
38

A Compositional Theory of Linearizability
ARTHUR OLIVEIRA VALE, Yale University, USA
ZHONG SHAO, Yale University, USA
YIXUAN CHEN, Yale University, USA

Compositionality is at the core of programming languages research and has become an important goal toward

scalable verification of large systems. Despite that, there is no compositional account of linearizability, the
gold standard of correctness for concurrent objects.

In this paper, we develop a compositional semantics for linearizable concurrent objects. We start by

showcasing a common issue, which is independent of linearizability, in the construction of compositional

models of concurrent computation: interaction with the neutral element for composition can lead to emergent

behaviors, a hindrance to compositionality. Category theory provides a solution for the issue in the form of

the Karoubi envelope. Surprisingly, and this is the main discovery of our work, this abstract construction is

deeply related to linearizability and leads to a novel formulation of it. Notably, this new formulation neither

relies on atomicity nor directly upon happens-before ordering and is only possible because of compositionality,

revealing that linearizability and compositionality are intrinsically related to each other.

We use this new, and compositional, understanding of linearizability to revisit much of the theory of

linearizability, providing novel, simple, algebraic proofs of the locality property and of an analogue of the

equivalence with observational refinement. We show our techniques can be used in practice by connecting our

semantics with a simple program logic that is nonetheless sound concerning this generalized linearizability.

CCS Concepts: • Theory of computation → Parallel computing models; Denotational semantics;
Categorical semantics;Programverification;Program specifications; • Software and its engineering
→ Correctness.

Additional Key Words and Phrases: linearizability, game semantics, concurrency, program logic

ACM Reference Format:
Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen. 2023. A Compositional Theory of Linearizability. Proc.
ACM Program. Lang. 7, POPL, Article 38 (January 2023), 32 pages. https://doi.org/10.1145/3571231

1 INTRODUCTION
Linearizability is a notion of correctness for concurrent objects introduced in the 90s by Herlihy

and Wing [1990]. Since then, it has become the gold standard for correctness of concurrent objects:

it is taught in university courses, known by programmers in industry, and commonly used in

academia. Its success can be justified by a myriad of factors: it is a safety property in a variety

of settings [Guerraoui and Ruppert 2014]; it appears to capture a large class of useful concurrent

objects; it allows for linearizable concurrent objects to be horizontally composed together while

preserving linearizability, what Herlihy and Wing [1990] call locality; it aids in the derivation of

other safety properties [Herlihy and Wing 1990]; it is intuitive: a linearizable concurrent object

essentially behaves as if their operations happened atomically under any concurrent execution, a

Authors’ addresses: Arthur Oliveira Vale, Yale University, New Haven, CT, USA, arthur.oliveiravale@yale.edu; Zhong

Shao, Yale University, New Haven, CT, USA, zhong.shao@yale.edu; Yixuan Chen, Yale University, New Haven, CT, USA,

yixuan.chen@yale.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART38

https://doi.org/10.1145/3571231

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

HTTPS://ORCID.ORG/0000-0003-1091-7560
HTTPS://ORCID.ORG/0000-0001-8184-7649
HTTPS://ORCID.ORG/0000-0001-8659-8493
https://doi.org/10.1145/3571231
https://orcid.org/0000-0003-1091-7560
https://orcid.org/0000-0001-8184-7649
https://orcid.org/0000-0001-8184-7649
https://orcid.org/0000-0001-8659-8493
https://doi.org/10.1145/3571231

38:2 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

property that has been formalized by the notion of linearization point by Herlihy and Wing [1990],

and by an observational refinement property by Filipovic et al. [2010].

1.1 The State of the Theory of Linearizability
Linearizability is commonly used to define correctness of concurrent objects and to aid in verification

of concurrent code. We believe that the current theory of linearizability suffers from a few biases.

Atomicity: Because the classic definition of linearizability is based on linearizing to an atomic

specification, most of the subsequent work on it has focused on atomicity. Even though Filipovic

et al. [2010] have noticed that the insight of linearizability lies not in atomicity, but rather in

preservation of happens-before order, most of the subsequent work still focuses on atomicity. This

is true even though many useful concurrent objects do not linearize, leading to numerous variations

on the theme [Castañeda et al. 2015; Goubault et al. 2018; Haas et al. 2016; Neiger 1994].

Compositionality: The typical approach to assembling verified concurrent objects into a larger

system relies on a refinement property in the style of Filipovic et al. [2010]. Usually, there is a syntacti-

cally defined programming language for expressing concurrent code and often specifications as well.

The code is verified by linking a library L′B with an implementation N = N1 ∥ . . . ∥ Nk , specified in

the programming language, to form a syntactic term Link L′B ;N . A trace semantics ⟦−⟧ allows one

N

L′B

M

L′A

to obtain the traces for the resulting interface ⟦Link L′B ;N⟧, and an observational

refinement property allows to consider instead a linearized library LB linked with

N to reason about the linearizability of the library that N implements. Now, suppose

one is given an implementation M relying on a library L′A, that is Link L′A;M , to

implement L′B . There is no obvious way to composeM and N so to re-use their proofs

of linearizability to obtain a linearizable object Link L′A; (N ◦M). At best, one has
to either syntactically link them together, and re-do the proofs, or inlineM in N and

re-verify the code obtained through this process.

Syntax: As outlined in Compositionality, there is also a bias towards syntax, even

in Filipovic et al. [2010], one of the foundational papers on linearizability. This becomes an issue

when different components are modeled by different computational models but need to be connected

nonetheless (such as when one wants to model both hardware and software components, or when

components are written in different programming languages). This situation occurs in real systems.

For instance, Gu et al. [2015, 2016, 2018]’s verified OS contains components in both C and Asm.

The way they manage to make the two interact is by only composing components after compiling

C code into Asm using CompCert [Leroy 2009], a solution which is yet again reliant on syntactic

linking. Less optimistically, there would be no compiler to aid with this. In this context, an entire

metatheory for the interaction between the two languages would need to be developed, together

with a theory of observational refinement across programming languages. In a large heterogeneous

system this becomes unwieldy, as there could be several computational models involved. Meanwhile,

a compositional abstract model could embed each heterogeneous component and reason about

them at a more coarse-grained level.

Theory: Overall, the theory of linearizability is rather underdeveloped. There are essentially two
characterizations: the original happens-before order one from Herlihy and Wing [1990], and the

observational refinement one from Filipovic et al. [2010]. Guerraoui and Ruppert [2014] addressed

the folklore that linearizability is a safety property, while Goubault et al. [2018] gave a novel

formulation of linearizability in terms of local rewrite rules and showed that linearizability may be

seen as an approximation operation by proving a certain Galois connection. Otherwise, there isn’t

a clean theory that addresses the semantic and computational content of linearizability, providing

foundations for properties such as locality and observational refinement. As a side-effect of this,

the proofs of these properties are rather complicated. A more general and abstract theory of

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:3

linearizability could not only simplify these issues, but also be more easily adapted to novel settings

where there is no obvious happens-before ordering.

Verification: These issues are even more relevant in formal verification, especially when tar-

geting large heterogeneous systems. A recent line of work [Koenig and Shao 2020; Oliveira Vale

et al. 2022] maintains that compositional semantics is essential for the scalable verification of such

systems. The idea is that individual components are verified in domain specific semantic models

targeting fine-grained aspects of computation, and appropriate for the verification task. This is

necessary as semantic models for verification are tailored to make the verification task tractable. But

then, these components are embedded into a general compositional model, shifting the granularity

of computation to the coarse-grained behavior of components. This general model acts as the com-

positional glue connecting the system together. As linearizability is the main correctness criterion

for concurrent objects, a compositional model of linearizable objects is necessary to provide that

glue for large, heterogeneous, potentially distributed, concurrent systems.

1.2 Summary and Main Contributions
• In this paper, we develop a compositional model of linearizable concurrent objects. We first

construct a concurrent game semantics model (§3). For the sake of clarity, we strive for the

simplest game model expressive enough to discuss linearizability: a bare-bones sequential

game model interleaved to form a sequentially consistent model of concurrent computation.

• As with other models of concurrent computation, the model in §3 fails to have a neutral
(or identity) element for composition. We remedy this in §4 by using a category-theoretical

construction called the Karoubi envelope. We argue that this construction comes with two

transformations KConc− and EmbConc− converting between the models from §3 and §4.

• Surprisingly, the process of constructing the model in §4 reveals that linearizability is at

the heart of compositionality, and in particular we do not need to define linearizability: it

emerges out of the abstract construction of a concurrent model of computation, as we discuss

in §5. We show this by giving a generalized definition of linearizability and then by showing

its tight connection to KConc−, leading to a novel abstract definition of linearizability.

• We then give a computational interpretation of linearizability in §5.3 by showing that proofs

of linearizability correspond to traces of a certain program ccopy.
• Simultaneously, these new foundations reveal that compositionality is also at the heart of

linearizability. In §5.4 we give an analogue of the usual contextual refinement result around

linearizability which admits an extremely simple proof because of our formalism.

• In §5.5 we revisit Herlihy-Wing’s locality result and provide a novel proof of locality based

on our computational interpretation and abstract formulation of linearizability, leading to a

more structured and algebraic proof of a generalized locality property.

• In §6 we revisit our construction from the point of view of category theory, showing that it

can be generalized to other settings with similar structure.

• In §7 we showcase that our model is practical by connecting our semantics with a concrete

program logic, and showing how the theory can be used to compose concurrent objects and

their implementations together to build larger objects.

