a real system.

5.11 Summary

Heap allocation of activation records is simple and competitively efficient. The fact that
heap allocation is about as cheap as stack allocation, when all effects including cache locality
are counted, certainly contravenes the conventional wisdom.

Heap frames are much easier to implement correctly: it is tricky to make stacks “safe
for space complexity,” or to support generation garbage collection efficiently, or first-class
continuations (call/cc). In Standard ML of New Jersey compiler, which supports all of these
features, heap allocation of activation records has proved to be a great success.

When call-with-current-continuation is needed, heap frames are much better than stack
frames. Various hybrid systems (stack chunks, quasi-stacks) designed to support call/cc
efficiently with a stack are less efficient than heaps for both normal call/return and call/cc.

On machines with a write-miss penalty, or where writes entirely bypass the cache, the re-
sults are different: heap-frame handling is about twice as expensive as stack-frame handling
(about 7% penalty in overall performance), except for first-class continuations.

Finally, for languages without nested first-class functions with static scope, there is no
“copying and sharing” cost. In this case stacks have a 6% overall performance advantage.

Without closures, call/cc is not an issue, of course.

'5In contrast, one heap-allocation region is necessary per processor, not per thread.
1®Heap overflow detection must also be implemented, but this is true whether or not there is a stack.

Chapter 6

Unrolling Lists

Lists are ubiquitous in functional programs, thus supporting lists efficiently is a major
concern to compiler writers for functional languages. Lists are normally represented as
linked cons cells, with each cons cell containing a car (the data) and a cdr (the link);
this is inefficient in the use of space, because 50% of the storage is used for links. Loops
and recursions on lists are slow on modern machines because of the long chains of control
dependences (in checking for nil) and data dependences (in fetching cdr fields).

In this chapter, we present a data structure for “unrolled lists,” where each cell has
several data items (car fields) and one link (edr). This reduces the memory used for links,
and it significantly shortens the length of control-dependence and data-dependence chains
in operations on lists.

We further present an efficient compile-time analysis that transforms programs written
for “ordinary” lists into programs on unrolled lists. The use of our new representation
requires no change to existing programs.

We sketch the proof of soundness of our analysis—which is based on refinement types—

and present some preliminary measurements of our technique.

6.1 Introduction

Efficient implementation of lists has always been a major concern to compiler writers for
functional languages, because they occur so frequently in functional programs. Lists are
normally represented as linked cons cells, with each cons cell represented by two contiguous
memory locations, one for the car (the data) and another for the cdr (the link). This is
inefficient in the use of space because half of the storage is used for links. Furthermore,

traversing a list requires twice as many memory references as traversing a vector. And

CHAPTER 6. UNROLLING LISTS 119

on any loop or recursion that traverses a list, there is a long chain of control dependences
as each link is checked for nil; and a long chain of data dependences as each link fetch is
dependent on the previous one. With modern superscalar hardware, these dependences are
a serious bottleneck.

In order to save on storage for links, “cdr-coding” was proposed in the 1970’s [Han69,
Gre77, Cla76, CG77, BC79, Bob75]. Its main idea is to try to avoid some links by arranging
for the second cons cell to directly follow the car of the first, and to encode that information
in several bits contained in the car field of the first cell; thus the first cell does not need
a cdr field at all. A depth-first (or breadth-first [Bak78]) copying garbage collector helps
ensure that most lists are arranged sequentially in storage, so they can take advantage of
this encoding. Cdr-coding solves the space-usage problem (and in the MIT version allows
random access subscripting of lists [Gre77]), but makes the control-dependence problem
even worse, as the cdr-coding tag of each car must be checked. Cdr-coding was popular on
microcoded Lisp machines circa 1980 [WMS81, Deu73], but it is not an attractive solution
on modern machines.

Our new “compile-time cdr-coding” method works for statically typed languages such as
ML. Our scheme allows a more compact runtime representation for lists, but does not require
any runtime encoding al all. Furthermore, our encoding allows loops and recursions on lists
to be unrolled much more efficiently than is possible with the conventional representation

for lists.

Table 23: Standard vs. Unrolled List Representations

Length Old Standard Size New Unrolled Size
Representation Representation
0 0 [eo] 0!
1 3
2 5
2n [d L ---— e | 4n (el L Fo{af o F>---—Ld o] | 3n+2
2n+1 Lo --—a d 4n+2 [olaf F{va[o Fo---— a4 o] 3n+3

Our idea is simple: we put k items—but only one link—in each list cell. We use k = 2 to
illustrate our idea. A list of even length is simply represented as a linked series of our bigger

cons cells; a list of odd length is represented as a header cell that contains one data element

!The two-word record representing the NUR empty list (can be shared among all uses of the empty
list. This sharing can be introduced by the garbage collector to avoid complicating the compiled code, if

necessary.

CHAPTER 6. UNROLLING LISTS 120

and one link to an even-length list. Table 23 gives a simple comparison of space usage
between our new unrolled representation (NUR) and the old standard representation (OSR).
In the table, “’a” represents the data element; “0” and “E” represent the tag word that
is used to distinguish between odd-length and even-length lists at runtime. We represent
the empty list by “0.” Now we can easily see that for lists with length greater than 2, the
new representation requires 25% less space than the usual representation. Furthermore,
traversing a list in the new representation requires 25% fewer loads, and 50% fewer tests
for nil on cdr pointers (because NUR has 50% fewer cdr links).

The new unrolled representation (NUR) promises to be extremely useful for superscalar
or superpipelined machines. Suppose we use a representation with k items per link. Then
we can unroll most loops on lists by a factor of k, and overlap (using standard software
pipelining techniques) the executions of the (original) iterations. Such unrolling and soft-
ware pipelining would be much less fruitful if performed on the standard list representation
(OSR) for two reasons: the tests for nil introduce a chain of k—1 extra control dependencies,
and the fetches of cdr introduce a chain of k£ — 1 extra memory latencies. These chains are
a serious obstacle to the software pipelining of anything at all! Note that the fetches of the
k car fields (in an unrolled loop using NUR) can all be done in parallel; this is not possible
in the standard representation.

Because programmers will still use the standard list notation (i.e., each list cell has
a head and a tail), the compiler has to do the appropriate translation to utilize the new
unrolled representations. This is possible in a statically typed language such as ML, because
the type of each identifier is statically known at compile time, and computation on lists is
expressed using pattern matching and recursive functions. For example, an integer list? in
ML might be represented by the following concrete datatype, which matches the standard
representation (OSR) in Table 23:

datatype list = nil | :: of int * list

where “::” is the infix cons constructor. The well-known function map might be written as

follows using pattern matching:

fun map f =

let fun m nil = nil
| m (x::xr) = (£ x) :: (m)
in m
end
?In Standard ML [MTH90], lists are declared as datatype ’a list = nil | :: of ’a * ’a list. To

simplify the presentation, we omit the type variable ’a by considering only integer lists. All the results
described in this chapter easily carry to the polymorphic case.

CHAPTER 6. UNROLLING LISTS 121

The new unrolled representation (NUR) in Table 23 can also be expressed by ML concrete
datatypes:

OLIST of int * tail2
| ELIST of tail2

datatype list2

TNIL
TAIL2 of int * int * tail2

and tail2

Here, the data constructors OLIST and ELIST can be thought of as tags for lists of even
length and odd length; they correspond to “0” and “E” in Table 23.
An efficient map function on NUR lists looks like:

fun map’ £

let fun h (OLIST(i,r)) = OLIST(f i, m r)
| h (ELIST(r)) = ELIST(m r)
and m TNIL = TNIL
| m (TAIL2(x,y,r)) = TAIL2(f x, £ y, m r)
in h
end

The test for nil (in the pattern-matching for m) is done half as often. If map’ and then £
are in-line expanded, then the evaluations of £ x and £ y can be pipelined.
Simply unrolling the original map function, without changing the list representation, is

not as attractive because of the extra control and data dependence:

fun map_unrolled f =
let fun m nil = nil

| m (x::x) =
case r
of nil => (f x) :: nil
[yiis => (£ x) :: (£y) :: (ms)
in m
end

Our static “list unrolling” transformation has the following advantages over the tradi-

tional representation, and over runtime “cdr-coding” techniques:
e Loops and recursions on lists are automatically unrolled.
e We avoid many nil tests and cdr fetches.
e Less memory is used for storing links.

e There is no extra runtime cost (as is incurred by cdr-coding) for handling of encoding

bits (except parity testing on the list header).

CHAPTER 6. UNROLLING LISTS 122

e Unlike the “cdr-coding” technique that varies with the dynamic behavior of the pro-
gram (i.e., cons cells have to be adjacent), our method guarantees a (k—1)/2k savings

of space usage for long list structures, using k-fold unrolling.

o The interface with garbage collectors is extremely simple, since we use ordinary record

structures.

e Because our transformation only relies on the static type information that is usually
available in module interfaces, it interacts very well with the module system and

separate compilation.

6.2 Compiling with refinement types

In this section, we formally describe the compile-time analysis and present the translation
algorithm that automatically transforms program written in OSR notations into one that
uses NUR.

