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Herlihy-Wing Linearizability

What is a concurrent object?

Queue := {enq : N → {ok}, deq : N+{⊥}}

▶ Sequential:

deq

⊥

▶ Concurrent:

α0α0α0:::deq

α1α1α1:::enq(1) α2α2α2:::enq(2) α2α2α2:::ok
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Classical Linearizability: Example

ν ′squeue : α0α0α0:::deq α1α1α1:::enq(1) α0α0α0:::1 α2α2α2:::enq(2) α1α1α1:::ok α0α0α0:::deq α2α2α2:::ok

α0α0α0:::deq α0α0α0:::1 α0α0α0:::deq

α1α1α1:::enq(1) α1α1α1:::ok

α2α2α2:::enq(2) α2α2α2:::ok

⇝

α0α0α0:::deq α0α0α0:::1 α0α0α0:::deq

α1α1α1:::enq(1) α1α1α1:::ok

α2α2α2:::enq(2) α2α2α2:::ok

νsqueue : α1α1α1:::enq(1) α1α1α1:::ok α0α0α0:::deq α0α0α0:::1 α2α2α2:::enq(2) α2α2α2:::ok
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Locality [Herlihy and Wing, 1990]

proposition

H is linearizable if and only if, for each object x , H | x is linearizable.

Linearizable

⇐⇒

Lin. Lin. Lin. Lin.

4 / 45



Equivalence with Contextual Refinement [Filipović et Al. 2010]

ObjConc observationally refines (⊑) ObjAtom when

∀ programs P . ∀ states s . JPK(ObjConc)(s) ⊆ JPK(ObjAtom)(s)

proposition

ObjConc linearizes to ObjAtom ⇐⇒ ObjConc observationally refines ObjAtom

5 / 45



Why?

Where does linearizability come from and why does it work?

6 / 45



Key Contributions

▶ A new generalized definition of linearizability not tied to atomicity.

▶ The first model of linearizability that supports refinement, horizontal and vertical
composition.

▶ A general (category-theoretic) methodology for deriving linearizability from a model of
concurrent computation.

▶ New simpler proofs of the locality and refinement properties.

▶ A new program logic that is sound for our formulation of linearizability.

▶ Applications to compositional verification.
7 / 45
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Typical Approach for Verifying Concurrent Objects

ν ′AAA ⊑⊑⊑ νAAA =⇒=⇒=⇒

νAAA′

P ⊆⊆⊆

νAAA

P

νAAA

P ⊑⊑⊑ νBBB
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Implementating a Shared Queue

Msqueue:

Import Q:Queue
Import L:Lock

enq(k) { deq() {

L.acq (); L.acq ();

r <- Q.enq(k); r <- Q.deq();

L.rel (); L.rel ();

ret r ret r

} }

ν ′squeue

ν ′lock ν ′queue

Msqueue

▶ No account of how locality interacts with refinement.

▶ Locality doesn’t apply! The queue has a race (not linearizable).

10 / 45



Implementing a Shared Queue (Continued)

ν ′squeue

ν ′lock ν ′queue

Msqueue

inline
=⇒=⇒=⇒

ν ′squeue

ν ′lock

M ′
squeue

refine
⊑⊑⊑

ν ′squeue

νlock

M ′
squeue

11 / 45



Vertical Composition

ν ′lock

ν ′fai ν ′counter ν ′yield

Mlock ∧∧∧

ν ′squeue

ν ′lock ν ′queue

Msqueue =⇒=⇒=⇒

ν ′fai ν ′counter ν ′yield ν ′queue

ν ′squeue

Mlock +Msqueue

Inlining ? Syntactic Linking?
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Compositionality

Linearizability Refinement
− ⊆ −

Locality (Vertical) Composition
−⊗− −;−

13 / 45
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Our Methodology

1. Base Model of Computation
(A semicategory enriched with a notion of refinement)

2. Choose identity programs
(Usually obvious)

3. Compute a Compositional Model out of (1) and (2)
(The Karoubi Envelope)

4. Abstract Linearizability ⇐⇒ Concrete Linearizability

5. One Extra Axiom =⇒ Refinement Property

6. Tensor Product + One Extra Axiom =⇒ Locality

15 / 45



Game Semantics

Types correspond to Games A,B,C

Programs correspond to strategies σ : A⊸ B of the game A⊸ B

Object specifications correspond to strategies ν : 1⊸ A

16 / 45



Sequentially Consistent Computation

▶ We start by defining a sequential model of computation.

▶ A set of agent names α ∈ Υ.

▶ A concurrent game AAA is specified by the sequential game A that all agents play.

▶ A move looks like ααα:::m where α ∈ Υ and m is a move of A.

▶ The set of plays of AAA is the set of sequentially consistent interleavings of plays from A.
Example:

Counter = {get : N, inc : ok}

α0α0α0:::inc α1α1α1:::get α0α0α0:::ok α0α0α0:::get α1α1α1:::n α2α2α2:::get

17 / 45



Vertical Composition

There is a composition operation defined per usual by

”Parallel composition + Hiding”

Denoted by

σ : AAA⊸ BBB τ : BBB ⊸ CCC 7−−−−−−−→ σ; τ : AAA⊸ CCC

Which is associative ... but there is no identity element!