We cover some background, motivation, and main results informally in §2. A sequence of appen-

dices, available in a technical report [Oliveira Vale et al. 2022], provides a novel characterization of

atomicity, an object-based semantics of linearizable concurrent objects and their implementations,

and a more detailed account of our program logic. There, we use this characterization of atomic-

ity to show how our constructions specialize to the corresponding results surrounding classical

linearizability and how they compare with interval-sequential linearizability.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:4 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

2 BACKGROUND AND OVERVIEW
2.1 Background
2.1.1 Game Semantics. Since Herlihy and Wing [1990] was published, many techniques have

been developed by the programming languages and the distributed systems communities to model

concurrent computation. One technique that has risen to prominence, mostly due to its success in

proving full abstraction results for a variety of programming languages, is game semantics [Abram-

sky et al. 2000; Blass 1992; Hyland and Ong 2000]. Its essence lies in adding more structure to traces,

which are called plays in the paradigm. These plays describe well-formed interactions between

two parties, historically called Proponent (P) and Opponent (O). A game A (or B) provides the rules
of the game by describing which plays are valid; types are interpreted as games. As one typically

takes the point of view of the Proponent, and models the environment as Opponent, programs of

type A ⊸ B (a linear program that produces a play from B by interacting with A) are interpreted
as strategies σ : A ⊸ B for the Proponent to “play” this game against the Opponent. A strategy is

essentially a description of how the Proponent reacts to any move by the Opponent in any context

that may arise in their interaction. The standard way of composing strategies informally goes

by the motto of “interaction + hiding”: given strategies σ : A ⊸ B and τ : B ⊸ C the strategy

σ ;τ : A ⊸ C is constructed by letting σ and τ interact through their common game B, obtaining
a well-formed interaction across A,B and C , and then hiding the interaction in B to obtain an

interaction that appears to happen only in A and C .

2.1.2 A Surprising Coincidence. Ghica and Murawski [2004] constructed a concurrent game seman-

tics to give a fully abstract model of Idealized Concurrent Algol (ICA). In attempting to construct

their model of ICA, they faced a problem: the naive definition of concurrent strategy does not

construct a category for lack of an identity strategy. In other words, there is no strategy idA : A ⊸ A
such that σ ; idA = σ holds for any strategy σ : A, a basic property of a compositional model. Their

solution was to consider strategies that are “saturated” under a certain rewrite system.

Interestingly, the same rewrite system appears in Goubault et al. [2018]’s work on linearizability.

There, they gave an alternative definition of linearizability based on a certain string rewrite system

over traces. The key rule of this rewrite system is:

h · ααα:::m α ′α ′α ′:::m′ · h′⇝ h · α ′α ′α ′:::m′ ααα:::m · h′

if and only if α , α ′ andm is an invocation orm′ is a return. That is, two events ααα:::m and α ′α ′α ′:::m′ in
a trace h · ααα:::m α ′α ′α ′:::m′ · h′ may be swapped when they are events by different threads, α and α ′, and
the swap makes an invocation occur later or a return occur earlier. These swaps precisely encode

happens-before order preservation.

Surprisingly, this rewrite relation is an instance of that appearing in Ghica and Murawski [2004].

The coincidence is unexpected, Ghica and Murawski [2004] are simply attempting to construct

a compositional model of concurrent computation, without regard for linearizability. They make

their model compositional by considering only strategies saturated under a rewrite relation which

happens to encode preservation of happens-before order. So why should this rewrite system appear

as a result of obtaining an identity for strategy composition?

2.2 An Example on Compositionality
Compositionality is not only important for providing semantics to programming languages, but

also for the sake of scalability in formal verification. We now provide a few examples of how

compositionality helps profitably organize a verification effort.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:5

2.2.1 Coarse-Grained Locking. We model an object Lock with acq and rel operations which take

no arguments and return the value ok. We can encapsulate this information as the signature:

Lock := {acq : 1, rel : 1}

where 1 = {ok}. We denote by †Lock the type of traces using operations of Lock and by P†Lock the
set of those traces. An example of a concurrent trace in P†Lock is

α1α1α1:::acq α2α2α2:::acq α2α2α2:::ok α3α3α3:::acq α2α2α2:::acq α3α3α3:::ok α2α2α2:::ok

this trace linearizes to the following atomic trace, also in P†Lock, called atomic because every

invocation immediately receives its response

α2α2α2:::acq α2α2α2:::ok α2α2α2:::acq α2α2α2:::ok α3α3α3:::acq α3α3α3:::ok

As usual, concurrent objects are specified by sets of traces. In this way, a concurrent lock object is

specified as a prefix-closed set of traces ν ′
lock
⊆ P†Lock. To be correct this specification ν ′

lock
should

linearize to the atomic specification νlock ⊆ P†Lock given by the set of traces s ∈ P†Lock such that:

if s = s1 · α1α1α1:::m1 · α2α2α2:::m2 · α3α3α3:::m3 · α4α4α4:::m4 · s2 then

• Ifm1 = acq then α1 = α2 = α3 = α4 andm2 =m4 = ok andm3 = rel;
• Ifm1 = rel then α1 = α2, α3 = α4,m3 = acq andm2 =m4 = ok;

and moreover, if s is non-empty, then its first invocation is acq. We take the convention that a

primed specification is more concurrent than its un-primed counterpart.

A typical application of a lock is synchronizing accesses to a resource shared by several asyn-

chronous computational agents. For instance, suppose we have a sequential queue with signature:

Queue := {enq : N→ 1, deq : N + {�}}

Its concurrent specification ν ′
queue

can be specified as the largest set of traces s ∈ P†Queue such that

if s = p · ααα:::deq · ααα:::k · s ′ and p is atomic then either qstate(p) = k :: q′ or qstate(p) = [] and k = �,
where qstate is an inductively defined function taking an atomic trace p and returning the state

qstate(p) of the queue after executing the trace p from the empty queue []. Note that as soon as any

non-atomic interleaving happens in a trace of ν ′
queue

the behaviors of enq and deq are unspecified

and therefore completely non-deterministic. This reflects the assumption that this Queue object is
a sequential implementation that is not resilient to concurrent execution.

Such aQueue object can be shared across several agents by locking around all the operations

of Queue, as demonstrated in the following implementation Msqueue : Lock ⊗Queue ⊸ Queue
implementing a shared queue using a lock and a sequential queue implementation (see Fig. 1). Note

that when several independent objects must be used together, we use the linear logic tensor product

− ⊗ − to compose them horizontally into a new object, such as in the source type ofMsqueue.

The queue object ν ′
squeue

implemented byMsqueue is linearizable to the usual atomic specification

νsqueue of aQueue. But observe that ν ′
queue

is not linearizable to νsqueue. This means that the com-

position of ν ′
lock

and ν ′
queue

into an object of type Lock ⊗Queue specified as ν ′
lock
⊗ ν ′

queue
(the set

of all sequentially consistent interleavings of ν ′
lock

and ν ′
queue

) is also not linearizable to an atomic

specification. This is enough for approaches which are over-reliant on atomicity to be unable to

handle this situation cleanly. A solution there is to remove the dependence on the non-linearizable

queue by inlining its implementation in terms of programming language primitives. This solution is

unfortunate, as intuitively whatMsqueue does is turn a non-linearizable queue into a linearizable one.

Inlining its implementation removes the connection between the sequential implementation and

the code implementing this sharing pattern. Instead, what one would like to do is to be able to use

off-the-shelf sequential components freely, just like in the code in Fig. 1. Meanwhile, by divorcing

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:6 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

Msqueue:

Import Q:Queue
Import L:Lock

enq(k) { deq() {

L.acq(); L.acq();

r <- Q.enq(k); r <- Q.deq();

L.rel(); L.rel();

ret r ret r

} }

Mlock:

Import F:FAI
Import C:Counter
Import Y:Yield

acq() { rel() {

my_tick <- F.fai(); C.inc();

while (cur_tick , my_tick) { ret ok

Y.yield (); }

cur_tick <- C:get()

}

ret ok

}

Fig. 1. SharedQueue implementation (left), and Lock implementation (right)

linearizability from atomicity, we will still have that ν ′
lock
⊗ ν ′

queue
is linearizable to νlock ⊗ ν

′
queue

according to a generalized notion of linearizability. We connect our model with a program logic to

show that the code in Fig. 1 does implement a linearizable Queue object correctly.

2.2.2 Implementing a Lock. A typical implementation for Lock is the ticket lock implementation

(see Fig. 1), relying on a sequential counter and a fetch-and-increment object with signatures

Counter := {inc : ok, get : N} FAI := {fai : N}

The FAI object comprises a single operation fai which both returns the current value of the fetch-

and-increment object and increments it. It is well known that the concurrent ν ′
fai

object specification

is linearizable to an atomic one νfai.
The Counter object ν ′

counter
has a subtler specification. It models a semi-racy sequential counter

implementation similarly to the queue from §2.2.1. But different from the racy queue, the counter

must be slightly more defined, as the lock implementation requires that the sequential implementa-

tion be resilient to concurrent get calls, and with respect to concurrent get and inc calls. However,
if inc calls happen concurrently, the behavior is undefined. This is not an issue for the lock imple-

mentation because it never happens in a valid execution of a lock. We model this by assuming that

the concurrent specification of the Counter, ν ′
counter

, is linearizable (in our generalized sense) with

respect to a less concurrent one, νcounter, given by the largest set of traces s ∈ P†Counter satisfying:

If s = p · ααα:::get ·m · s ′ thenm = ααα:::k and if moreover p↾{inc:ok} is atomic and even-length then k = #inc(p),

where #inc(−) is an inductively defined function returning the number #inc(p) of inc calls in p.
Note that we do not bother defining what ν ′

counter
actually is, as our proofs, using a refinement

property à la Filipovic et al. [2010], will only rely on the linearized strategy νcounter.
Occasionally, one implements the ticket lock so that it yields while spinning so to let other agents

get access to the underlying computational resource (such as processor time). For some purposes,

this is crucial to obtain better liveness properties. For this, we define a signature