First we describe a simple syntactic transformation that gets us partway to our goal.
A simple way to implement the NUR is to make the compiler interpret the normal “::”
constructor abstractly, just as Aitken and Reppy deal with their abstract value construc-
tors [AR92]. During the compilation, the constructor function of “::”, which takes a data

element and a list, and returns a list (the “cons” of the two), can be implemented as the

following function ucons:

fun ucons(x, OLIST (i,r)) = ELIST (TAIL2 (x, i, 1))
| ucons(x, ELIST r) = OLIST (x, r)

”

The deconstructor function (also called projection) of “::”, which takes a non-empty list,
and returns the head and the tail of the list, can be implemented as the following function
uproj:
fun uproj (OLIST (i,r)) = (i, ELIST r)
| uproj (ELIST (TAIL2 (i,j,r))) = (i, OLIST (j, r))
This approach is extremely easy to implement in most compilers. But it can cause two

kinds of runtime inefficiencies when traversing or building a list (such as the map function):

e Both ucons and uproj need to check the length parity of a list each time they are

”

applied, while the old “::” requires no check.

e To build a list using ucons, one must alternately allocate an OLIST cell (e.g.,

OLIST(j,r)) on the heap, discard an ELIST cell, then take out j and r, build an

CHAPTER 6. UNROLLING LISTS 123

ELIST cons cell (e.g., ELIST(TAIL2(i,j,r))), and discard the OLIST. This is more
expensive than the traditional cons operation, which just requires allocating a two

element record.

Ideally, the NUR version should avoid the list length parity checks and the alternative
allocations of OLIST and ELIST cells, and thus be more space and time efficient than the
OSR version. The function map’ shown in the previous section behaves this way: it first
checks whether the argument is of even length or odd length, then the body m of the code
“knows” the length parity of its argument.

Now we present a source-to-source program transformation that indeed translates the
OSR version of map to this more efficient version map’. The basic idea is to rely on static
analysis to distinguish between lists of even length and odd length at compile time, and
to allow functions that take lists as arguments to have three entry points: one dispatch
function for list whose length parity is unknown, and one specialized version each for list
of even length and odd length. Because the specialized versions have the knowledge of the
length parity information, the extra runtime costs of the ucons and uproj operations can
be avoided.

In statically typed languages such as ML, we can keep track of length parity information
for most program variables at compile time, because lists are accessed via data constructors
and pattern matching only, and they are immune to side-effects?.

We borrow the refinement type inference algorithm of Freeman and Pfenning [FP91,
Fre92] by introducing a refinement of the 1list type: the type olist for odd-length lists
and the type elist for even-length lists. For example, an empty list is an even-length list;
“consing” an element onto an even-length list yields an odd-length list, and “consing” an
element onto an odd-length list yields an even-length list. The map function always returns
a list that has the same length parity as its argument list; “append-ing” two lists of same
length parity results in an even-length list, and “append-ing” two lists of opposite length
parity gives an odd-length list, etc.

In the following, we first define the source language (SRC) that uses the traditional
OSR notation and the target language (TGT) that uses the NUR representations. Then
we present a one-pass translation algorithm that infers the length parity information while
at the same time compiling SRC expressions into TGT expressions. Finally we sketch the

correctness proof and state the main theorems.

#Unlike some functional languages such as Lisp and Scheme, there is no “setcdr” operator in ML; list
cells in ML are immutable.

CHAPTER 6. UNROLLING LISTS

124

| fix dine

| NIL | CONS(ep,es)

e = |27 |fn m]e e e == c|la|fn m|ejey | £fn3 (ey,€q,¢€3)

fix d in e; | OLIST(ey) | ELIST(es)
TNIL | TAIL1(e1,e5) | TAIL2(eq,€0,€3)
ucons(ey,e2) | econs(ey,ea) | ocons(ey,eq)

ufetch(e;) | efetch(ey) | ofetch(e;)

d == dyanddy| (27 =e) d = dianddy|(z=c¢)
m = mi[me|(p=e) m = my[me|(p=e)
p == " | NILP | CONSP(z,p;) p == x| OLISTP(py) | ELISTP(p;)

| TNILP | TAIL1P(z,p;) | TAIL2P(z,y,p:)

Figure 28: left: The Source Language SRC; right: The Target Language TGT

6.2.1 The source language SRC and the target language TGT

Figure 28 gives the syntax of expressions (ranged over by e), declarations (d), matches (m),

and patterns (p) for the source language SRC and the target language TGT. We use ¢ to

denote constants, @ for program variables, and keywords are underlined. The declarations

inside a fix expression may be mutually recursive functions. For the source language, the

data constructors nil and ::

under OSR are denoted by NIL and CONS in expressions,

and by NILP and CONSP in patterns. For the target language, the data constructors under
NUR are denoted by OLIST, ELIST, TNIL, TAIL1 and TAIL2 in expressions, and by OLISTP,
ELISTP, TNILP, TAIL1P and TAIL2P in patterns. The underlying datatype definition for the
NUR version of lists in TGT can be written in ML as follows:

datatype list =
I

and olist

and elist =
I

OLIST
ELIST

TAIL1

TNIL
TAIL2

of olist
of elist

of int * elist

of int * int * elist

CHAPTER 6. UNROLLING LISTS 125

This is essentially same as the 1ist2 and tail2 type defined in Section 6.1. The construc-
tor TAIL1 and TAIL1P are introduced to avoid dealing with tuple expressions in our toy
language.*

The source language SRC can be thought as a typed intermediate language typical of
those used in many compilers. Variables and constants are annotated with types, as in
™ and ¢”. We assume that the SRC programs are typed using the following very simple

(monomorphic) types:
Tu=1|list | — 7

where ¢ denotes base types. This does not mean that our algorithm cannot be applied to
polymorphic languages; polymorphic expressions can be easily translated into a monomor-
phically typed intermediate language by using representation analysis, a technique first
proposed by Leroy [Ler92] and Peyton Jones [PL91]. But because of space limitations, we

have also made this and several other simplifications to ease the presentation:

o We assume that the SRC programs are well-typed according to the standard static

typing rules, and that all matches are complete and do not contain redundant patterns.
e Record patterns and expressions are omitted, but pose no problems for our technique.

o Multi-argument functions are also omitted, since their translations are similar to trans-

lating their curried versions.

The target language TGT has several other constructs and operators: the term
fn3 (ey,ez,e3) is used to represent a function that takes a list as argument and has three
entry points: one (eq) for lists whose parity is unknown, and one each (e and e3) for lists of
even length and odd length. The one for unknown parity is always a header function that
checks the parity dynamically and immediately dispatches to one of the other two entry
points. There are three special operators to extract the appropriate entry point from the
term fn3 (eq,e3,€3): ufetch to get ey, efetch for ey, and ofetch for e;. Finally, ucons
denotes the basic cons operation that does not know the length parity of its arguments (the
one described at the beginning of this section); econs denotes the special operator that
conses an integer onto an even-length list, and ocons conses an integer onto an odd-length
list. To understand why econs and ocons can be implemented more efficiently than ucons,
notice that the expression ocons(e,econs(ez,es)) can be transformed to TAIL2(eq,ez,€3),

which avoids the parity checking and the allocation of the intermediate odd-length list cell.

*In practice, TAIL1 is a transparent data constructor, thus does not require any extra storage to repre-
sent [Car84a, App92].

CHAPTER 6. UNROLLING LISTS 126

6.2.2 An introduction to refinement types

In this section, we give a brief introduction to the refinement type system used in our
translation algorithm (see Section 6.2.3). Most of the notation and concepts are directly
borrowed from Freeman and Pfenning [FP91, Fre92], since our system is just a simplified
version of theirs. Basically we refine the 1ist type by introducing elist for even-length
lists and olist for odd-length lists. Functions that take lists as arguments can have a more
“refined” type, (elist — pj,o0list — p;), meaning that the result has type py if applied
to an even-length list, and py if applied to an odd-length list. The refinement types (ranged

over by p) are formally defined as follows:

p == 7| L, |olist |elist |7 — py
| (elist — p;,0list — p3)

For every SRC type 7, L, represents its bottom refinement type. In the following, we say
that a refinement type p refines an SRC type 7, written p C 7, if it can be deduced by the
rules (R1-R6) in Figure 29. Notice that we only refine the domain of a function type if it is
a list type.

We say that a refinement type py is a sublype of another refinement type py, written
p1 < pz, if it can be deduced by the rules (S1-S7) in Figure 29. Similarly, Two refinement
types p1 and py are equal, denoted by p; = pa, if p1 < pg and py < py. = is an equivalence
relation on refinement types. In this chapter, when we talk about a refinement type p, we
refer to its equivalence class under =.

Every SRC type 7 has a finite number of refinement types. Moreover, these refinement
types form a lattice under the subtype relation “<”, with 7 as its top and L, as its bottom.
For example, the lattice of refinement types for the SRC type list is:

list

7N

elist olist

Liise

Given a refinement type p, it is always possible to find out which SRC type it refines.
This is denoted by the top operation, which is defined by rules (T1-T5) in Figure 29.

Given two refinement types p; and ps, if top(p1) = top(pz), then their union type,
written as p; V pg, is also a refinement type, and is inductively defined by rules (U1-U6).
It is easy to see that given two refinement types p; and pq, if p = p1 V p2, then p; < p and

p2 < p (proven by structural induction on p).

CHAPTER 6. UNROLLING LISTS 127

The operation apprfty of applying a refinement type p; to another refinement type ps
is defined by rules (A1-A4) in Figure 29. This operation is used extensively by the meta
operation applyfun during the translation (see Section 6.2.3).

Freeman and Pfenning [Fre92, FP91] give an refinement type inference algorithm for
typed core-ML. The inference algorithm we used in Section 6.2.3 for the language SRC is

just an adaption of their algorithm to the above refinement type system.

6.2.3 The source-to-target translation

The translation of a source language term into the target language is based on the SRC
types and the refinement types inferred for the term and its subterms. Our translation
proceeds by computing refinement types and the translated term simultaneously.

In Figure 30, 31, 32, 33, we present the translation functions for expressions (ExpComp),
declarations (DecComp), matches (MatchComp), and patterns (PatComp) in the source
language SRC. The function ExpComp takes a SRC expression e, a substitution S (from
SRC program variables to TGT expressions), and a refinement type environment I' as its
arguments; and returns a TGT expression e’ and the inferred refinement type p for e.