∀σ : AAA⊸ BBB.idAAA;σ; idBBB = σ

σ

τ

In other words, concurrent games with concurrent strategies assembles into a semicategory

GameConc

18 / 45



Refinement

Our model is enriched over a notion of refinement ⊆ (behavior containment)

σ

τ ⊆⊆⊆

⊆⊆⊆

∧∧∧

σ′

τ ′

=⇒=⇒=⇒
σ

τ

⊆⊆⊆

σ′

τ ′

19 / 45



Sequential Copycat

Import Q:Queue

enq (n : N) {

r <- Q.enq(n);

ret r

}

deq () {

r <- Q.deq();

ret r

}

The copycat strategy copyA : A⊸ A behaves as the sequential identity

20 / 45



Concurrent Strategies

ccopyAAA := ∥α∈ΥcopyA

Import Q:Queue

enq (n : N) {

r <- Q.enq(n);

ret r

}

deq () {

r <- Q.deq();

ret r

}

. . .

Import Q:Queue

enq (n : N) {

r <- Q.enq(n);

ret r

}

deq () {

r <- Q.deq();

ret r

}

Composition can lead to emergent behavior.

σ ⊆ σ; ccopyBBB
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The Karoubi Envelope

proposition

For all concurrent game AAA the strategy ccopyAAA : AAA⊸ AAA is
idempotent, i.e.

ccopyAAA; ccopyAAA = ccopyAAA

Call a strategy σ : AAA⊸ BBB saturated when

ccopyAAA;σ; ccopyBBB = σ

Composition of saturated strategies is associative and has as identity
ccopy−.

ccopyAAA

ccopyAAA

=== ccopyAAA

ccopyBBB

σ

ccopyAAA

=== σ

Call the resulting category of concurrent games and saturated strategies

GameConc
22 / 45



Two Models of Concurrent Computation

GameConc GameConc

Good for specification Good for composition

We can convert between models:

σ : AAA⊸ BBB ∈ GameConc
KConc−7−−−−−−−−−−−→ ccopyAAA;σ; ccopyBBB ∈ GameConc

ccopyAAA

σ

ccopyBBB

7−−−−−−−−−−−−−−−−−−−−−−−−−−−−→σ

23 / 45
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Abstract Linearizability

definition (abstract
linearizability)

We say
ν ′AAA : AAA ∈ GameConc

linearizes to

νAAA : AAA ∈ GameConc

when
ν ′AAA ⊆ KConc νAAA

definition

A linearizable object consists of a pair

(ν ′AAA : AAA ∈ GameConc, νAAA : AAA ∈ GameConc)

such that
ν ′AAA ⊆ KConc νAAA

ν ′AAA ⊆⊆⊆ νAAA

ccopyAAA

ν ′AAA is the implementation and νAAA the specification 25 / 45



Rewrites

proposition (ghica and murawski, 2004)

σ : AAA is saturated if and only if ∀t ∈ σ.∀s ∈ PAAA.s ⇝AAA t =⇒ s ∈ σ

If t ∈ σ and s is ”more concurrent” than t then s is also in σ

26 / 45



Linearizability

definition

s ∈ PAAA is linearizable to t ∈ PAAA when there exists a sequence sO of Opponent moves and
a sequence sP of Proponent moves such that

s · sP ⇝AAA t · sO

▶ t need not be atomic (coincides with Herlihy-Wing when it is);

▶ sP = returns;

▶ sO = removed pending invocations (not all need be removed);

▶ ⇝AAA = happens-before order preservation.

27 / 45



Abstract Linearizability

proposition

Let τ : AAA ∈ GameConc then

KConc τ = {s ∈ PAAA | ∃t ∈ τ.s linearizes to t}

definition (abstract linearizability)

We say σ : AAA ∈ GameConc linearizes to τ : AAA ∈ GameConc when

σ ⊆ KConc τ

28 / 45
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Interaction Refinement

νAAA

ccopyAAA

⊆⊆⊆ν ′AAA
⇐⇒⇐⇒⇐⇒ ∀∀∀BBB .∀∀∀σ : AAA⊸ BBB .

∈ GameConc
ν ′AAA

σ

⊆⊆⊆
νAAA

σ

30 / 45



Interaction Refinement: Proof (Forward)

νAAA

ccopyAAA

=⇒=⇒=⇒⊆⊆⊆ν ′AAA ν ′AAA

σ

⊆⊆⊆
νAAA

ccopyAAA

σ

===

νAAA

σ

31 / 45



Interaction Refinement: Proof (Backward)

∀∀∀BBB .∀∀∀σ : AAA⊸ BBB .