Yield := {yield : 1}

with concurrent specification ν ′
yield

given by

ν ′
yield

:= {s ∈ P†Yield | s = s1 · ααα:::yield · s2 · ααα:::ok · s3 ⇒ there is a pending yield in s1 · s2}

that is to say, a call by α to yield is only allowed to return if another agent calls yield concurrently

with α . A typical trace of ν ′
yield

looks like:

α1α1α1:::yield α2α2α2:::yield α2α2α2:::ok α3α3α3:::yield α1α1α1:::ok α2α2α2:::yield α3α3α3:::ok

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:7

Now, observe that by definition, ν ′
yield

contains no atomic traces, as yield only returns if another

yield happens concurrently with it. That means that no atomic linearized specification for ν ′
yield

will

be faithful to its actual behaviors. Despite that, its traces can always be simplified, while preserving

happens-before-order, so that between a yield invocation and its return ok the only events that

appear are the ok for the agent who took over the computational resource and the yield call for the

agent who yielded, like so:

α2α2α2:::yield α1α1α1:::yield α2α2α2:::ok α3α3α3:::yield α1α1α1:::ok α2α2α2:::yield α3α3α3:::ok

That is to say, Yield is linearizable (in our sense) to a non-atomic specification, and we can still

use our observational refinement property to simplify the reasoning on the side of the client of

Yield. With the Yield object at hand, we verify that the implementation in Fig. 1 for the ticket lock

is linearizable using a program logic. OnceMlock andMsqueue are individually verified, we can use

a vertical composition operation −;− to compose them into a program implementing the shared

Queue directly on top of FAI, Counter and Yield while preserving the fact that this composed

implementation implements a linearizable Queue object. We depict this example in Fig. 2.

ν ′
fai

⊗ ν ′
counter

⊗ ν ′
yield

Mlock

ν ′
lock

νfai ⊗ νcounter ⊗ νyield

Mlock

ν ′
lock

l in .
=====⇒
proof

νlock
⊑

ν ′
lock

⊗ ν ′
queue

Msqueue

ν ′
squeue

νlock ⊗ ν ′
queue

Msqueue

ν ′
squeue

==⇒ νsqueue

⊑

ν ′
fai

⊗ ν ′
counter

⊗ ν ′
yield

Mlock

ν ′
lock

⊗

ν ′
queue

ccopy

ν ′
queue

Msqueue

ν ′
squeue

==⇒ νsqueue

Fig. 2. In our compositional model, off-the-shelf components can be composed horizontally by using the linear
logic tensor product − ⊗ −. Each component’s implementation is verified against its linearized specification
individually (left). Refinement and generalized linearizability allow to use the simpler specifications νfai, and
νyield to prove that ν ′lock, implemented byMlock is linearizable to νlock. By assuming ν ′counter linearizable to the
specification νcounter, it is unnecessary to know the actual concurrent behavior of the racy counter. Vertical
composition (right) allows one to compose the two implementations together to obtain a fully concurrent
description of the composed system while maintaining that after the composition ν ′squeue is still linearizable
to νsqueue. We use ccopy to denote the neutral (or identity) element for composition, discussed in §3.2.

2.3 Overview
Our work will address the question raised at §2.1.2 by showing that linearizability is already baked

in a compositional model of computation. Crucially, our goal is to show that a model of concurrent

computation with enough structure naturally gives rise to its own notion of linearizability, and

that linearizability is intrinsically connected to the compositional structure of the model.

For this, we define a model of sequentially consistent, potentially blocking, concurrent com-

putation GameConc, inspired by Ghica and Murawski [2004]. Similarly to their model, this model

fails to have a neutral element for composition −;−. An abstract construction called the Karoubi

envelope allows us to construct from GameConc a compositional model GameConc which does have

neutral elements. This new model GameConc differs from GameConc in that its strategies σ of type

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:8 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

A ⊸ B are strategies of GameConc that moreover are invariant upon composition with a certain

strategy called ccopy−. This strategy corresponds to the traces of a program where each agent in

the concurrent system runs the code in Fig. 3 in parallel, which implements f by importing an

implementation of f itself, or alternatively to an η-redex λx . f x .

Import F

f(a) {

r <- F.f(a);

ret r

}

. . .

Import F

f(a) {

r <- F.f(a);

ret r

}

...
...

GameConc GameConc

KConc

EmbConc

Fig. 3. Code corresponding to ccopy− (left); Diagram depicting the operations KConc and EmbConc (right)

This construction comes with some infrastructure: a saturation operation KConc and a forgetful

operation EmbConc, depicted in Fig. 3. Importantly, KConc σ is defined to be ccopyA;σ ; ccopyB while

EmbConc σ is by definition just σ itself. The central but simple result of this paper is that

Proposition 2.1 (Abstract Linearizability). A strategy σ : A ∈ GameConc is linearizable to a
strategy τ : A ∈ GameConc if and only if

σ ⊆ KConc τ

By linearizability we mean a generalized, but concrete, definition of linearizability which nonethe-

less faithfully generalizes Herlihy-Wing linearizability when τ is an atomic strategy. It is important

to emphasize that because KConc arises from the Karoubi envelope construction, not only it does

not involve happens-before ordering, but also it immediately suggests an abstract definition of

linearizability which could be sensible anywhere this abstract construction is used.

We give yet another characterization of linearizability by showing that the strategy ccopy−,
corresponds to proofs of linearizability, giving a computational interpretation to proofs of lineariz-

ability (where s↾A denotes the projection of the trace s to events of A). We call this a computational
interpretation because ccopy− is the denotation of the concrete program in Fig. 3.

Proposition 2.2 (Computational Interpretation). s1 linearizes to s0, both plays of type A, if
and only if there exists a play s ∈ ccopyA such that

s↾A0
= s0 s↾A1

= s1

Then, we show a property analogous to the usual contextual refinement property, admitting a

very simple proof due to the abstract formalism we develop.

Proposition 2.3 (Interaction Refinement). ν ′A : A ∈ GameConc is linearizable to νA : A ∈
GameConc if and only if for all concurrent games B and σ : A ⊸ B it holds that

ν ′A;σ ⊆ νA;σ

After that, we define a tensor product A ⊗ B amounting to all the sequentially consistent

interleavings of traces of type A with traces of type B. We then use the insight given by the

computational interpretation of linearizability proofs and show that for any A and B:

ccopyA⊗B = ccopyA ⊗ ccopyB

This equation can be interpreted to say that proofs of linearizability for objects of type A ⊗ B
correspond to a pair of a proof of linearizability for the A part and a separate proof of linearizability

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:9

for the B part. We use this insight to give a more general account of the locality property originally

appearing in Herlihy and Wing [1990], obtaining as a corollary the following locality property:

Proposition 2.4 (Locality). Let ν ′A : A, ν ′B : B and νA : A, νB : B. Then
ν ′ = ν ′A ⊗ ν

′
B is linearizable w.r.t. ν = νA ⊗ νB

if and only if
ν ′A is linearizable w.r.t. νA and ν ′B is linearizable w.r.t. νB

Perhaps more important than the property itself is the methodology we use to establish it. Rather

than the usual argument using partial orders, originally from Herlihy and Wing [1990] and also

appearing in a setting closer to ours in Castañeda et al. [2015], we give an algebraic proof relying

on the abstract definition of linearizability from Prop. 2.1.

At this point we will have all the ingredients to compose concurrent objects into larger systems,

such as in the example in Fig. 2. We showcase this by using a program logic to verify individual

components. Vertical composition corresponds to strategy composition −;−. Horizontal composi-

tion is provided by the tensor product − ⊗ − which is well-behaved with respect to linearizability

due to the locality property. As our model is enriched over a simple notion of refinement, we will

also have that these constructions are harmonious with refinement. The interaction refinement

property allows us to leverage the linearized specification of components to ease reasoning.

3 CONCURRENT GAMES
In this section, we define our model of concurrent games, built by interleaving several copies of a

sequential game model. We start by defining a simple model of sequential games GameSeq in §3.1.

Then, we define the interleaved model GameConc in §3.2 and observe that it defines a semicategory.

3.1 Sequential Games
Before we proceed, we briefly define a sequential game model. Similar models appear elsewhere in

the literature. See, for instance Abramsky and McCusker [1999]; Hyland [1997], which we suggest

for the reader who seeks a detailed treatment. Our concurrent model amounts to interleaving

several sequential agents which behave as in the sequential game model we define now.

As we outlined in §2.1.2, types are interpreted as games. In the following definitions Alt(S, S ′) is
the set of sequences of S + S ′ that alternate between S and S ′, ⊑ is the prefix relation, and ⊑even is

the even-length prefix relation.

Definition 3.1. A (sequential) gameA is a pair (MA, PA) of a set of polarizedmovesMA = MO
A +M

P
A

and a non-empty, prefix-closed, set of alternating sequences PA ⊆ Alt(MO
A ,M

P
A) ofMA, called plays,

such that every non-empty play s ∈ PA starts with a move inMO
A .

The moves in MO
A are the Opponent moves, and those in MP

A the Proponent moves. Every

sequential game A defines a labeling map λA : MA → {O, P} by the universal property of the sum.

An example of a game is the unit game Σ in which Opponent is allowed to ask a question q
which Proponent may answer with a response a. In this way, MO

Σ = {q} and MP
Σ = {a}, and Σ

admits exactly the following three plays:

PΣ := { ϵ , q , q −−−−−→ a }

corresponding to the empty play, the play where Opponent has asked q and waits for a response

from the Proponent, and a play where Proponent has replied.