Translation of the application (ejez) is a simple recursive call of ExpComp on e; and
e3. Proper coercions must be inserted depending on the inferred refinement types for e;
and eg; this is done by the meta-operation applyfun(e}, p1, €}, p2) defined in Section 6.2.4.

Translation of abstraction (i.e., fn m) is divided into two cases. If the argument is not a
list, this is a simple recursive call to ExpComp.® If the argument is a list, the corresponding
matches are translated and specialized twice (via MatchComp); once assuming the argument
as an even-length list (i.e., par is elist), and once assuming the argument as an odd-
length list (i.e., par is olist). The two resulting TGT matches (f., f,) correspond to two
specialized entry points for lists of even length and odd length. The special entry point f,
for lists of unknown length is built by the combine meta-operation: combine(f., p., fo, po)
is a TGT function that checks the length parity of its argument first and then dispatch it
to special versions f, or f, (see Section 6.2.4).

DecComp takes a SRC declaration d, a substitution .5, and a refinement type environ-
ment I'; and it returns the TGT declaration, and the resulting refinement type environment
from d. The loop inside DecComp computes the fixed point of the refinement types; this is
guaranteed to terminate because there are only finitely many refinement types below any

given SRC type (a proof of this is given by Freeman [Fre94, Chapter 2]).

®Since there are no redundant matches, m must have the form In(z” = e).

CHAPTER 6. UNROLLING LISTS 128

(R1) rC 7 (R2) L, C 75
(R3) elist C list; (R4) olist CC list;
(R5) (r—p)C(r—1)ifpC 7}
(R6) (elist — py,o0list — pg) C (list — 7')if py C 7" and py C 7.
1) p<p;
2) p1 < p3if py < py and py < p3;

<tand L, <pif pC 7;
— p1 <7 = p2if p1 < py;

H 9 D

ist — p < (elist — py,o0list — pg) if p < py and p < pg;
elist — py,olist — py) < list — pif p; < p and pz < p;

PN,

elist — py,olist — pg) < (elist — pf,o0list — p)) if p1 < pf and py < ph.

(T1) top(r) = (7); (T2) top(L;) = (7);
(T3) top(elist) = (1list); (T4) top(olist) = (1list);
(T5) top(r — p) = 7 — (top(p));
(T6) top((elist — p;,o0list — p3)) = list — (top(p1)).
(Ul) pvp' =p'and p'vp=p'if (p <p');
(U2) (olist)V (elist) = list and (elist)V (olist) = list;
T = p1) V(T = p2)=T — (p1 V p2);
(U3) ()V) (1 V p2)
(U4) (elist — py,0list — py) V (list — p) = (elist — py V p,olist — pa V p);
(U5) (1ist — p) V (elist — p1,0list — py) = (elist — p; V p,olist — pa V p);
(U6) (elist — py,0list — pi) V (elist — pg,0list — pi) =

(elist — p1 V pg,olist — p} V pb);

(Al) apprfty(J—ﬂ—Wz?pl) =15 if py C 75

(A2) apprity(T — p, L7) = Liop(p);

(A3) apprfty(r1 — pa,p1) = p2 if p1 T 713

(A4) apprfty(p, L; 1ist) = Liop(pyve,) and apprfty(p,list) = p; V py and
apprfty(p, elist) = p; and apprfty(p,olist) = p;

where p = (elist — py,0list — pa).

Figure 29: Definitions of C, <, V, top, and apprfty on refinement types

CHAPTER 6. UNROLLING LISTS 129

ExpComp (¢7,59,1') = (¢, 7)

ExpComp (z7,5,1') = (S(z),'(z))

ExpComp (NIL, S,T') = (TNIL, elist)

ExpComp (CONS(eq,ez2),5,I') =

let (e},int) = ExpComp (e1,5,1') and (€}, p) = ExpComp (eg, 5, 1)

if p = elist, cons and p’ are respectively econs and and olist;
if p = olist, cons and p’ are respectively ocons and elist;
otherwise, cons is ucons and p’ = p;

in (cons(e}, &), p)

ExpComp (fn mUst=7 § T) =
let (m!,p,) = MatchComp (m, 5,T,0list)
(m’, p.) = MatchComp (m, S, T, elist)
fu, fe, fo be new program variables and ¢’ = £n3 (fy, fe, fo);
= (fu = combine(feapeafoapo)) and (fe =1in Tllé) and (fo =1in m,o)
in (fix d’' in €', (elist — p.,olist — p,))

EXpComp ((fn (2" = €)),5,I') =
let (¢,p) = ExpComp (e,5 +{z — z},I' £ {z+— 7})
in (fn (z =€), 7 —p)
ExpComp (erez,5,1') =
let (ei,p1) = ExpComp (e1,5,T) and (€, p2) = ExpComp (eg, 5,T)
in applyfun(e), p1, €}, p2)

ExpComp (fix d ine,S5,1') =
let (d',Ty) = DecComp (d,5,T')and S; = {& — z | 2 € Dom(I';)}
(¢',p) = ExpComp (e, 5 + 51, T £ 1)
in (flx d' in €', p)

Figure 30: Translation of Expressions

The argument par in the MatchComp function represents the length parity (either elist
or olist) of the argument in the match m. A simple SRC rule p = e is compatible with
par if p is compatible with par. The compatibility between a SRC pattern and a parity is
inductively defined as follows: variable pattern z is compatible with both elist and olist;
NILP is only compatible with elist; CONSP(z,p) is compatible with elist (or olist) if and
only if p is compatible with olist (or elist).

During the translation of a SRC match, the resulting refinement types for different cases

may be different. We use the coerce meta-operation defined in Section 6.2.4 to coerce all

CHAPTER 6. UNROLLING LISTS 130

DecComp (d,5,T) =
let assume d is (z]' = e1) and ... and (z,;* = e),
and Dpesule = {zi— Ly, [i=1,..,k};
100p Tstart = Tresult;
(el, pi) = ExpComp (e;, 5,1 + Dstart) where i = 1,..., k;
Fresult = {xZ = Py | 1= 1, ,k‘}
until (rstart = IWl"esult)
in ((z1=2¢})and ... and (23 =€), I'vesult)

Figure 31: Translation of Declarations

MatchComp (m, 9,1, par) =
let assume {p; = ¢; | i = 1,...,k} are rules in “m” that are compatible with par;
(ph, 5, T;) = PatComp (p;, par) for i = 1,..., k
(el pi) = ExpComp (e;, 5+ 5;, T +T;) fori=1,....k
p=p1V..Vp,and e/ = coerce(el, p;,p)fori=1,....k
in ((py = €))]...1(pk, = €;), p)

Figure 32: Translation of Matches

PatComp (NILP,elist) = (TNIL,{,0);

PatComp (z,elist) = (z,0, {z — elist});

PatComp (z,0list) = (TAIL1P(y, z), {z — TAIL1(y, 2)},{z — olist})
where y and z are new program variables;

PatComp (CONSP(z, p),olist) = (TAIL1P(y,p'),5 £ {z — y},[£ {z — int})
where (p',5,1') = PatComp (p,elist) and y is a new program variable;

PatComp (CONSP(z,p),elist) = (TAIL2P(y,z,p'), S+ {z — y},I'+ {z — int})

where (TAIL1P(z,p'),5,I') = PatComp (p,olist)
and y is a new program variable.

Figure 33: Translation of Patterns

CHAPTER 6. UNROLLING LISTS 131

different representations (with refinement types pi, ..., px) into a unified one (the union
type of all p;).

The PatComp function translates a SRC pattern p into the TGT pattern based on the
parity assumption about p; it also derives a substitution and a refinement type environment

for all variables in p.

SRC expression e = fix (m=fn (NILP = NIL)
[(CONSP(z,r) = CONS(z + 1,m r))) in m

TGT expression e = fix m' = d' in m' where
d = fix ((fu = eu)@(fe = ee)@(fo = 60)) in (m (fuafevfo));
e, = £n (OLISTP(x) = OLIST(f, z))|(ELISTP(y) = ELIST(/f. y));
€, = fn (TAIL1P(z,7) = ocons(z + 1, ((efetch(m’)) r)));
e. = £n (TNILP = TNIL)[(TAIL2P(z,y,7) = €.))

¢, = econs(z + 1, ((ofeten(m’)) (TAIL(y, 1))

Figure 34: Example on the map function

For example, Figure 34 shows the target expression from translating a simplified ver-
sion of the map function (shown rather than as in Section 6.1). This function maps
the “41” function to a list. Qur algorithm infers that m has the refinement type
(elist — elist,olist — olist) and yield the target expression e’. Notice that in the
real implementation, the expression efetch(m’) (inside e,) and ofetch(m’) (inside e,) will
be contracted into f. and f,, and the application of f, to TAIL1(y,r) (inside e.) will be
inline-expanded, and then the consecutive application of econs and ocons in e, will be
contracted into TAIL2(z + 1,y + 1, f.), which is exactly the form we desired in Section 6.1.

Notice that given an SRC expression e of type 7, the above translation algorithm returns
a TGT expression e’ and a refinement type p for e. This “p” happens to be the type of
¢ under Fypgr, where “Frgr” is a set of (simple monomorphic) typing rules for TGT
expressions by p defined above extended with “elist — p;” and “olist — p;”. For
example, the typing rule for the econs expression will be “if I' Fpgr €1 : int and ' Frar
ey @ elist; then I' Fprgr econs(ey,ez) : olist;” the rule for £n3 (eq, ez, e3) will be “if
I Fpgr €1 £ 1ist — p and I' Fpgr e @ elist — p. and ' Fpgr e3 @ olist — p, and
p = peV po; then I Frar £n3 (e1,€2,€e3) : (elist — p.,olist — p,). These typing rules

are straightforward, and are thus omitted here.

