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In this paper, the authors describe 
what it takes to extend the methodol-
ogy to concurrency.

With multithreading, module A 
(the context) can interface to module 
B not only through function calls, but 
by acquiring and releasing locks and 
then reading and writing the shared 
memory locations controlled by those 
locks. This gives a more complicated 
notion of “behaves the same”—it’s 
not just the arguments and return-
values of procedure calls. With mul-
ticore, contextual refinement de-
scribes, in each thread individually, 
the relation between a synchroniza-
tion trace of the functional specifica-
tion and of the C program.

What we all know about software 
is that it never stays still. It would do 
no good to verify correctness of an op-
erating system, if next week when we 
commit a change to the source-code 
repository, we would have to throw 
away the proof and start over. Proofs 
about programs must be highly mod-
ular, just like the programs them-
selves. The CertiKOS team shows how 
to design contextual refinements 
that are module-by-module, even in 
the presence of concurrency. That 
means, when you commit a change to 
the implementation of one module, 
you just need to adjust the proof of 
that module alone.

To make their proofs so modular, 
the CertiKOS team has had to pay 
careful attention to abstraction inter-
faces. As a result, the C program is ex-
tremely well structured, layered, and 
modular. This has benefits even for 
those who read the C program with-
out ever looking at the proofs. 
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F O R  M O D E R AT E - S I Z E  S E Q U E N T I A L  pro-
grams, formal verification works—we 
can build a formal machine-check-
able proof that a program is correct, 
with respect to a formal specification 
in logic. Machine-checked formal 
verifications of functional correct-
ness have already been demonstrated 
for operating-system microkernels, 
optimizing compilers, cryptographic 
primitives and protocols, and so on.

But suppose we want to verify a 
high-performance hypervisor ker-
nel programmed in C, that runs on 
a real (x86) machine, that is capable 
of booting up Linux in each of its (hy-
pervisor) guest partitions? Real ma-
chines these days are multicore—the 
hypervisor should provide multicore 
partitions that can host multicore 
guests, all protected from each other, 
but interacting via shared memory 
synchronized by locks. Furthermore, 
the operating system itself should be 
multicore, with fine-grain synchro-
nization—we do not want one global 
lock guarding all the system calls by 
all the cores and threads.

The authors of the following paper 
illustrate that formal verification can 
scale up to a moderate-size program 
(6,500 lines of C) that has substantial 
shared-memory concurrency. They 
succeed by a ruthless and disciplined 
use of modularity and contextual re-
finement: each module of the C pro-
gram behaves “the same” as its func-
tional specification in any context; and 
each module compiles to assembly 
language that behaves “the same” as 
the C program in any context. They 
certify this with machine-checkable 
proofs. Therefore, they call the ap-
proach Certified Abstraction Layers.

Here’s an example of contextual 
refinement: Suppose module A inter-
faces to module B using the principle 
of Abstract Data Types (also known 
as “representation hiding”): Module 
B has private variables with public 
interface methods. Module A never 

reads and writes B’s variables directly 
but calls upon B’s methods to do it. 
We can say that module A is the con-
text for running module B. What can 
A observe about B? Only the data val-
ues passed to, and returned from, B’s 
interface methods. We can substi-
tute a different implementation for 
B that “behaves the same” from B’s 
point of view. In particular, we could 
write a functional specification for B 
written in a functional programming 
language or written in mathematical 
logic; then we could write a C program 
implementing module B. Module A 
cannot tell the difference between 
the functional specification and the 
C-language implementation. Then, 
use a proved-correct C compiler, and 
module A cannot tell the difference 
between the C program and the as-
sembly-language program.

That explanation works well for 
single-threaded programs where the 
modules are connected at function-
call interfaces. The CertiKOS team has 
previously demonstrated their Certi-
fied Abstraction Layer methodology to 
prove the correctness of a single-core 
version of CertiKOS.
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