Games can be composed together to form new games. Of particular importance for us will be

the tensor A ⊗ B of two games A and B, and the linear implication A ⊸ B. In the following, we

denote by s↾A the projection of s to its largest subsequence containing only moves of the game A.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:10 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

Definition 3.2. Let A and B be (sequential) games. The tensor product of A and B is the game

A ⊗ B = (MA⊗B, PA⊗B) defined by:

MO
A⊗B := MO

A +M
O
B MP

A⊗B := MP
A +M

P
B PA⊗B := {s ∈ Alt(MO

A⊗B,M
P
A⊗B) | s↾A ∈ PA∧s↾B ∈ PB }

The game A ⊸ B = (MA⊸B, PA⊸B) is defined by:

MO
A⊸B := MP

A+M
O
B MP

A⊸B := MO
A +M

P
B PA⊸B := {s ∈ Alt(MO

A⊸B,M
P
A⊸B) | s↾A ∈ PA∧s↾B ∈ PB }

The plays of A ⊗ B are essentially plays of A and B interleaved in a sequential play, so that A ⊗ B
corresponds to independent horizontal composition. The game A ⊸ B meanwhile corresponds to

switching the roles of Opponent and Proponent in A and then taking the tensor with B.
As a matter of illustration, the maximal plays (under prefix ordering) for the games Σ0 ⊗ Σ1 (the

two plays on the left) and Σ0 ⊸ Σ1 (the two plays on the right) are depicted below. We denote

by Σ0, Σ1 the two components of these types, both of which are instances of the game Σ. We will

similarly add an index to the moves of each component.

Σ1 q1 a1 q1 a1

Σ0 q0 a0 q0 a0
⊗

Σ1 q1 a1 q1 a1

Σ0 q0 a0
⊸

Observe that in the game Σ ⊗ Σ Opponent can choose to start in either component, while in the

game Σ ⊸ Σ Opponent must start in the target component (Σ1) due to the flip of polarity in the

source component (Σ0). In Σ ⊗ Σ only Opponent may switch components, while in Σ ⊸ Σ only

Proponent may switch components because of alternation (these are typically called the switching

conditions of sequential games).

Continuing along what we outlined in §2.1.2, programs are interpreted as strategies.

Definition 3.3. A (sequential) strategy σ over the game A, denoted σ : A, consists of a non-empty,

prefix-closed and O-receptive set of plays in PA, where O-receptivity is defined as:

If s ∈ σ , Opponent to move at s and s · a ∈ PA, then s · a ∈ σ

A morphism between sequential games A and B will then be defined as a strategy for the game

A ⊸ B. Strategy composition is defined as usual by “interaction + hiding”. Formally,

Definition 3.4. Given games A,B,C we define the set int(A,B,C) of finite sequences of moves

fromMA +MB +MC as follows:

s ∈ int(A,B,C) ⇐⇒ s↾A,B ∈ PA⊸B ∧ s↾B,C ∈ PB⊸C

The interaction int(σ , τ) of two strategies σ : A ⊸ B and τ : B ⊸ C is given by the set

int(σ , τ) := {s ∈ int(A,B,C) | s↾A,B ∈ σ ∧ s↾B,C ∈ τ }

And finally, the composition σ ;τ is defined as:

σ ;τ := {s↾A,C | s ∈ int(σ , τ)}

Proposition 3.5. Strategy composition is well-defined and associative.

The neutral element for strategy composition is the (sequential) copycat strategy.

Definition 3.6. The (sequential) copycat strategy copyA : A ⊸ A is defined as

copyA := {s ∈ PA⊸A | ∀p ⊑even s .p↾A1
= p↾A2

}

Proposition 3.7. The copycat strategy is the neutral element for strategy composition.

We collect these results as the category GameSeq of sequential games defined in the following.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:11

Definition 3.8. The category GameSeq of sequential games and (sequential) strategies is the

category whose objects are sequential gamesA, B,C and whose morphisms are strategies σ : A ⊸ B,
τ : B ⊸ C . Strategy composition is given by σ ;τ : A ⊸ C and the neutral elements for strategy

composition are given by the copycat strategy copyA : A ⊸ A.

A useful example of sequential games to keep in mind are games associated to effect signatures.

Definition 3.9. An effect signature is given by a collection of operations, or effects, E = (ei)i ∈I
together with an assignment ar(−) : E → Set of a set for each operation in E. This is conveniently
described by the following notation:

E = {ei : ar(ei) | i ∈ I }

Cursorily, we can define a game GameSeq(E) associated with an effect signature E as the game

which has as O moves the set of effects e ∈ E and as P moves the set ∪e ∈Ear(e) of arities in E. We

take the freedom of writing E for GameSeq(E). The typical plays of E appear below in the left and

consist of an invocation of an effect e ∈ E followed by a response v ∈ ar(e).

E : e v †E : e1 v1 e2 v2 . . . en vn

We can lift such a game E to a game †E that allows several effects of E to be invoked in sequence.

Its plays, depicted above on the right, consist of sequences of invocations ei ∈ E alternating with

their responses vi ∈ ar(ei). The examples in §2.2 were all specified using effect signatures. It is easy

to observe that †E accurately captures the type of sequential traces of an object with E as interface.

For example, the game corresponding to the Counter signature defined in §2.2 has as maximal

plays the plays depicted below on the left. †Counter allows for several plays ofCounter to be played
in sequence. Note, however, that it merely specifies the shape of the interactions with †Counter.
Two plays of †Counter are displayed on the right.

inc ok

∀n ∈ N. get n

get 3 inc ok get 7 get 2 inc

inc ok get 1 get 1 inc ok

3.2 Concurrent Games
We assume as a parameter a countable set of agent names ϒ. These names will be used to distinguish

different agents playing a concurrent gameAAA. We are now ready to define concurrent games.

Definition 3.10. A concurrent gameAAA = (MA, PA) is defined in terms of an underlying sequential

game A = (MA, PA) in the following way:

• Its set of moves MA is given by the disjoint sum MA :=
∑

α ∈ϒ MA. That is to say, its moves

are of the form ααα:::m ∈ MA for any agent α ∈ ϒ and movem ∈ MA.

• Its set of plays PAAA is the set PAAA := PΦ
A of self-interleaving of plays of the sequential game A.

Formally, denote by s ∥ t the set of interleavings of the finite sequences s and t . Given sets of

finite sequences S,T , we define the set of interleavings S ∥ T and the set of self-interleavings SΦ:

S ∥ T :=
⋃

s ∈S ,t ∈T

s ∥ t SΦ :=
⋃
n∈N

⋃
{α1, ...,αn }∈Pn (ϒ)

(ια1
(S) ∥ . . . ∥ ιαn (S))

where Pn(ϒ) denotes the set of subsets of ϒ of size n, and ια (s) labels every movem in s , of every
sequence s ∈ S with the label α denoted by ααα:::m.

The sequential game A is the game that each agent α ∈ ϒ plays locally. We denote by πα (s)
the projection of a concurrent play s ∈ PAAA to the local play πα (s) by agent α . In particular, for

any play s ∈ PA, πα (s) ∈ PA. Observe that a concurrent game A with underlying sequential game

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:12 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

A = (MA, PA) is completely determined by its underlying sequential game A per the formula

A = (
∑

α ∈ϒ MA, P
Φ
A). Because of this, it is convenient to write A = (MA, PA) when specifying a

concurrent game, as we will do for the rest of the paper.

Along the lines of our sequential gamemodel GameSeq we now define the notion of a (concurrent)

strategy over a (concurrent) gameAAA.

Definition 3.11. LetAAA = (MA, PA) be a concurrent game. A (concurrent) strategy σ overAAA, denoted
σ : AAA, is a non-empty, prefix-closed, O-receptive subset of PAAA, where O-receptivity is defined by:

If s ∈ σ , o an Opponent move and s · o ∈ PAAA, then s · o ∈ σ .

The definition of a concurrent strategy is mostly analogous to that of a sequential game. In

fact, πα (σ) is a sequential strategy over the sequential game A for every α ∈ ϒ. We again defined

morphisms by first defining an implication gameAAA ⊸ BBB, which simply instantiates the underlying

sequential game as the sequential implication game.

Definition 3.12. Given concurrent gamesAAA = (MA, PA) and BBB = (MB, PB),where A = (MA, PA)
and B = (MB, PB) are sequential games, we define the concurrent gameAAA ⊸ BBB as:

AAA ⊸ BBB := (MA⊸B, PA⊸B)

Strategy composition is defined analogously to the sequential case.

Definition 3.13. Given concurrent games A = (MA, PA),B = (MB, PB),C = (MC , PC) we define
the set int(A,B,C) of finite sequences of moves fromMA +MB +MC as follows:

s ∈ int(A,B,C) ⇐⇒ s↾A,B ∈ PA⊸B ∧ s↾B,C ∈ PB⊸C

Then, the parallel interaction int(σ , τ) of two strategies σ : A ⊸ B and τ : B ⊸ C is the set

int(σ , τ) := {s ∈ int(A,B,C) | s↾A,B ∈ σ ∧ s↾B,C ∈ τ }

And finally, the composition σ ;τ is defined as:

σ ;τ := {s↾A,C | s ∈ int(σ , τ)}

Proposition 3.14. Strategy composition is well-defined and associative.

Prop. 3.14 establishes a semicategorical structure to concurrent games and strategies (recall that

a semicategory is a category without the requirement of neutral elements for composition).

Definition 3.15. The semicategory GameConc has concurrent games A,B as objects and concurrent

strategies σ : A ⊸ B as morphisms. Composition is given by −;−.

We define the game †E of concurrent traces over the signature E by first defining E := (ME , PE)
and then †E := (M†E , P†E). So the game †E has each agent playing the corresponding sequential

game †E concurrently. This justifies all the notation used in §2.2, and in particular all the traces

depicted serve as examples of plays of games †E for the respective effect signatures. Effect signatures

as games and the replay modality †− admit a rich theory. We treat it in more detail in our technical

report [Oliveira Vale et al. 2022].