CHAPTER 6. UNROLLING LISTS 132

combine(e!, p1, €, p2) =
fn (OLIST & = coerce(€)z, p1,p))[(ELIST y = coerce(ely, p2,p))
where p = (p1 V p2) and z,y are new program variables

coerce(e’, p,p) = €;

(', L;,p) = ¢€;

coerce(¢’, elist,list) = ELIST(¢');
coerce(e’, olist,list) = OLIST(¢);

coerce(€e’',7 — p1,7 — p3) = £n (z = coerce((e' z),p1,p2));

coerce(e’, (elist — py,olist — py),list — p) =
fn (2 = coerce(((ufetch(e’)) z),p1 V p2,p));

coerce(e’, list — p’, (elist — py,olist — pg)) = fix d' in (£n3 (fu, fe, [o))
where f,, fc, [, are new program variables
and d' = (f, = m,) and (f. = m.) and (f, = m})

and 1, = (combine(fe, p1: for92))
and m. = (z = coerce((¢’ z),p,p1))
and m!, = (z = coerce((e’ z),p', p2));

coerce(e’, (elist — py,0list — py),(elist — pf,olist — pb))

= fix d in (m (fuvfevfo))
where f,, fc, [, are new program variables
and &' = (f, = m!) and (f, = m!) and (f, = m)
and m!, = (combine(f., p}, fo, P}))
and m, = (z = coerce(((efetch(e’)) z), p1,p1))
and m!, = (z = coerce(((ofetch(e’)) z), p2, ph))

applyfun(e], p1, e}, p2) = (€] (coerce(ey, pa, 7)) apprity(p1, p2)) if p1 = 70 — p;
applyfun(el, p1, e}, p2) =
((fetch(ey)) €5, apprity(p1, p2)) if p1 = (elist — pj,olist — pb),

felch is respectively efetch, ofetch, or ufetch if p; is elist, olist, or others;

applyfun(el, p1, €}, p2) = (€€}, apprfty(p1, p2)) for all other cases.

Figure 35: Definitions of combine, coerce, and applyfun

CHAPTER 6. UNROLLING LISTS 133

6.2.4 The definition of several meta-operations

In this section, we formally define the three meta operations coerce, combine and apply-
fun used in the translation algorithm in Figure 30 through Figure 33.

Figure 35 gives the definition of combine. Given two target expressions €} and €/, and
two refinement types p; and pg, the operation combine(e],p1,€},p2), constructs a dispatch
TGT function that calls €] or €/, respectively depending on the length parity of its argument.

It is occasionally necessary to introduce code to coerce the result of a term from one
representation to another. Given a target expression €', two refinement types p; and p; such
that p; < po, then the operation coerce(e’, p1, p2), which returns a new target expression,
is defined in Figure 35. Notice that combine and coerce are mutually recursive.

The applyfun operation inserts appropriate coercions for function applications. Given
two TGT expressions e; and e}, and two refinement types p; and py, the operation
applyfun(el, p1, €}, p2), which returns a TGT expression and a refinement type, is also

defined in Figure 35.

6.2.5 Correctness of the translation

The type and semantic correctness of our translation can be proven using a technique
similar to that of Leroy [Ler92]. Here we only sketch the proof method and state the main
theorem. We use Fgrc to denote the type deduction rule for SRC, and Frgr to denote
the refinement type deduction rule for TGT. More specifically, suppose TE is a SRC type
environment (from variables to SRC types 7), and I' is a refinement type environment, then
TE Fsgre e : 7 means that e is well-typed in TE under Fgre, and I' Frgr € @ p means €’ has
the refinement type p in I' under Frgr. We also define the (straightforward) call-by-value
operational semantics VE F e —— v for the source language SRC, and VE' |- ¢ L o for
the target language TGT, where VE and VE’ are value environments (from variables to
values). A notion of equivalence between the typed SRC wvalues (which corresponds to the
OSR) and the typed TGT wvalues (which corresponds to the NUR) is defined, written as
v:7 v :p. This ~ relation is only defined for the pair of values when v has type 7, v/ has
type p,and pC 7. VE: TE & VE' : T is used to denote that for every 2 € Dom(VE), such
that VE(z) : TE(z) = VE/(z) : T(z). The type and semantic correctness of our translation
algorithm now can be stated by the following proposition, which is proven by structural

induction:

Proposition 6.2.1 Given a SRC expression e, a SRC type environment TE, and a refine-
ment type environment I', such that TE tgpc e : 7 is valid, and I'(z) C TE(z) for every

CHAPTER 6. UNROLLING LISTS 134

z € Dom(TE), then ExpComp (e, ID,I') = (€', p) will succeed; moreover, (1) p T 7; (2)
I brar € @ p is valid; (3) Given a value environment VE under -2 and a value environ-
ment VE' under —t—>, if VE: TE = VE' : T, and VE I e =% v, then, there ezxisls a value v’

such that VE' F e - o' and v:7~ v : p.

6.3 Compiling with multiple continuations

fun filter’ (p, c) =
let fun f_u(OLIST(x,r), ce, co) = f_o(x, r, ce, co)
| £_u(ELIST r, ce, co) = f_e(r, ce, co)

and f_o(x, r, ce, co) = if (p x)
then let fun ke(z) = co(econs(x,z))
fun ko(z) = ce(ocons(x,z))
in f_e(r, ke, ko)
end
else f_e(r, ce, co)

and f_e(TNIL, ce, co) = ce(TNIL)
| £_e(TAIL2(x, y, r), ce, co) = if (p x)
then let fun ke(z) = co(econs(x,z))
fun ko(z) = ce(ocons(x,z))
in f_o(y, r, ke, ko)
end
else f_o(y, r, ce, co)

in c(f_u)
end

Figure 36: Pseudo CPS code for filter

The algorithm presented in Section 6.2 successfully translates a program written in OSR
notation into one in NUR. In most cases, it pleasantly eliminates the costs of extra length
parity checks and alternating allocations of OLIST and ELIST cells incurred by ucons and
uproj. To demonstrate this, we tried our algorithm on 15 frequently used list-processing
library functions.® Among these 15 cases, our algorithm successfully eliminates all the extra
costs of ucons and uproj for 14 of them. The only exception is the filter function, which

selects only those elements of a list matching a given predicate. The problem with filter

SHere is a list of these functions: hd, t1, length, append, rev, map, fold, revfold, app, revapp, nthtail,
nth, exists, last, and filter. They are mostly taken from the initial basis of the Standard ML of New
Jersey compiler [AM91].

CHAPTER 6. UNROLLING LISTS 135

is that even if we know the length parity of its argument, we still do not know the length
parity of its result.

Here is the filter function:

fun filter p =
let fun f nil = nil
| £ (x::r) = if (p x) then x::(f r) else f r
in f
end

It turns out that this problem can be easily solved in the continuation-passing style
(CPS) framework [Ste78, App92], because we can specialize the return continuation on the
length parity of the result, and make it have multiple entry points also. The idea is as
follows: when we are converting a SRC expression e into CPS, we use a method similar to
that of Section 6.2 to infer the refinement type for e; whenever we are not sure about the
length parity of a list expression, we duplicate its return continuation into one accepting an
even-length list and another accepting an odd-length list. For example, the source-language
filter function is CPS-converted into the filter’ function in Figure 36 (written using
pseudo-CPS notation in ML). Here, c, ce, co, ke, ko are the continuation variables. The
length parity of the variable z (i.e., the return result of £_e and £_o) is statically unknown,
but after duplicating the return continuation (ke, ko), z is then assumed as even-length list
and odd-length list in each, thus no parity check is necessary, and the more eflicient version
(econs and ocons) of “ucons” can be used. The heap allocation of intermediate OLIST cons
cell is still avoided because of representation analysis (see Chapter 3 and Leroy [Ler92]).

It is likely, however, that this transformation will only improve performance if the under-
lying compiler uses representation analysis (see Chapter 3 and Leroy [Ler92]), and is very
sophisticated about closure construction and register usage (see Chapter 4). Otherwise, the
extra cost of closure creations could outweigh the elimination of the cons operations.

Note, however, that though there are extra costs of testing for ELIST/0LIST, there are
fewer tests for nil. The result (as shown in the next section) is that the NUR version of
filter is about as fast as the OSR version, even without the specialized CPS version of our

analysis.

6.4 Experiments

We have implemented the algorithm described in Section 6.2 in an experimental version of
the Standard ML of New Jersey compiler (SML/NJ) [AM91, App92]. Because the com-

piler uses continuation-passing style as its intermediate language, the multiple-continuation

CHAPTER 6. UNROLLING LISTS 136

approach described in Section 6.3 can be easily added (this has not been done yet). The
SML/NJ compiler supports representation analysis (see Chapter 3 and [Ler92]), so interme-
diate odd-length lists are represented by unboxed records, which normally stay in registers;
this makes the specialized versions (for even-length and odd-length lists) of the ucons and

uproj operations require less memory allocation.

Table 24: Performance of the Benchmark Programs

Lists Allocated CPU Time Code Size

(mega-words) (seconds) (kilo-bytes)
Benchmark || OSR | NUR | Ratio || OSR | NUR | Ratio || OSR | NUR | Ratio
Life 0.71 0.71 x1.00 1.19 0.91 x0.77 13.9 54.5 x3.9
Ray 13.89 13.89 x1.00 || 22.71 20.59 x0.91 44.0 77.5 x1.76
Quicksort 1.81 1.35 x0.75 0.98 0.87 x0.89 3.0 8.4 x2.8
Samsort 1.81 1.30 x0.71 1.03 0.88 x0.85 2.5 5.3 x2.1
Intset 0.54 0.36 x0.67 0.63 0.51 x0.81 4.1 12.3 x3.0
MMap 1.20 0.80 x0.67 1.73 1.29 x0.75 3.5 8.7 x2.5

6.4.1 Avoiding code explosion

Translating from OSR to NUR involves function specialization and recursion unrolling. If
a function takes n list arguments with a k-way unrolled representation, we need k™ entry
points.

