
88 COMMUNICATIONS OF THE ACM | OCTOBER 2019 | VOL. 62 | NO. 10

In this paper, the authors describe
what it takes to extend the methodol-
ogy to concurrency.

With multithreading, module A
(the context) can interface to module
B not only through function calls, but
by acquiring and releasing locks and
then reading and writing the shared
memory locations controlled by those
locks. This gives a more complicated
notion of “behaves the same”—it’s
not just the arguments and return-
values of procedure calls. With mul-
ticore, contextual refinement de-
scribes, in each thread individually,
the relation between a synchroniza-
tion trace of the functional specifica-
tion and of the C program.

What we all know about software
is that it never stays still. It would do
no good to verify correctness of an op-
erating system, if next week when we
commit a change to the source-code
repository, we would have to throw
away the proof and start over. Proofs
about programs must be highly mod-
ular, just like the programs them-
selves. The CertiKOS team shows how
to design contextual refinements
that are module-by-module, even in
the presence of concurrency. That
means, when you commit a change to
the implementation of one module,
you just need to adjust the proof of
that module alone.

To make their proofs so modular,
the CertiKOS team has had to pay
careful attention to abstraction inter-
faces. As a result, the C program is ex-
tremely well structured, layered, and
modular. This has benefits even for
those who read the C program with-
out ever looking at the proofs.

Andrew W. Appel is the Eugene Higgins Professor of
Computer Science at Princeton University, Princeton,
NJ, USA.

Copyright held by author.

F O R M O D E R AT E - S I Z E S E Q U E N T I A L pro-
grams, formal verification works—we
can build a formal machine-check-
able proof that a program is correct,
with respect to a formal specification
in logic. Machine-checked formal
verifications of functional correct-
ness have already been demonstrated
for operating-system microkernels,
optimizing compilers, cryptographic
primitives and protocols, and so on.

But suppose we want to verify a
high-performance hypervisor ker-
nel programmed in C, that runs on
a real (x86) machine, that is capable
of booting up Linux in each of its (hy-
pervisor) guest partitions? Real ma-
chines these days are multicore—the
hypervisor should provide multicore
partitions that can host multicore
guests, all protected from each other,
but interacting via shared memory
synchronized by locks. Furthermore,
the operating system itself should be
multicore, with fine-grain synchro-
nization—we do not want one global
lock guarding all the system calls by
all the cores and threads.

The authors of the following paper
illustrate that formal verification can
scale up to a moderate-size program
(6,500 lines of C) that has substantial
shared-memory concurrency. They
succeed by a ruthless and disciplined
use of modularity and contextual re-
finement: each module of the C pro-
gram behaves “the same” as its func-
tional specification in any context; and
each module compiles to assembly
language that behaves “the same” as
the C program in any context. They
certify this with machine-checkable
proofs. Therefore, they call the ap-
proach Certified Abstraction Layers.

Here’s an example of contextual
refinement: Suppose module A inter-
faces to module B using the principle
of Abstract Data Types (also known
as “representation hiding”): Module
B has private variables with public
interface methods. Module A never

reads and writes B’s variables directly
but calls upon B’s methods to do it.
We can say that module A is the con-
text for running module B. What can
A observe about B? Only the data val-
ues passed to, and returned from, B’s
interface methods. We can substi-
tute a different implementation for
B that “behaves the same” from B’s
point of view. In particular, we could
write a functional specification for B
written in a functional programming
language or written in mathematical
logic; then we could write a C program
implementing module B. Module A
cannot tell the difference between
the functional specification and the
C-language implementation. Then,
use a proved-correct C compiler, and
module A cannot tell the difference
between the C program and the as-
sembly-language program.

That explanation works well for
single-threaded programs where the
modules are connected at function-
call interfaces. The CertiKOS team has
previously demonstrated their Certi-
fied Abstraction Layer methodology to
prove the correctness of a single-core
version of CertiKOS.

Technical Perspective
The Scalability
of CertiKOS
By Andrew W. Appel

The authors
illustrate that
formal verification
can scale up
to a moderate-size
program that
has substantial
shared-memory
concurrency.

To view the accompanying paper,
visit doi.acm.org/10.1145/3356903 rh

research highlights

DOI:10.1145/3356906

http://doi.acm.org/10.1145/3356903
http://dx.doi.org/10.1145/3356906