4 CONCURRENT GAMES AND SYNCHRONIZATION
In §3.2, we defined a concurrent game semantics modeling potentially blocking sequentially con-

sistent computation and we noted that we obtain a semicategorical structure. In this section we

discuss the issue with neutral elements (§4.1) and present a solution by constructing from the

semicategory GameConc a category GameConc of concurrent games (§4.2), presented abstractly, and

discuss some infrastructure around it (§4.3,§4.4). We finalize by adapting a result of Ghica and

Murawski [2004] which allows us to give a concrete characterization of this category (§4.5).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:13

4.1 The Copycat Strategy
In order to appreciate the difficulty with neutral elements in concurrent models, one must first

understand what such a neutral element looks like. So let’s first ground the discussion on sequential

computation. As we saw in §3.1, the neutral element in GameSeq is the copycat strategy copy−.
The name comes from the fact that it replicates O moves from the target component to the source

component and replicates P moves from the source component to the target component. In the

case of copyΣ : Σ ⊸ Σ there is only one possible interaction (displayed on the left):

Σ q a

Σ q a

⊸

Import Σ

q () {

a <- q

ret a

}

Fig. 4. Maximal play of copyΣ (left) and corresponding pseudocode (right)

All other plays of copyΣ are prefixes of this play. This strategy corresponds to the implementation

displayed on the right of Fig. 4, for the method q using a library that already implements the method

q. Suppose we compose the copycat with itself, that is, we build the strategy copyΣ; copyΣ, and
recall the motto “interaction + hiding”. The resulting interaction prior to hiding is:

Σ q a

Σ q a

Σ q a

⊸
⊸

Import Σ0

q () {

a <- (a' <- q; ret a')

ret a

}

Fig. 5. Maximal play of int(copyΣ, copyΣ) (left) and corresponding pseudocode (right).

The middle row of the interaction is the one that is then hidden. It simultaneously plays the role

of the source of the play in the top two rows, and the target in the play in the bottom two rows.

The resulting interaction, after hiding, is the interaction from Fig. 4, as expected. In terms of the

corresponding implementations composing the two strategies amounts to inlining the code of one

into the other, as depicted in the right of Fig. 5.

In the concurrent version Σ ∈ GameConc of Σ each agent of ϒ locally plays Σ. The obvious neutral
element in this situation would be to have each agent α,α ′ ∈ ϒ locally run copyΣ, a strategy we call
ccopyΣ : Σ ⊸ Σ, which is akin to linking the code from Fig. 4 for each agent in ϒ. ccopyΣ therefore

consists of all plays which are interleavings of copyΣ. One such play is the play t displayed below:

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

⊸

∈ ccopyΣ

Now, consider a strategy σ : Σ ⊸ Σ consisting only of the play s below (and its prefixes):

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ α ′α ′α ′:::q α ′α ′α ′:::a ααα:::q

⊸

∈ σ

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:14 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

The plays s and t can interact in the following two ways (among others) when considering the

composition σ ; ccopyΣ:

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ α ′α ′α ′:::q α ′α ′α ′:::a ααα:::q

⊸
⊸

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ α ′α ′α ′:::q α ′α ′α ′:::a ααα:::q

⊸
⊸

Each of these interactions results in a different ordering of the last two moves: α ′α ′α ′:::a and ααα:::q.
Therefore, the strategy σ ; ccopyΣ includes both of the following plays:

ααα:::q · α ′α ′α ′:::q · α ′α ′α ′:::q · α ′α ′α ′:::a · α ′α ′α ′:::a · ααα:::q , ααα:::q · α ′α ′α ′:::q · α ′α ′α ′:::q · α ′α ′α ′:::a · ·ααα:::q · α ′α ′α ′:::a ∈ σ ; ccopyΣ

This is despite the fact that the second play is not in σ . Therefore, ccopyΣ is not a neutral element.

This issue is not due to a bad choice of candidate for a neutral element, it turns out that there is

no strategy that behaves like the neutral element for every concurrent strategy. This is the issue that

Ghica and Murawski [2004] faced and is a common issue in compositional models of concurrent

computation. Now, if strategies were required to be saturated under the rewrite system from §2.1.2

(where we interpret invocation as O move and return as P move), then σ would not be a valid

strategy, as it must include both orderings to be saturated. While saturation solves the issue, the

deeper question of why happens-before order preservation appears remains.

4.2 Concurrent Games and Saturated Strategies
We start by formally defining the concurrent copycat strategy ccopy:

Definition 4.1. The concurrent copycat strategy ccopyA : A ⊸ A is defined as the self-

interleaving of the sequential copycat strategy copyA : A ⊸ A defined as

ccopyA := copyΦA

Proposition 4.2. ccopyA is idempotent.

This observation is all it takes to make use of an abstract construction called the Karoubi envelope

to construct a model of concurrent games where ccopy− does act as the neutral element for strategy

composition, as we will treat in detail in §6. This construction allows us to construct a category

GameConc that specializes GameConc to strategies that are well-behaved upon composition with

the family of idempotents ccopy−. Concretely, GameConc is defined as follows:

Definition 4.3. The category GameConc has as objects concurrent games A, B and as morphisms

strategies σ : A ⊸ B ∈ GameConc saturated in that

ccopyA;σ ; ccopyB = σ

Composition is given by strategy composition −;− with the concurrent copycat ccopy− as identity.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:15

4.3 Refinement for Concurrent Strategies
We endow the semicategory of concurrent strategies with an order enrichment, which also gives

our notion of refinement. We order strategies σ , τ ∈ GameConc(A,B) by set containment σ ⊆ τ .
This assembles the hom-set GameConc(A,B) into a join-semilattice. Joins are given by union of

strategies, which are well-defined as prefix-closure, non-emptiness and receptivity are all preserved

by unions. Composition is well-behaved with respect to this ordering in the following sense:

Proposition 4.4. Strategy composition is monotonic and join-preserving.

Refinement is a pesky issue in the context of concurrency, non-determinism, and undefined

behavior. We do not purport to address this issue in this paper. Instead, we choose trace set

containment to remain faithful with linearizability, where this notion of refinement is prevalent.

Interestingly, strategy containment is a standard notion of refinement in game semantics as well.

4.4 The Semifunctors KConc and EmbConc
The abstract treatment in §6 will also show that the abstract construction giving rise to GameConc
comes with some infrastructure around it for free. For instance, it readily gives a forgetful semi-

functor from GameConc (seen here as a semicategory instead of a category) to GameConc

EmbConc : Semi GameConc −→ GameConc

acting as the identity semifunctor. We will omit applications of EmbConc when it causes no harm.

There is also a transformation which takes a not necessarily saturated concurrent strategy σ and

constructs the smallest strategy that is saturated and contains σ , which we name

KConc : GameConc → Semi GameConc

as defined in §6, and explicitly given by:

A
KConc

7−−−−−−−−−→ A σ : A ⊸ B
KConc

7−−−−−−−−−→ ccopyA;σ ; ccopyB

unfortunately this mapping does not assemble into a semifunctor. Despite that, KConc is an oplax

semifunctor, in the sense described in the following proposition.

Proposition 4.5. For any σ : A ⊸ B and τ : B ⊸ C:

KConc(σ ;τ) ⊆ KConc(σ);KConc(τ)

It is straight-forward to check thatKConc is continuous, that is, it is monotonic and join-preserving.

It is important to emphasize that while we give concrete definitions for these operations, they come

from the abstract construction we describe for an arbitrary semicategory in §6.

4.5 Fine-Grained Synchronization in Concurrent Games
In §4.2, we gave a rather abstract definition for the strategies in GameConc. Ghica [2019], in a

slightly different setting, observed that this abstract definition is equivalent to a concrete one,

originally appearing in Ghica and Murawski [2004], involving the rewrite system we discussed in

§2.1.2, which we now adapt to our setting.

Definition 4.6. Let A = (MA, PA) be a concurrent game. We define an abstract rewrite system

(PA,⇝AAA) with local rewrite rules:

• ∀m,m′ ∈ MA.∀α,α
′ ∈ ϒ.α , α ′ ∧ λA(m) = λA(m

′) ⇒ ααα:::m · α ′α ′α ′:::m′⇝AAA α ′α ′α ′:::m′ · ααα:::m
• ∀o,p ∈ MA.∀α,α

′ ∈ ϒ.α , α ′ ∧ λA(o) = O ∧ λA(p) = P ⇒ ααα:::o · α ′α ′α ′:::p ⇝AAA α ′α ′α ′:::p · ααα:::o

The main result of this section is the following alternative characterization of saturation.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:16 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

Proposition 4.7. A strategy σ : A ⊸ B is saturated if and only if

∀s ∈ σ .∀t ∈ PA⊸B.t ⇝AAA⊸BBB s ⇒ t ∈ σ

The key lemma to show this alternative characterization is the synchronization lemma, as coined

by Ghica [2019], which plays a similar role to concurrent games as does the switching condition in

sequential games. It essentially establishes that there is still synchronization happening under this

liberal setting, all enabled by the fact that each agent is still synchronizing with itself.

It is useful to define a closure operator over sets of plays. Given a set of plays S ⊆ PA we call

strat (S) : A the least strategy containing S , obtained as the prefix and receptive closure of S .

Proposition 4.8 (Synchronization Lemma). Let s = p · ααα:::m · α ′α ′α ′:::m′ · p ′ be a play of A ⊸ B. Let
σ = strat (p · ααα:::m · α ′α ′α ′:::m′ · p ′). Then,

p · α ′α ′α ′:::m′ · ααα:::m · p ′ ∈ ccopyA;σ ; ccopyB ⇐⇒ ααα:::m · α ′α ′α ′:::m′⇝A⊸B α ′α ′α ′:::m′ · ααα:::m

The core of the proof of Prop. 4.8 lies in the dynamics of ccopy−. If we focus on an agent α ∈ ϒ,
a typical play in ccopyB behaves as displayed below on the left.