Though most list-processing functions take only one list argument, for functions that
take multiple list arguments (e.g., the append function which concatenates two lists), an
exponential blowup is a serious concern.

To avoid the blowup, we use a system parameter called unroll-level to control the
depth of specialization and unrolling. For example, suppose function £ has five arguments
that are of type 1ist, and suppose unroll-level is 2, then the compiler will only specialize
the first two arguments. The slight runtime cost for not specializing some arguments is not
a problem in practice because most of the frequently used list functions take only one or
two list arguments. For example, among the 15 functions in the initial “List” library in the
SML/NJ compiler, 14 of them have only one list argument, and only the append function

has two list arguments.

CHAPTER 6. UNROLLING LISTS 137

6.4.2 Measurements

Our technique guarantees a 25% savings in memory usage for 2-way unrolling (long) lists.
But execution-time savings will be achieved only if most of the ucons and uproj operations
can be removed.

To demonstrate the savings of execution time, we have compared the performance of
several benchmarks under the standard representation (OSR) and the unrolled represen-
tation (NUR). Our benchmarks include: Life, the game of Life implemented using lists
written by Reade [Rea89] (see Table 2 in Chapter 2); Ray, a simple ray tracer (see Table 2
in Chapter 2); Quicksort, sorting a list of 20000 real numbers using the quicksort algo-
rithm (taken from Paulson [Pau91]); Samsort, sorting a list of 2000 real numbers using a
variation of mergesort algorithm (taken from Paulson [Pau91]); Intset, “set” operations on
sets of integers implemented with sorted lists; MMap, several runs of the map function on
a long list.

Table 24 gives the total size of lists allocated during execution, the program execution
time on a DECstation 5000/240, and the code size increase, with the unroll-level set as 2,
and each cons cell 2-way unrolled. In all cases, the NUR version allocates less memory” and
runs faster (11%-25%) than the OSR version. Notice that the Life benchmark frequently
calls the filter function, and several functions that have more than two list arguments
(thus some of them are not specialized). Because of this, the total size of lists allocated for
NUR is about the same as OSR; but because NUR requires many fewer memory references
and nil tests, it runs much faster than OSR (about 23%). Although the code size did not
explode because of the unroll-level parameter, it does increase by a factor of 1.76 to
3.9. We are currently exploring ways of cutting down the code size for NUR, while still
maintaining its performance gain. One problem of our current implementation of NUR is
that our compiler does not have a good dead code detection algorithm, we believe that
a more refined implementation can achieve more code sharing and produce much smaller

code.

6.5 Related work

Cdr-coding techniques were first proposed in the early 70’s by researchers at MIT and
Xerox [Han69, Gre77, Cla76, CG77, BC79, Bob75]. While these schemes differ from each

other on the encoding methods, they all rely on the hardware support from microcoded

"NUR allocates 33% less memory than OSR on certain benchmarks, because unlike in Table 23, each
cons cell in our compiler contains an extra descriptor word.

CHAPTER 6. UNROLLING LISTS 138

Lisp machines [WMS81, Deu73] to alleviate the high costs incurred by the runtime encoding
bits. Since modern machines tend not to offer these kinds of special hardware support,
the runtime cdr-coding technique quickly became obsolete in the 1980’s. The “static cdr-
coding” technique presented in this chapter is a simple compile-time method for doing list
compaction. It is attractive for modern machines because it does not require any runtime
encoding bits at all.

Li and Hudak [LH86] proposed a cdr-coding scheme for list compaction under parallel
environments. When several lists are being constructed simultaneously from the same heap,
the non-contiguous nature of the cells being allocated might eliminate the opportunity for
compaction under traditional cdr-coding techniques. To overcome this, they also represent
list as linked (fixed length) vectors, and do the “consing” by pre-allocating a vector first
and consecutively filling in later elements. This technique still relies on runtime encoding
bits to distinguish the state of each vector cell (i.e., filled or empty), and is thus quite
expensive. Qur static cdr-coding method, on the other hand, exploits compile-time analysis
to eliminate most runtime checks; at the same time, it poses no more problem in parallel
environments than does ordinary allocation.

On the side of statically typed languages, Hall [Hal94] has presented a list compaction
technique for Haskell [HJet al92]. In her scheme, lists can be represented as the old standard
representation (OSR) at one place, and in an optimized representation at another place.
The optimized representation in her scheme is adapted for lazy languages where the tail of
a list may not yet be evaluated, and thus its length parity cannot be known. Therefore, she
must put the “extra” elements at the end of the list, making the test on each unrolled iter-
ation more complicated. In part because of this, her scheme requires more runtime checks
than ours. Hall’s analysis (based on Hindley-Milner type inference) determines where to
insert coercions between different representations. But the representations themselves must
already be used in the programs. In effect, this means that library functions must be ex-
plicitly programmed using several different representations, and programs will be improved
only if they use the library functions.

The idea of using special and more efficient representations for frequently used data ob-
jects (through type-based analysis) is originally from Leroy [Ler92] and Peyton Jones [PL91].
Both propose a type-based program transformation scheme that allows objects with
monomorphic ML types to use special unboxed representations. When an unboxed ob-
ject interacts with a boxed polymorphic object, appropriate coercions are inserted. But as
mentioned by Leroy [Ler92], their representation analysis techniques do not work well with

ML’s recursive data types, such as the list type. This is because the coercion between the

CHAPTER 6. UNROLLING LISTS 139

unboxed and boxed representation for lists is often rather expensive (i.e., has costs propor-
tional to the list length). Our translation scheme, on the other hand, allows commonly used
list objects to uniformly use more efficient unrolled representations, whether they have a
monomorphic type or not—though the element values must still use the standard (single-
word) representation. Coercions among representations for even-length lists, odd-length
lists, and lists whose length parity is unknown, are quite cheap.

The refinement type system used in Section 6.2 is a much simplified version of Freeman
and Pfenning’s refinement type system [FP91, Fre92]. While the underlying framework and
type inference algorithm are quite similar, our motivation is rather different. In their system,
the refinement type is declared by the programmer, and the refinement type information
is used to detect program errors at compile time. The reason that we use the refinement
types, on the other hand, is to do compile-time program transformations and optimizations.
The refinement type declaration used in our scheme is embedded in the compiler, and is
completely hidden from programmers.

As in Wadler’s views mechanism [Wad87], the standard and unrolled representations
of lists in our scheme can be linked together by a pair of in and out functions (e.g., the
“ucons” and “uproj” function in Section 6.1). We introduce unrolled representation for
lists mainly to improve the space and time efficiencies for programs using lists, while Wadler
uses his views mechanism to hide the representations of concrete data types and reconcile

pattern matching with data abstraction.

6.6 Summary

We have presented a “list unrolling” technique that allows a more compact and efficient list
representation for statically typed languages. Our “list unrolling ” technique generalizes to
depth-d unrolling of k-ary trees with only k%™ entry points necessary for any function with
m tree arguments. Reasoning about lists (and trees) in these languages are easier than about
pointers in other languages because lists (and trees) are accessed only via data constructors
and pattern matching. The higher-level of language abstraction permits the compiler to
automatically transform a program into one that uses more efficient data representations,

and that permits loop unrolling by eliminating certain control and data dependences.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The ultimate goal of software research is to find the right programming model in which
one can write the “best quality” (reliable, efficient, portable, etc.) program with the least
amount of time and effort.

Many language researchers believe that the most effective way to achieve this goal is
to write programs in higher-level languages. Although higher-level languages do provide a
simpler and cleaner programming model, they are very difficult to implement very efliciently.

This dissertation uses Standard ML (SML)—a statically typed functional language—as
the test bed to explore new compilation techniques for modern higher-level languages. SML
poses tough challenges to efficient implementations: frequent function calls, polymorphic
types, recursive data structures, higher-order functions, and first-class continuations. We
presented three new compilation techniques that meet these challenges by exploiting some

of the higher-level language features in SML:

o Type-directed compilation exploits the use of compile-time type information to opti-
mize data representations and function calling conventions. By inserting coercions at
each type instantiation and abstraction site, data objects in SML can use the same
unboxed representations as in C, even with the presence of polymorphic functions.
Measurements show that a simple set of type-based optimizations improve the per-

formance of the non-type-based compiler by about 19% on a DECstation 5000/240.

o Space-efficient closure representations utilizes the compile-time control and data flow

information to optimize closure representations. By extensive closure sharing and

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 141

allocating as many closures in registers as possible, the new closure conversion algo-
rithm achieves very good asymptotic space usage, and improves the performance of
the old compiler by about 14% on a DECstation 5000/240, even without using a stack.
Further empirical and analytic studies show that the execution cost of stack-allocated
and heap-allocated activation records is similar, but heap allocation is simpler to

implement and allow very efficient first-class continuations.

o Unrolling lists takes advantage of the higher-level language abstraction in SML to
support more eflicient representations for lists. By representing each cons cell using
multiple car fields and one cdr field, the unrolled list reduces the memory used for
links and significantly shortens the length of control-dependence and data-dependence

chains in operations on lists.