ν ′AAA

σ

⊆⊆⊆
νAAA

σ

=⇒=⇒=⇒
⊆⊆⊆

νAAA

ccopyAAA

=== ν ′AAA

ccopyAAA

ν ′AAA

32 / 45



Horizontal Composition

We define a tensor product of strategies:

σ : AAA , τ : BBB 7−−−−−−−→ σ ⊗ τ : AAA⊗BBB

where
σ ⊗ τ = all sequentially consistent interleavings of plays of σ and τ

⊗⊗⊗σ τ

This makes GameConc into a symmetric monoidal category.
(−⊗− has a unit 1, is associative and commutative, bifunctor, ...)

33 / 45



Horizontal Composition: Functorial

⊗⊗⊗
σ0 :

A0A0A0

⊸

A1A1A1
τ0 :

B0B0B0

⊸

B1B1B1

σ1 :

A1A1A1
⊸

A2A2A2
τ1 :

B1B1B1

⊸

B2B2B2

===

⊗⊗⊗

⊗⊗⊗

σ0 :

A0A0A0

⊸

A1A1A1
τ0 :

B0B0B0

⊸

B1B1B1

σ1 :

A1A1A1

⊸

A2A2A2
τ1 :

B1B1B1

⊸

B2B2B2

⊗⊗⊗ccopyAAA ccopyBBB === ccopyAAA⊗BBB

34 / 45



Horizontal Composition: Monotonicity

⊆⊆ ⊆
σ1 : AAA τ1 : BBB

⊆⊆ ⊆∧∧∧

σ0 : AAA τ0 : BBB

=⇒=⇒=⇒

⊗⊗⊗σ1 : AAA τ1 : BBB

⊆⊆ ⊆

⊗⊗⊗σ0 : AAA τ0 : BBB

35 / 45



Horizontal Composition: Order-Isomorphism

⊆⊆ ⊆
σ1 : AAA τ1 : BBB

⊆⊆ ⊆∧∧∧

σ0 : AAA τ0 : BBB

⇐⇒⇐⇒⇐⇒

⊗⊗⊗σ1 : AAA τ1 : BBB

⊆⊆ ⊆

⊗⊗⊗σ0 : AAA τ0 : BBB

36 / 45



Locality

theorem

⊆⊆ ⊆

νAAA

ccopyAAA

νBBB

ccopyBBB

⊆⊆ ⊆∧∧∧

ν ′AAA ν ′BBB

⇐⇒⇐⇒⇐⇒
⊗⊗⊗νAAA νBBB

ccopyAAA⊗BBB

⊆⊆ ⊆

⊗⊗⊗ν ′AAA ν ′BBB

37 / 45



Locality: Proof

⊗⊗⊗νAAA νBBB

ccopyAAA⊗BBB

===
⊗⊗⊗νAAA νBBB

⊗⊗⊗ccopyAAA ccopyBBB

(Functoriality)

=== ⊗⊗⊗
νAAA νBBB

ccopyAAA ccopyBBB

(Functoriality)

38 / 45



Locality: Proof

theorem

⊆⊆ ⊆

νAAA

ccopyAAA

νBBB

ccopyBBB

⊆⊆ ⊆∧∧∧

ν ′AAA ν ′BBB

⇐⇒⇐⇒⇐⇒

⊗⊗⊗
νAAA νBBB

ccopyAAA ccopyBBB

⊆⊆ ⊆

⊗⊗⊗ν ′AAA ν ′BBB

Holds by the order-isomorphism
39 / 45



Locality Proof [Herlihy and Wing, 1990]
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Implementing a Shared Queue

ν ′squeue

ν ′lock ν ′queue

Msqueue

refine
⊑⊑⊑

ν ′squeue

νlock ν ′queue

M ′
squeue

ν ′lock

ν ′fai ν ′counter ν ′yield

Mlock

refine
⊑⊑⊑

ν ′lock

νfai νcounter νyield

Mlock

42 / 45



Program Logic

▶ We define a program logic for showing individual programs implement linearizable
objects.

▶ Sound for our notion of linearizability (and in particular for, interval-linearizability).

▶ Directly connects with our compositional theory.

proposition (soundness)

If R[A],G[A] |=A {P[A]} M[A] {Q[A]} and (ν ′E : †EEE , νE : †EEE ) is a linearizable concurrent
object then

ν ′E ; JM[A]K ∩ ν ′F ⊆ KConc νF

43 / 45



Composing Verified Components

ν ′lock

ν ′fai ν ′counter ν ′yield

Mlock ∧∧∧

ν ′squeue

ν ′lock ν ′queue

Msqueue =⇒=⇒=⇒

ν ′fai ⊗⊗⊗ ν ′counter⊗⊗⊗ ν ′yield

Mlock

ν ′lock

⊗⊗⊗
ν ′queue

ccopy

ν ′queue

Msqueue

ν ′squeue

44 / 45



Conclusion

Conclusion
▶ New foundations for linearizability and its properties.
▶ A compositional theory for linearizability.
▶ Promising applications for compositional verification.

Check our paper and TR for more:
▶ The concurrent game semantics model
▶ The category-theoretic axiomatization
▶ Thorough comparison with previous work
▶ The example we described in this talk
▶ Full program logic description
▶ More...

Thank you!
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