ααα:::q ααα:::a

ααα:::q ααα:::a

ααα:::q α ′α ′α ′:::a

. . . ααα:::q α ′α ′α ′:::a . . .

Observe that no matter what the other agents are doing it is always the case that the copy of an O
move in the target appears later in the source, and a copy of a P move in the target appears earlier

in the source. So if we have a play s ∈ PB such that s = p ·ααα:::q ·α ′α ′α ′:::a · p ′ any of its interactions with

ccopyB, such as in strat (s) ; ccopyB, look something like the play displayed above on the right.

After hiding the interaction in the source, the resulting play can at most make ααα:::q appear earlier

and α ′α ′α ′:::a appear later, so it cannot change their order. For any of the other cases for the polarities

of those two moves, there is always a case where they can appear swapped as the result of the

interaction. So the proof of Prop. 4.8 is a case analysis of the polarities of ααα:::m and α ′α ′α ′:::m′.

5 LINEARIZABILITY
In this section, we argue that linearizability emerges from the Karoubi construction used to define

GameConc and establish several of the main results of this paper. In §5.1 we establish that KConc
exactly corresponds to a general notion of linearizability which is improved in §5.2, while in §5.3

we observe that plays of ccopy− correspond to proofs of linearizability. In §5.4 we show a property

analogous to the usual observational refinement property, and in §5.5 we show the locality property.

5.1 Linearizability
We start by defining linearizability.

Definition 5.1. We say a play s ∈ PA is linearizable to a play t ∈ PA if there exists a sequence of

Opponent moves sO ∈ (M
O
A)
∗
and a sequence of Proponent moves sP ∈ (M

P
A)
∗
such that

s · sP ⇝A t · sO

A play s ∈ PA is linearizable with respect to a strategy τ : A ∈ GameConc if there exists t in τ
such that s is linearizable to t . If every play of a strategy σ : A is linearizable with respect to τ : A
then we say σ is linearizable with respect to τ .

In this general definition of linearizability, sP completes some pending O moves with a response

by P while the sequence sO plays the role of the pending invocations that are removed from s . Note
that t need not be atomic and may still have pending Opponent moves. The rewrite relation⇝A

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:17

plays the role of preservation of happens-before order. In this sequentially consistent formulation

of concurrent games, this generalized definition of linearizability is closely related to interval-

sequential linearizability [Castañeda et al. 2015], what we address in more detail in our technical

report [Oliveira Vale et al. 2022]. When the linearized strategy is specialized to atomic strategies

only, we obtain Herlihy-Wing linearizability. In our technical report [Oliveira Vale et al. 2022] we

give a thorough account of the specialization to atomic games.

The central result of this paper is a characterization of KConc in terms of linearizability.

Proposition 5.2. For any τ : A ∈ GameConc

KConc τ = {s ∈ PA | s is linearizable with respect to τ }

Proof. Suppose s ∈ KConc τ . By Prop. 4.7 it follows that there exists t ∈ τ such that s ⇝A t and
therefore by setting sO = sP = ϵ we are done.

Suppose there are sP and sO such that s · sP ⇝A t · sO . By receptivity t · sO ∈ τ . By Prop. 4.7,

s · sP ∈ KConc τ . By prefix-closure, s ∈ KConc τ , as desired. □

A lot of this proposition is taken for by Prop. 4.7. Observe that τ ’s receptivity explains why some

Opponent moves sO may be removed, while the fact that the play can be completed with Proponent

moves sP arises from prefix-closure. We also find it important to remind the reader that KConc is

defined in terms of its role in the relationship between a semicategory and its Karoubi envelope, as

will be treated in detail in §6. In this way, Prop. 5.2 shows that linearizability arises as a result of an

abstract construction solving the problem of lack of neutral elements in our concurrent model of

computation. An immediate corollary of Prop. 5.2 is an alternative definition of linearizability.

Corollary 5.3 (Abstract Linearizability). A strategy σ : A ∈ GameConc is linearizable to a
strategy τ : A if and only if

σ ⊆ KConc τ

As KConc appear as a result of an abstract construction, this alternative definition may be used

even in situations where there is no candidate for a happens-before-ordering or a rewrite relation

such as − ⇝ −. As matter of example, Ghica [2013] defines a compositional model of delay-

insensitive circuits. There, the Karoubi envelope is used to turn a model of asynchronous circuits

which is not physically realizable into one that is. This abstract definition of linearizability implied

by Prop. 5.3 and developed in detail in §6 could be adapted to that setting to give a notion of

linearizability for delay-insensitive circuits.

This abstract construction will also allow us to give a more general but simple proof of the

refinement property in §5.4 and locality in §5.5.

5.2 Strong Linearizability
This alternative and abstract characterization also suggests the following variation of linearizability:

Definition 5.4. We say σ : A ∈ GameConc is strongly linearizable to τ : A when σ is linearizable

with respect to τ and τ ⊆ σ .

We call this strong because it implies the conventional notion of linearizability as defined in 5.1.

In particular, atomic strong linearizability implies Herlihy-Wing linearizability. Note that when σ
is strongly linearizable with respect to τ we obtain that:

KConc τ ⊆ KConc σ = σ

Together with Corollary 5.3 it follows that σ = KConc τ so that σ is fully characterized by its

linearization. Therefore, a strongly linearizable σ is a strategy which is in the image of KConc.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:18 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

Concretely, strong linearizability is what most intuitively call linearizability. Indeed, in works

based on operational semantics there is always the possibility that by chance the scheduler schedules

the threads in such a way that it generates an atomic execution for the system. Those atomic

executions turn out to be exactly the linearization of the objects that are studied in that context.

When an object is non-strongly linearizable to a specification, it means that the specification is

not accurate: it is an over-approximation. For example, it is easy to prove that every concurrent

strategy is linearizable to some atomic strategy. In particular, ν ′yield is (Herlihy-Wing) linearizable

to an atomic spec ν with plays of the form:

α1α1α1:::yield · α1α1α1:::ok · α1α1α1:::yield · α1α1α1:::ok · . . . · αnαnαn:::yield · αnαnαn:::ok

But ν ′yield does not strongly linearize to ν . Moreover, ν does not make sense as a specification for yield.
Standard linearizability does not rule out such bad specifications, while strong linearizability does.

Our formalism shows exactly in which sense non-strong linearizability yields an over-approximation:
If σ is strongly linearizable to τ then σ = KConc τ , as we showed above. Meanwhile, when σ is

linearizable to τ but not strongly linearizable, we have a strict containment σ ⊂ KConc τ .

5.3 Computational Interpretation of Linearizability
We just saw that linearizability can be characterized by the transformation KConc. We now offer yet

another perspective on linearizability by providing a computational interpretation of linearizability

proofs. Recall that in our discussion in §4.1 we observed that ccopy− is the denotation of a concrete

program. Interestingly, the plays of ccopy− correspond to proofs of linearizability.

Proposition 5.5. s1 ∈ PA linearizes to s0 ∈ PA if and only if there is a play s ∈ ccopyA such that

s↾A0
= s0 s↾A1

= s1

Proof. For this, one first proves that every play s ∈ ccopyA satisfies s↾A1
⇝A s↾A0

. Then,

prefix-closure and receptivity of ccopyA allow for linearizability to be used instead of − ⇝− −,
similarly to the the proof of Prop. 5.2. See Oliveira Vale et al. [2022] for a detailed proof. □

What Prop. 5.5 essentially establishes is that proofs of linearizability encode executions of the

code in Fig. 3, and that executions of the code in Fig. 3 encode proofs of linearizability. Intuitively, the

reason for this is that in a play of ccopyA anO move followed by a P move in the target component

forms an interval around their corresponding moves in the source component. So if we have two

such pairs by different agents, one happening entirely before the other, then their corresponding

moves in the source must happen in the same order. This means that happens-before order is

preserved from the target component to the source component. See the figure below depicting a

play of ccopyΣ:

ααα:::q ααα:::a α ′α ′α ′:::q α ′α ′α ′:::a

ααα:::q ααα:::a α ′α ′α ′:::q α ′α ′α ′:::a

5.4 Interaction Refinement
One is often interested in implementing an interface of type B making use of some other interface

of type A by using an implementation specified as a saturated strategy of type σ : A ⊸ B. Now, the
game A appears in a negative position in the type A ⊸ B. Because of this there is a contravariant
effect to linearizability on⊸ in that if s ⇝A⊸B t then, while s↾B is “more concurrent” than t↾B,
s↾A is “less concurrent” than t↾A. This intuition leads to the following result analogous to the

observational refinement equivalence of Filipovic et al. [2010].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:19

Proposition 5.6 (Interaction Refinement). ν ′A : A ∈ GameConc is linearizable to νA : A ∈
GameConc if and only if for all concurrent games B and σ : A ⊸ B ∈ GameConc it holds that

ν ′A;σ ⊆ νA;σ

Proof. By Corollary 5.3, monotonicity of composition, and saturation of σ :

ν ′A;σ ⊆ KConc νA;σ = (ccopy1;νA; ccopyA);σ = (ccopy1;νA); (ccopyA;σ) = νA;σ

For the reverse direction, simply observe that:

ν ′A ⊆ ν ′A; ccopyA ⊆ νA; ccopyA = ccopy1;νA; ccopyA = KConc νA

□

This immediately implies a stronger result under strong linearizability

Corollary 5.7. Let ν ′A : A ∈ GameConc is strongly linearizable w.r.t. to νA : A ∈ GameConc if and
only for all B and σ : A ⊸ B ∈ GameConc:

ν ′A;σ = νA;σ

5.5 Locality
We revisit the locality property from Herlihy and Wing [1990] by reformulating the notion of an

object system with several independent objects as the linear logic tensor product ⊗. For this we

start with a faux definition of tensor product.