Table 25: Combined performance improvement (execution time)

Benchmark || Basis || nrp4occ | rep4occ | nrp+nce | rep+ncc
BHut 31.9 1.00 0.96 0.88 0.69
Boyer 2.6 1.00 0.95 0.91 0.85
Sieve 35.6 1.00 1.00 0.86 0.85
KB-Comp 8.3 1.00 0.90 0.82 0.73
Lexgen 125 1.00 0.92 0.91 0.84
Yacc 5.3 1.00 0.84 0.91 0.80
Life 11.8 1.00 0.11 0.91 0.10
Simple 25.2 1.00 0.88 0.90 0.73
Ray 23.6 1.00 0.86 0.98 0.84
VLIW 16.7 1.00 0.96 0.84 0.73
Average 1.00 0.84 0.89 0.72

Table 25 summarizes the combined improvement of the type-directed compilation tech-
nique (rep) and the new space-efficient closure conversion algorithm (ncc). The code gener-
ated by the new compiler (rep+ncc) is on average about 28% faster (over 10 benchmarks)
than that generated by the old SML/NJ compiler (nrp4occ), which neither supports type-
directed compilation (i.e., nrp) nor uses the new closure algorithm (i.e., occ).

Although these techniques are developed in the context of SML, they also apply to other
languages that share some of SML’s properties. For example, the type-directed compila-
tion technique (Chapter 3) should be useful for all statically typed languages, especially
those using the Hindley-Milner polymorphic type system. The closure analysis technique
in Chapter 4 is presented in the context of continuation-based compilers, but it can also be

applied to compilers that do not use CPS as the intermediate language. Both safely linked

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 142

closures and good use of callee-save registers are essential in building eflicient compilers for
languages with closures. The unrolling list technique (Chapter 6) may not work well for
lazy functional languages, because under lazy evaluation, it is difficult to reason about the
list length at compile time. But any strict languages that use lists frequently can benefit

great from the new unrolled representation, especially on modern superscaler machines.

7.2 Future work

While the new techniques presented in this dissertation have significantly improved the per-
formance of SML programs, more work remains to be done to actually make SML programs
run as efficiently as C or C+4 programs.

The type-directed compilation technique makes it possible to use many efficient data
representations in SML, however, only a very small subset of them have been implemented
and evaluated in this dissertation. It will be very valuable to support the flat unboxed
representation with sophisticated descriptors (as shown in Figure 5). To avoid expensive
coercions, our current implementation still uses the standard boxed representation for all
recursive data structures. We are currently still looking for a scheme that supports unboxed
representations (for recursive data structures) without incurring much runtime overhead.

The type-directed compilation technique presented in Chapter 3 implements polymor-
phic functions by inserting coercions at each type instantiation and abstraction site. An-
other way to implement polymorphic function efficiently is to use compile-time type special-
izations. To support general specialization of polymorphic functions (or even cross module
boundaries), we may have to use a lambda language with explicit type abstractions and
type applications. How to translate the SML module lambda language into this kind of
typed lambda calculus remains to be a research problem.

There are many possible extensions that can be done along with the new closure analysis
presented in Chapter 4. For example, Section 4.5.3 presented a way of using different
numbers of callee-save registers to represent continuation closures. This technique has not
been implemented and evaluated yet. Another extension would be to do register spilling
analysis in the closure conversion phase. Unlike in the machine code generator, the layout
for each closure is known in the closure conversion phase, so it is possible to avoid building
the extra spilling record if we know most variables can be accessed from some other closure
variables.

Type information (more specifically, the object size information) can also be useful

in supporting better closure representations. To allow more closure sharing while still

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 143

satisfying the safe for space complexity rule (see Section 2.3.3), the compiler can use the
type information as a guide to check whether it is safe to share two closures or not. As
long as the extra objects being held are of constant size, sharing two closures would still
not cause asymptotic increase of the space usage.

The unrolling lists technique described in Chapter 6 is only implemented in an experi-
mental version of the SML/NJ compiler, and evaluated mainly upon several toy benchmarks.
Since the unrolled list significantly shortens the length of control- and data-dependence
chains in operations on lists, it will be interesting to implement and evaluate this technique
on modern superscalar machines. On the other hand, more work has to be done to control
the code explosion.

Another new direction in efficient compilation of higher-level languages is to see whether
languages such as SML support better instruction level parallelism than conventional lan-
guages such as C and C4++4. There are many reasons to believe they will, or at least SML

will:

e SML is a value-oriented functional language; SML programs contain significantly fewer
side-effects than C and C++ programs. This means that less pointer aliasing analysis

is necessary to calculate the control- and data-dependence at compile time.

e SML can be compiled efficiently using a heap-based environment allocation scheme
(see Chapter 4). In our heap-based scheme, once a closure is created, no later writes
are made to it. This further eliminates the number of side effects occurring at run
time. The stack-based scheme, on the other hand, often needs to side-effect each stack

frame many times.

e SML is a statically typed language. With type-directed compilation, the compiler
knows more static information (e.g., object size) about each variable; this static in-

formation may be useful for better instruction scheduling.

o SML uses concrete datatype declaration and pattern matching to define and access
most data structures. This higher-level abstraction gives the compiler the freedom to
choose more efficient data representations that fit well on superscalar machines (e.g.,

unrolling lists).

In summary, higher-level languages such as SML hold great promise for efficient im-
plementation on modern machines. After all, languages that are easier to use should be
easier to analyze at compile time; programs that are more abstract should provide more

opportunities for advanced compiler optimizations. In the near future, programs written in

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 144

certain higher-level languages may be able to get better performance (on machines of the

future) than programs written in languages such as C and C++. This is certainly the hope

and dream of many software researchers.

Bibliography

[AAD*93]

[AB93]

[ATSS]

[AT89]

[AL91]

[AMO1]

[AMTS89]

[App87]

Tom Asprey, Gregory S. Averill, Eric DeLano, Russ Mason, Bill Weiner, and
Jefl Yetter. Performance Features of the PA7100 Microprocessor. IFEE Micro,
13(3):22-35, June 1993.

Michael 5. Allen and Michael C. Becker. Multiprocessing Aspects of the Pow-
erPC 601. In IEFE COMPCON Spring 93, pages 117-126. IEEE, Computer
Society Press, February 1993.

Andrew W. Appel and Trevor Jim. Optimizing Closure Environment Represen-
tations. Technical Report 168, Dept. of Computer Science, Princeton University,

Princeton, NJ, 1988.

Andrew W. Appel and Trevor Jim. Continuation-Passing, Closure-Passing
Style. In Sizteenth ACM Symp. on Principles of Programming Languages, pages
293-302, New York, 1989. ACM Press.

Andrew W. Appel and Kai Li. Virtual Memory Primitives for User Programs.
In Fourth Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (SIGPLAN Notices v. 26, no. 4), pages 96-107. ACM Press,
April 1991.

Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In
Martin Wirsing, editor, Third Int’l Symp. on Prog. Lang. Implementation and
Logic Programming, pages 1-13, New York, August 1991. Springer-Verlag.

Andrew W. Appel, James S. Mattson, and David R. Tarditi. A lexical analyzer
generator for Standard ML. Distributed with Standard ML of New Jersey,
December 1989.

Andrew W. Appel. Garbage Collection can be Faster than Stack Allocation.
Information Processing Letter, 25(4):275-279, 1987.

BIBLIOGRAPHY 146

[App89]

[App90]

[App92]

[App94a]

[App94b]

[AR92]

[AS92]

[AS94]

[ASUS6]

[Aug89]

[Bak76]

[Bak78]

Andrew W. Appel. Simple Generational Garbage Collection and Fast Alloca-
tion. Software— Practice and Experience, 19(2):171-183, 1989.

Andrew W. Appel. A Runtime System. Lisp and Symbolic Computalion,
3(4):343-380, 1990.

Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

Andrew W. Appel. Emulating Write-Allocate on a No-Write-Allocate Cache.
Technical Report CS-TR-459-94, Princeton University, June 1994.

Andrew W. Appel. Loop Headers in A-calculus or CPS. Lisp and Symbolic
Computation, page (to appear), 1994. Also available as Princeton University
Tech Report CS-TR-460-94.

William E. Aitken and John H. Reppy. Abstract Value Constructors. In
ACM SIGPLAN Workshop on ML and its Applications, pages 1-11, June 1992.

Longer version available as Cornell Univ. Tech. Report.

Andrew W. Appel and Zhong Shao. Callee-save Registers in Continuation-
Passing Style. Lisp and Symbolic Computation, 5(3):191-221, 1992.

Andrew W. Appel and Zhong Shao. An Empirical and Analytic Study of Stack
vs. Heap Cost for Languages with Closures. Technical Report CS-TR-450-94,
Princeton University, Department of Computer Science, Princeton, NJ, March

1994. To appear in Journal of Functional Programminyg.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA, 1986.

Lennart Augustsson. Garbage collection in the < v, G >-machine. Technical
Report PMG memo 73, Dept. of Computer Sciences, Chalmers University of
Technology, Goteborg, Sweden, December 1989.

Henry G. Baker. The Buried Binding and Stale Binding Problems of LISP 1.5.
unpublished, undistributed paper, June 1976.

Henry G. Baker. List Processing in Real Time on a Serial Computer. Commu-

nications of the ACM, 21(4):280-294, April 1978.

BIBLIOGRAPHY 147

[Bar84]

[BCT9]

[BCKT89]

[BHS6]

[Bjo94]

[BM72]

[Bob75]

[Car84al]

[Car84b]

[CCMS5]

[CGTT]

[Cha82]

H. P. Barendregt. The Lambda Calculus, Its Syntaz and Semantics. North-
Holland, Amsterdam, 1984.

Daniel G. Bobrow and Douglas W. Clark. Compact Encodings of List Structure.
ACM Transactions on Programming Languages and Systems, 1(2):267-286, Oc-
tober 1979.

Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring
Heuristics for Register Allocation. In Proc. ACM SIGPLAN 89 Conf. on Prog.
Lang. Design and Implementation, pages 275-284, New York, July 1989. ACM

Press.