Definition 5.8. If A = (MA, PA) and B = (MB, PB) are games in GameConc, we define the game

A ⊗ B ∈ GameConc as A ⊗ B = (MA⊗B, PA⊗B). We denote by 1 the game 1 = (M1, P1).

Given strategies σA : A and σB : B we define the strategy σA ⊗ σB : A ⊗ B as the set

(σA ∥ σB) ∩ PA⊗B, the set of sequentially consistent interleavings of σA and σB .

We call this a faux tensor product because there is no reasonable definition of a monoidal
semicategory for lack of neutral elements with which to express the coherence conditions. Despite

that, the − ⊗ − operation becomes a proper tensor product when specialized to GameConc.

Proposition 5.9. (GameConc,− ⊗ −, 1) assembles into a symmetric monoidal closed category.

This structure is obtained by mapping the corresponding structural maps in GameSeq through

an interleaving functor. In particular, Prop. 5.9 says that − ⊗ − is a bifunctor in GameConc, so that

Proposition 5.10. For all concurrent games A, B:

ccopyA⊗B = ccopyA ⊗ ccopyB

This rather simple result is rather auspicious given the computational interpretation of ccopy−
in terms of linearizability proofs seen in §5.3. This property, together with the fact that − ⊗ − is a

bi-semifunctor, readily implies that KConc distributes over the tensor product.

Proposition 5.11. Let σA : A ⊸ A′ and σB : B ⊸ B′. Then:

KConc (σA ⊗ σB) = KConc σA ⊗ KConc σB

Proof.

KConc (σA ⊗ σB) = ccopyA⊗B; (σA ⊗ σB); ccopyA′⊗B′ (Def.)

= (ccopyA ⊗ ccopyB); (σA ⊗ σB); (ccopyA′ ⊗ ccopyB′) (Prop. 5.10)

= (ccopyA;σA; ccopyA′) ⊗ (ccopyB;σB ; ccopyB′) (bi-semifunctoriality of − ⊗ −)

= KConc σA ⊗ KConc σB (Def.)

□

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:20 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

which gives as corollary a generalization of Herlihy and Wing [1990]’s locality theorem.

Corollary 5.12 (Locality). Let ν ′A : A, ν ′B : B ∈ GameConc and νA : A, νB : B ∈ GameConc. Then
ν ′ = ν ′A ⊗ ν

′
B is linearizable w.r.t. ν = νA ⊗ νB

if and only if
ν ′A is linearizable w.r.t. νA and ν ′B is linearizable w.r.t. νB

Proof. By Prop. 5.11 and Prop. 5.2

ν ′ = ν ′A ⊗ ν
′
B ⊆ KConc (νA ⊗ νB) = KConc νA ⊗ KConc νB

in particular,

ν ′A = (ν
′
A ⊗ ν

′
B)↾A ⊆ (KConc νA ⊗ KConc νB)↾A = KConc νA

ν ′B = (ν
′
A ⊗ ν

′
B)↾B ⊆ (KConc νA ⊗ KConc νB)↾B = KConc νB

For the reverse direction, we have:

ν ′ = ν ′A ⊗ ν
′
B ⊆ KConc νA ⊗ KConc νB = KConc (νA ⊗ νB)

□

We would like to observe that not only our methodology yields a stronger result in Prop. 5.10

and 5.11, but also that it supports simpler, mostly algebraic proofs. Meanwhile, even in the simpler

case of atomic linearizability, Herlihy and Wing [1990]’s original proof is rather ad hoc.

6 THE KAROUBI ENVELOPE AND ABSTRACT LINEARIZABILITY
In this section, we establish the main abstract tools we used to construct models of concurrent

computation. The most important points of this section are the definitions of Ce , Ke , and Embe ,
which we wrote concretely as GameConc,KConc and EmbConc in the main development. An extended

version of this section is available in Oliveira Vale et al. [2022].

Given a semicategory C the Karoubi envelope is the category Kar C which has as objects pairs:

(C ∈ C, e : C → C)

of an object C and an idempotent e of C . Recall that an idempotent of an object is simply an

idempotent endomorphism of that object, in the sense that e◦e = e . Amorphism f : (C, e) → (C ′, e ′)
in Kar C is a morphism f : C → C ′ of the underlying semicategory C that is invariant upon the

idempotents, involved in the sense that:

e ′ ◦ f ◦ e = f

which we call a saturated morphism of C. Observe that by construction the Karoubi envelope Kar C
is indeed a category by defining the neutral elements by the equation id(C ,e) = e .
The following is folklore in the theory of semicategories. There is a forgetful functor

Semi : Cat→ SemiCat

which given a category C assigns a semicategory Semi C by forgetting the data about the neutral

elements in C, which also determines its action of transforming functors into semifunctors by

forgetting the fact that it preserves neutral elements. Semi admits a right adjoint

Kar : SemiCat→ Cat

which maps a semicategory C to its Karoubi envelope Kar C.
When C has neutral elements, so that it actually assembles into a category, one obtains a fully

faithful functor (of categories) into the Karoubi envelope by:

C −−−−−→ Kar C C 7−−−−−→ (C, idC)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:21

which immediately makes any morphism f : C → C ′ into a morphism f : (C, idC) → (C ′, idC ′)
due to the unital laws. Note that this functor corresponds to selecting a family (eC : C → C)C ∈C of

idempotents eC for each object C ∈ C; in this case eC = idC . The mapping of morphisms should

saturate any morphism f : C → D. Hence, it must be given by:

f 7−−−−−→ eD ◦ f ◦ eC

Unfortunately, for lack of neutral elements in the semicategory case, there is no obvious choice of

idempotents to construct such a functor, and in fact, there is no canonical choice of idempotents

that makes it into a functor. Despite that, there is always a forgetful semifunctor:

Emb : SemiKar C→ C

Intuitively, the Karoubi envelope “splits” an object C ∈ C into many versions of itself: one

for each idempotent e of C . Meanwhile, morphisms f : C → D are “classified” as morphisms

f : (C, e) → (C ′, e ′) when they tolerate e and e ′ as neutral elements. So choosing an idempotent

for each object of C really amounts to choosing a version of each object C ∈ C to obtain a category.

We take the intuition we get from these remarks to define the following construction.

Let C be a semicategory enriched over Cat and let

e− = {eC : C → C}C ∈C

be a family of idempotents. Any such family defines a full subcategory Ce of the Karoubi envelope

Kar C of C by restricting the objects to precisely the idempotents in e−. We call such a subcategory

of Kar C an embeddable subcategory. This naming is justified by the fact that the restriction

Embe : Semi Ce → C

of the forgetful functor Emb defines an embedding. There is a candidate for a semifunctor

Ke : C→ Semi Ce

going in the reverse direction, and given by

C
Ke

7−−−−−−−→ (C, eC) f : C → D
Ke

7−−−−−−−→ eD ◦ f ◦ eC

Ke often fails to be a semifunctor, as we noted. Despite that, semifunctoriality, even weakly, is not

required for our purposes. Observe at this point that GameConc = (GameConc)ccopy and that KConc
is precisely the induced mapping Kccopy.

We are now ready to define abstract linearizability.

Definition 6.1. Let C be an enriched semicategory equipped with a bi-semifunctor

− ⊗ − : C × C→ C

and an object 1 such that (Ce ,− ⊗ −, 1) is a symmetric monoidal category.

We say a morphism f : 1→ C ∈ Ce is linearizable to a morphism д : 1→ C ∈ C when

f ⇒ Ke д

Since our proofs of locality and interaction refinement on GameConc were abstract, relying on

Prop. 5.3, we can collect the necessary assumptions to obtain those results.

Proposition 6.2. In the following, let C and Ce satisfy the conditions of Def. 6.1.
Interaction Refinement Suppose for all C ∈ C and f : 1→ C ∈ C it holds that

f ◦ e1 = f

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:22 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

Then f : 1→ C is linearizable to д : 1→ C iff and only if for all D ∈ C and h : C → D ∈ Ce it
holds that

h ◦ f ⇒ h ◦ д

Locality Ke distributes over − ⊗ − in the sense that for all f : C → C ′ and д : D → D ′

Ke (f ⊗ д) = Ke f ⊗ Ke д

and if for all C,C ′,D,D ′ ∈ C it holds that

Ce (C,C
′) ⊗ Ce (D,D

′) � Ce (C,C
′) × Ce (D,D

′)

then f ′C : 1→ C and f ′D : 1→ D are linearizable to fC : 1→ C and fD : 1→ D if and only if
f ′C ⊗ f ′D is linearizable to fC ⊗ fD .

7 PRAGMATICS
Now that we have established the core results of the paper, we revisit the example in §2.2. We start

by outlining a program logic for showing that certain concurrent programs implement linearizable

objects, which is developed in detail in Oliveira Vale et al. [2022]. Then, we outline how the theory

we develop can be used to reason about the example from §2.2. Our program logic is adapted from

Khyzha et al. [2017], but contains significant modifications.

7.1 Programming Language
7.1.1 Syntax. We start by defining a language Com for commands over an effect signature E:

Prim := x ← e(a) | assert(ϕ) | ret v Com := Prim | Com;Com | Com + Com | Com∗ | skip

Prim stands for primitive commands while Com is the grammar of commands. The most important

commands work as follows:

• x ← e(a) executes the effect e ∈ E with argument a, which might contain variables defined

in a local environment ∆ ∈ Env.
• ret v stores in a reserved variable the value v , and may only be called once in any execution.

• assert(ϕ) takes a boolean function over the local environment and terminates computation if

ϕ evaluates to False. assert(−) can be used to implement a while loop and if conditionals in

the usual way.