J.E. Barnes and P. Hut. A Hierarchical O(NlogN) Force Calculation Algorithm.
Nature, 324(4):446-449, December 1986.

Nikolaj S. Bjorner. Minimial Typing Derivations. In ACM SIGPLAN Workshop
on ML and its Applications, pages 120-126, June 1994.

R. S. Boyer and J Moore. The Sharing of Structure in Theorem-Proving Pro-
grams. In B. Meltzer and D. Michie, editors, Machine Intelligence 7. Edinburgh
University Press, 1972.

Daniel G. Bobrow. A note on hash linking. Communications of the ACM,
18(7):413-415, July 1975.

Luca Cardelli. Compiling a functional language. In Proc. of the 1984 ACM
Conference on Lisp and Functional Programming, pages 208-217, August 1984.

Luca Cardelli. A Semantics of Multiple Inheritance. In Semantics of Data Types,
International Symposium, pages 51-68, Berlin, June 1984. Springer- Verlag.

G. Cousineau, P. L. Curien, and M. Mauny. The Categorical Abstract Machine.
In J. P. Jouannaud, editor, Functional Programming Languages and Computer

Architecture, LNCS Vol 201, pages 50-64, New York, 1985. Springer-Verlag.

Douglas W. Clark and C. Cordell Green. An Empirical Study of List Structure
in Lisp. Communications of the ACM, 20(2):78-87, February 1977.

Gregory J. Chaitin. Register Allocation and Spilling via Graph Coloring. In
Symposium on Compiler Construction, pages 98-105, New York, June 1982.
ACM Sigplan.

BIBLIOGRAPHY 148

[Cha88]

[Cho88a]

[CHOSSb]

[CHR7S]

[Chu41]

[ClaT76]

[Dan87]

[DeuT3]

[DGY4]

[DHMO1]

[Dig92]

David R. Chase. Safety considerations for storage allocation optimizations. In
Proc. ACM SIGPLAN 88 Conf. on Prog. Lang. Design and Implementation,
pages 1-9, New York, June 1988. ACM Press.

Fred C. Chow. Minimizing Register Usage Penalty at Procedure Calls. In Proc.
ACM SIGPLAN ’88 Conf. on Prog. Lang. Design and Implementation, pages
8594, New York, June 1988. ACM Press.

William D Clinger, Anne H Hartheimer, and Eric M Ost. Implementation
Strategies for Continuations. In 1988 ACM Conference on Lisp and Functional
Programming, pages 124-131, New York, June 1988. ACM Press.

W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The SIMPLE Code. Tech-
nical Report UCID 17715, Lawrence Livermore Laboratory, Livermore, CA,
February 1978.

Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press,

1941.

Douglas W. Clark. List structure: measurements, algorithms, and encodings.

PhD thesis, Carnegie Mellon Univ., Pittsburgh, PA, August 1976.

Olivier Danvy. Memory Allocation and Higher-Order Functions. In Proceedings
of the SIGPLAN’87 Symposium on Interpreters and Interpretive Techniques,
pages 241-252. ACM Press, June 1987.

L. P. Deutsch. A Lisp machine with very compact programs. In Proc. 3rd

LJACI, pages 697-703, 1973.

Damien Doligez and Georges Gonthier. Re: stack scanning for generational g.c.

E-mail message <9403041606.AA07877@1lix.polytechnique.fr>, March 1994.

Bruce Duba, Robert Harper, and David MacQueen. Typing First-Class Con-
tinuations in ML. In FEighteenth Annual ACM Symp. on Principles of Prog.
Languages, pages 163-173, New York, Jan 1991. ACM Press.

Digital Equipment Corp., Maynard, MA. DFECchip(tm) 21064-AA Micropro-

cessor Hardware Reference Manual, first edition, October 1992.

BIBLIOGRAPHY 149

[DMS2]

[DTM94]

[EAST]

[FPY1]

[Fre92]

[Fre94]

[FTL94]

[Gab85]

[GGRO4]

[GreT77]

(GS91]

Luis Damas and Robin Milner. Principal type-schemes for functional programs.
In Ninth Annual ACM Symp. on Principles of Prog. Languages, pages 207-212,
New York, Jan 1982. ACM Press.

Amer Diwan, David Tarditi, and Eliot Moss. Memory subsystem performance
of programs using copying garbage collection. In Proc. 21st Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pages 1—
14. ACM Press, 1994.

K. Fkanadham and Arvind. SIMPLE: An Exercise in Future Scientific Pro-
gramming. Technical Report Computation Structures Group Memo 273, MIT,
Cambridge, MA, July 1987. Simultaneously published as IBM/T.J. Watson
Research Center Research Report 12686, Yorktown Heights, NY.

Tim Freeman and Frank Pfenning. Refinement Types for ML. In Proc. ACM
SIGPLAN °91 Conf. on Prog. Lang. Design and Implementation, pages 268—
277, New York, July 1991. ACM Press.

Tim Freeman. Carnegie Mellon University, personal communication, 1992.

Tim Freeman. Refinement Types for ML. PhD thesis, Carnegie Mellon Univ.,
Pittsburgh, Pennsylvania, March 1994. CMU-CS-94-110.

M. Feeley, M. Turcotte, and G. LaPalme. Using Multilisp for solving constraint
satisfaction problems: an application to nucleic acid 3D strucure determination.

Lisp and Symbolic Computation, page (to appear), 1994.

Richard P. Gabriel. Performance and Fvaluation of Lisp Systems. MIT Press,
Boston, MA, 1985.

Lal George, Florent Guillaume, and John Reppy. A portable and optimiz-
ing backend for the SML/NJ compiler. In Proceedings of the 1994 Interna-
tional Conference on Compiler Conslruclion, pages 83-97. Springer-Verlag,

April 1994.

R. Greenblatt. LISP Machine Progress Report memo 444. Technical report,
Al Lab., M.I.LT., Cambridge, MA, August 1977.

Carsten K. Gomard and Peter Sestoft. (lobalization and Live Variables. In
Proceedings of the 1991 Symposium on Partial Evaluation and Semantics-Based

Program Manipulation, pages 166-177. ACM Press, June 1991.

BIBLIOGRAPHY 150

[Hal94]

[Han69]

[Han80]

[Han90]

[Har86]

[HDB90]

[HHH*90]

[Hil88]

[Hin69]

[HJ94]

[HJet al92]

Cordelia V. Hall. Using Hindley-Milner Type Inference to Optimize List Rep-
resentation. In 1994 ACM Conference on Lisp and Functional Programmaing,

pages 162-172, New York, June 1994. ACM Press.

Wilfred J. Hansen. Compact List Representation: Definition, Garbage Collec-
tion, and System Implementation. Communications of the ACM, 12(9):499-507,
Sep 1969.

David R. Hanson. A Portable Storage Management System for the Icon Pro-
gramming Language. Software—Practice and Erperience, 10:489-500, 1980.

Chris Hanson. Efficient Stack Allocation for Tail-Recursive Languages. In 1990
ACM Conference on Lisp and Funclional Programming, pages 106-118, New
York, June 1990. ACM Press.

Robert Harper. Introduction to Standard ML. Technical Report ECS-LFCS-
86-14, Univ. of Edinburgh, Dept. of Computer Science, Edinburgh, EH9 3JZ,
August 1986.

Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing Control in
the Presence of First-Class Continuations. In Proc. ACM SIGPLAN 90 Conf.
on Prog. Lang. Design and Implementation, pages 66-77, New York, 1990. ACM

Press.

William R. Hardell, Dwain A. Hicks, Lawrence C. Howell, Warren E. Maule,
Robert Montoye, and David P. Tuttle. Data Cache and Storage Control Units.
In IBM RISC System/6000 Technology, pages 44-50. IBM, 1990.

Mark D. Hill. A Case for Direct-Mapped Caches. IEEE Computer, 21(12):25—
40, December 1988.

Roger Hindley. The principle type scheme of an object in combinatory logic.

Trans. Amer. Math. Soc., 146:29-60, 1969.

Fritz Henglein and Jesper Jorgensen. Formally Optimal Boxing. In Proc. 21st
Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, pages 213-226. ACM Press, 1994.

Paul Hudak, Simon Peyton Jones, and Philip Wadler et al. Report on the Pro-
gramming Language Haskell, A Non-strict, Purely Functional Language Version

1.2. SIGPLAN Notices, 21(5), May 1992.

BIBLIOGRAPHY 151

[HL94]

[HLPROA4]

[HMO5]

[Hud89]

[Joh85]

[Jon92]

[Jou93]

[KHS9]

[KKR*86]

[Kra87]

[Lan64]

Robert Harper and Mark Lillibridge. A Type-Theoretic Approach to Higher-
Order Modules with Sharing. In Twenty-first Annual ACM Symp. on Principles
of Prog. Languages, pages 123-137, New York, Jan 1994. ACM Press.

Robert Harper, Peter Lee, Frank Pfenning, and Eugene Rollins. Incremental

Recompilation for Standard ML of New Jersey. In ACM SIGPLAN Workshop
on ML and its Applications, June 1994.

Robert Harper and Greg Morrisett. Compiling Polymorphism Using Intensional
Type Analysis. In Twenty-second Annual ACM Symp. on Principles of Prog.
Languages, page (to appear), New York, Jan 1995. ACM Press.

Paul Hudak. Conception, Evolution, and Application of Functional Program-

ming Languages. ACM Computing Surveys, 21(3):359-411, September 1989.

Thomas Johnsson. Lambda Lifting: Transforming Programs to Recursive Equa-
tions. In The Second International Conference on Funclional Programming
Languages and Computer Architecture, pages 190-203, New York, September
1985. Springer-Verlag.

Mark P. Jones. A theory of qualified types. In The 4th Furopean Symposium
on Programming, pages 287-306, Berlin, February 1992. Spinger-Verlag.

Norman P. Jouppi. Cache Write Policies and Performance. In Proceedings

of the 20th Annual International Symposium on Compuler Architecture, pages

191-201. ACM Press, May 1993.

Richard Kelsey and Paul Hudak. Realistic Compilation by Program Transfor-
mation. In Sizteenth ACM Symp. on Principles of Programming Languages,
pages 281-292, New York, 1989. ACM Press.

D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. ORBIT: An
optimizing compiler for Scheme. SIGPLAN Notices (Proc. Sigplan 86 Symp.
on Compiler Construction), 21(7):219-233, July 1986.

David Kranz. ORBIT: An optimizing compiler for Scheme. PhD thesis, Yale
University, New Haven, CT, 1987.

P. J. Landin. The mechanical evaluation of expressions. Computer Journal,

6(4):308-320, 1964.

BIBLIOGRAPHY 152

[Lan65] P.J. Landin. A correspondence between Algol 60 and Church’s lambda notation:
Part I. Commnuications of the ACM, 8(2):89-101, 1965.

[Ler92] Xavier Leroy. Unboxed objects and polymorphic typing. In Nineteenth Annual
ACM Symp. on Principles of Prog. Languages, pages 177-188, New York, Jan
1992. ACM Press. Longer version available as INRIA Tech Report.

[Ler94] Xavier Leroy. Manifest Types, Modules, and Separate Compilation. In Twenty-
Sirst Annual ACM Symp. on Principles of Prog. Languages, pages 109-122, New
York, Jan 1994. ACM Press.

[LH83] Henry Lieberman and Carl Hewitt. A Real-Time Garbage Collector Based on
the Lifetimes of Objects. Communications of the ACM, 26(6):419-29, 1983.

[LH86] Kai Li and Paul Hudak. A New List Compaction Method. Software — Practice
and Fzperience, 16(2):145-163, February 1986.

[Mac84] David B. MacQueen. Modules for Standard ML. In 1984/ ACM Conference
on Lisp and Functlional Programming, pages 198-207, New York, August 1984.
ACM Press.

[Mac88] David B. MacQueen. Weak types. Distributed with Standard ML of New Jersey,
1988.

[McC60] John McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine, Part I. Communications of the ACM, 3(4):184-195, Apirl
1960.

[Mil78] Robin Milner. A theory of type polymorphism in programming. .J. Compul.
Syst. Sci., 17:348-375, March 1978.

[MT91] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press,
Cambridge, Massachusetts, 1991.

[MT94] David B. MacQueen and Mads Tofte. A semantics for higher order functors. In
The 5th Furopean Symposium on Programming, pages 409-423, Berlin, April
1994. Spinger-Verlag.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, Cambridge, Massachusetts, 1990.

BIBLIOGRAPHY 153

[Pau91] Lawrence C. Paulson. ML for the Working Programmer. Cambridge University
Press, Cambridge, 1991.

[Pet89] John Peterson. Untagged data in tagged environments: choosing optimal rep-
resentations at compile time. In The Fourth International Conference on Func-
tional Programming Languages and Computer Architecture, pages 89-99, New

York, September 1989. ACM Press.

[Pey87] Simon L. Peyton Jones. The Implementation of Functional Programming Lan-

guages. Prentice Hall, New York, 1987.

[Pey92] Simon L. Peyton Jones. Implementing lazy functional languages on stock hard-
ware: the Spineless Tagless G-machine. Journal of Functional Programming,

2(2):127-202, April 1992.

[PL91] Simon L. Peyton Jones and John Launchbury. Unboxed Values as First Class
Citizens in a Non-Strict Functional Language. In The Fifth International

Conference on Funclional Programming Languages and Computer Architecture,

pages 636—666, New York, August 1991. ACM Press.

[Plo75] Gordon D. Plotkin. Call-by-Name, Call-by-Value, and the A-calculus. Theoret-
tcal Computer Science, 1:125-59, 1975.

[Pou93] Eigil Poulsen. Representation Analysis for Efficient Implementation of Poly-
morphism. Master’s thesis, DIKU, University of Copenhagen, 1993.

[RC86] J. Rees and W. Clinger. Revised Report on the Algorithmic Language Scheme.
SIGPLAN Notices, 21(12):37-79, 1986.

[Rea89] Chris Reade. Elements of Functional Programming. Addison-Wesley, Reading,
MA, 1989.

[Rei94] Mark B. Reinhold. Cache Performance of Garbage-Collected Programs. In
Proc. SIGPLAN °94 Symp. on Prog. Language Design and Implementation,
pages 206-217. ACM Press, June 1994.

[Rep91] John H. Reppy. CML: A Higher-order Concurrent Language. In Proc. ACM
SIGPLAN °91 Conf. on Prog. Lang. Design and Implementation, pages 293—
305. ACM Press, 1991.

BIBLIOGRAPHY 154

[Rep93]

[Roz84]

[RPS6]

[RW93]

[SA92]

[SA93]

[SA94]

[Shi91]

[SM94]

[SRA94]

[5580]

[Stag89]

John H. Reppy. A High-Performance Garbage Collector for Standard ML. Tech-
nical memorandum, AT&T Bell Laboratories, Murray Hill, NJ, January 1993.

Guillermo Juan Rozas. Liar, an Algol-like Compiler for Scheme. S.B. thesis,

MIT Dept. of Computer Science and Electrical Engineering, June 1984.

Barbara G. Ryder and Marvin C. Paull. Elimination Algorithms for Data Flow
Analysis. ACM Computing Surveys, 18(3):277-316, September 1986.

Colin Runciman and David Wakeling. Heap Profiling of Lazy Functional Pro-
grams. Journal of Functional Programming, 3(2):217-246, April 1993.

Zhong Shao and Andrew W. Appel. Smartest Recompilation. Technical Report
CS5-TR-395-92, Princeton Univ. Dept. of Computer Science, Princeton, NJ,
October 1992.

Zhong Shao and Andrew W. Appel. Smartest Recompilation. In Proc. Twen-
tieth Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, pages 439-450. ACM Press, 1993.

Zhong Shao and Andrew W. Appel. Space-Efficient Closure Representations.
In 1994 ACM Conference on Lisp and Funclional Programming, pages 150-161,
New York, June 1994. ACM Press.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon Univ., Pittsburgh, Pennsylvania, May 1991. CMU-CS-91-145.

Darko Stefanovic and J. Eliot B. Moss. Characterization of Object Behaviour in
Standard ML of New Jersey. In 1994 ACM Conference on Lisp and Functlional
Programming, pages 43-54, New York, June 1994. ACM Press.

Zhong Shao, John H. Reppy, and Andrew W. Appel. Unrolling Lists. In 7994
ACM Conference on Lisp and Functional Programming, pages 185-195, New
York, June 1994. ACM Press.

Guy L. Steele and Gerald Jay Sussman. The Dream of a Lifetime: A Lazy
Variable Extent Mechanism. In Proceedings of the 1980 LISP Conference, pages
163-172, Stanford, 1980.

Standards Performance Evaluation Corp. SPEC Benchmark Suite Release 1.0,
October 1989.

BIBLIOGRAPHY 155

[SteT8]

[Ste84]

[TA90]

[Tar74]

[Tof92]

[Tur37]

[UT193]

[Ung86]

[Wad87]

[Wan80]

[WBS9]

[Wil91]

[WLM92]

Guy L. Steele. Rabbit: a compiler for Scheme. Technical Report AI-TR-474,
MIT, Cambridge, MA, 1978.

Guy L. Steele. The Common LISP: The Language. Digital Press, Digital
Equipment Corporation, 1984.

David R. Tarditi and Andrew W. Appel. ML-Yacc, version 2.0. Distributed
with Standard ML of New Jersey, April 1990.

Robert E. Tarjan. Testing flow graph reducibility. Journal of Compuler and
System Science, 9(3):355-365, December 1974.

Mads Tofte. Principal Signatures for High-order ML Functors. In Nineteenth
Annual ACM Symp. on Principles of Prog. Languages, pages 189-199, New
York, Jan 1992. ACM Press.

Alan M. Turing. Computability and A-definability. J. Symbolic Logic, 2:153—
163, 1937.

Jeffrey D. Ullman. Flements of ML Programming. Prentice Hall, Englewood
Cliffs, NJ, 1993.

David M. Ungar. The Design and Evaluation of A High Performance Smalltalk
System. MIT Press, Cambridge, M A, 1986.

Philip Wadler. Views: A way for pattern matching to cohabit with data ab-
straction. In Fourteenth Annual ACM Symp. on Principles of Prog. Languages,
pages 307-313, New York, Jan 1987. ACM Press.

Mitchell Wand. Continuation-Based Multiprocessing. In Conf. Record of the
1980 Lisp Conf., pages 19-28, New York, August 1980. ACM Press.

P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In
Sizteenth Annual ACM Symp. on Principles of Prog. Languages, pages 60-76,
New York, Jan 1989. ACM Press.

Paul R. Wilson. Some Issues and Strategies in Heap Management and Memory

Hierarchies. SIGPLAN Notices, 26(3):45-52, March 1991.

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching Considera-
tions for Generational Garbage Collection. In 1992 ACM Conference on Lisp
and Functional Programming, pages 32-42, New York, June 1992. ACM Press.

BIBLIOGRAPHY 156

[WMS81] D. Weinreb and D. Moon. Lisp Machine Manual. Technical report, Symbolics
Corp., Cambridge, Mass., 1981.

[Zor91] Benjamin Zorn. The Effect of Garbage Collection on Cache Performance. Tech-
nical Report CU-CS-528-91, University of Colorado, Boulder, CO, May 1991.