The remaining commands are per usual in a Kleene algebra.

An implementationM[α] of type E → F , where E and F are effect signatures, is then given by

a collectionM[α] = (M[α]f)f ∈F indexed by F , so that for each f ∈ F we haveM[α]f ∈ Com; we

denote the set of implementations by Mod.
Meanwhile, a concurrent module M[A] is given by a collection of implementations M[A] =
(M[α])α ∈A indexed by a set A ⊆ ϒ of active agents, so thatM[α] ∈ Mod is an implementation for

each active agent α ∈ A; we denote the set of concurrent modules by CMod.

7.1.2 Operational Semantics. Each primitive command B receives an interpretation as a state

transformer ⟦B⟧α : UndState→ P(UndState) over a set of states UndState := Env × P†E and

returning a new set of states. A state (∆, s) ∈ UndState contains a local environment ∆ ∈ Env and
a state represented canonically as a play of s ∈ †E. Concretely, s is the history of operations on the

underlying object. The state transformer ⟦B⟧α depends on α only in that it tags the events it adds

to the underlying state with an identifier for α .
We lift this interpretation function to a local small-step operational semantics

⟨C,∆, s⟩ −→α ⟨C
′,∆′, s ′⟩ encoding how α steps on commands in a mostly standard way

following the Kleene algebra structure of commands. The key difference is that as we do not

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:23

↣ ⊆ Com × Prim × {O , P } × Com

B ↣O
B B B ↣P

B skip

C1 ↣
X
B C′

1

C1;C2 ↣
X
B C′

1
;C2 skip;C ↣X

id C

C∗ ↣X
id C ;C∗ C∗ ↣X

id skip

C1 +C2 ↣
X
id C1 C1 +C2 ↣

X
id C2

−→ ⊆ (Com × UndState) × ϒ × (Com × UndState)

(∆′, s′) ∈ ⟦B⟧Xα (∆, s) C ↣X
B C′

⟨C , ∆, s ⟩ −→α ⟨C′, ∆′, s′⟩

−↠ ⊆ (Cont ×ModState) × CMod × (Cont ×ModState)

f ∈ F a ∈ par(f) ∆′ = ∆[α : [arg : a]]

⟨c[α : idle], ∆, s ⟩ −↠M ⟨c[α : M [α]f], ∆′, s · ααα :::f ⟩

⟨C , ∆, s ⟩ −→α ⟨C′, ∆′, s′⟩

⟨c[α : C], ∆, s ⟩ −↠M ⟨c[α : C′], ∆′, s′⟩

πα (s↾F) = p · f
∆(α)(res) = v ∈ ar(f) ∆′ = ∆[α : �]

⟨c[α : skip], ∆, s ⟩ −↠M ⟨c[α : idle], ∆′, s · ααα :::v ⟩

Fig. 6. Command Reduction Rules (↣), Local Operational Semantics (−→), and Concurrent Module Opera-
tional Semantics (−↠)

assume the underlying object of type E is atomic, primitive commands execute in two separate

steps, one for the invocation and the other for the return. Because of that, the interpretation

function ⟦B⟧α is decomposed into ⟦B⟧Oα , which is defined only on states where α ’s next move is

an invocation, and ⟦B⟧Pα , which is defined only on states where α has a pending invocation (the

remaining states). See Fig. 6 for the operational semantics rules. There, id stands for a primitive

command that behaves just like skip but is used exclusively to define the operational semantics.

This small step operational semantics can be lifted to a concurrent module operational semantics

− −↠− − ⊆ (Cont ×ModState) × CMod × (Cont ×ModState)

which takes a continuation Cont := ϒ→ {idle} + {skip} + Com and a module stateModState :=
(ϒ→ Env) × P†E⊸†F containing the local environments for all the agents, as well as the global trace

of the system (see Fig. 6). The concurrent operational semantics − −↠M − therefore describes

the possible executions of the concurrent module M . The three rules correspond, from top to

bottom, to a target component invocation, a step in the source component, and a return in the

target component.

It is important to note that in our operational semantics, following the object-based semantics

approach, which we develop in detail in Oliveira Vale et al. [2022], all shared state is encapsulated in

the underlying object of type E. One of the many consequences of this is that the local environments

can only be modified by their corresponding agents, and are initialized on a call on F and emptied

on a return. This limits the lifetime of variables to a single execution of the body of a method.

7.1.3 Semantics. We give a concurrent module a denotation by the formula

⟦M⟧ = {s | ∃c ∈ Cont.∃∆ ∈ (ϒ→ Env).⟨c0,∆0, ϵ⟩ −↠
M ⟨c,∆, s⟩}

where c0 is the initial continuation, and ∆0 has every agent with an empty local environment. We

specialize the operational semantics to the situation where a concurrent object specification νE : †E
of type E is provided by defining an operational semantics − −↠M

νE − which runs M on top of

νE , what we denote as Link νE ;M . We obtain the traces ⟦Link νE ;M⟧ analogously to ⟦M⟧ by only

considering steps in the source component that satisfy the specification νE . The following result
allows us to connect the programming language back with the theory we have developed so far.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:24 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

Proposition 7.1. For anyM ∈ CMod, ⟦M⟧ : †E ⊸ †F is a strategy (in fact, a concurrent object
implementation) and given νE : †E,

⟦Link νE ;M⟧ = νE ; ⟦M⟧

7.2 Program Logic
Here, we present a simple, bare bones, program logic for proving implementations correctly

implement linearizable objects. Despite its simplicity, it is expressive enough to reason about our

notion of linearizability, and we believe it to be extensible.

We encapsulate the information necessary to define a linearizable concurrent object in a pair

(ν ′ : †A,ν : †A) s.t. ν ′ ⊆ KConc ν

Throughout, we assume the following situation. We have a linearizable concurrent object

(ν ′E : †E,νE : †E) and would like to show that an implementationM : E → F is correct in that when

it runs on top of ν ′E it linearizes to a specification νF : †F. When reasoning about Link ν ′E ;M it will

be useful to restrict it with some invariants about its client. For example, usually when using a lock,

one assumes that every lock user strictly alternates between calling acq and rel. So if all clients to

the lock politely follow the lock policy, it is enough to verify only those traces. This policy of strict

alternation is encoded in this strategy ν ′F : †F in our approach.

All in all, the program logic establishes that (ν ′E ; ⟦M⟧ ∩ ν ′F ,νF) is a linearizable con-

current object. For this purpose our program logic uses as proof configurations triples

(∆, s, ρ) ∈ Config := ModState × Poss where Poss is a set of possibilities. While Herlihy and Wing

[1990] use sets of, so-called, linearized values, as possibilities, and Khyzha et al. [2017] uses an

interval partial order, we use a play of Poss := KConc νF . This means that throughout, if (∆, s, ρ) is
a configuration, we will always maintain as an invariant that s↾F is linearizable to ρ and that ρ is

linearizable to νF . Pre-conditions P are given by sets of configurations, while post-conditions Q ,
rely conditions R, guarantee conditions G are specified as relations over the configurations.

There are three ways through which a configuration can be modified: through a relational

predicate invokeα (−) which makes an invocation in F, and simultaneously adds it to the state and

the possibility; a commit rule G ⊢α {P} B {Q}, where B ∈ Prim, which allows one to modify the

state by executing primitive commands over E, but also to add early returns to ρ and to rewrite it

according to −⇝F −; and a pair of post-conditions returnedα (−) and returnα (−) that check if at

the end of execution there is a valid return in the possibility, and then adds it to the state.

Formally, the commit rule, which is the crux of the verification task, is defined below (PO is the

set of plays in P such that O is to move for α):

G ⊢α {P } B {Q } ⇐⇒

∀(∆, s , ρ).s↾F ∈ ν ′F ∧ (∆, s , ρ) ∈ P ∧ s↾E ∈ νE ∧ (∆′, s′) ∈ ⟦B⟧α (∆, s) ⇒

s′↾F ∈ ν ′F ∧ ∃ρ
′.(∆, s , ρ) Q (∆′, s′, ρ′) ∧ (∆, s , ρ) G (∆′, s′, ρ′) ∧ ρ d ρ′

ρ d ρ′ ⇐⇒ ∃tP ∈ (MP
F)
∗ .ρ · tP ⇝†F ρ′

stable(R, P) stable(R,Q)
Q ◦ PO ⊆ P
G ⊢α {P } B {Q }

R, G |=α {P } B {Q }
Prim

The rule considers every state (∆′, s ′) reachable by executing the primitive command B on behalf

of α from a proof state (∆, s, ρ) satisfying: the pre-condition P , the source component’s linearized

specification νE and the target component’s abstract invariant ν ′F . The proof obligation is then to

choose a new possibility ρ ′ and show that the reached state still satisfies ν ′F , and that the step into

the new proof configuration (∆′, s ′, ρ ′) satisfies the post-condition Q and the guarantee G. This

new possibility ρ ′ must be shown to satisfy ρ d ρ ′, which enforces that ρ ′ only differs from ρ by

adding some returns tP to ρ, and potentially linearizing the trace more by performing some rewrites

(ρ · tp ⇝†F ρ ′). Prim merely adds typical stability requirements on the operation. Lifting this rule

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:25

to a Hoare-style judgement R,G |=α {P} C {Q} over any command C ∈ Com is straight-forward,

which will be the program logic judgement for function bodies such asM[α]f .
Meanwhile, invokeα (−), returnedα (−) and returnα (−) are formally defined below, where idleα

is a predicate that checks if α is idle in a given state.

(∆, s , ρ) invokeα (f (a)) (∆′, s′, ρ′) ⇐⇒

(∆, s , ρ) ∈ idleα ∧ s′↾F ∈ ν ′F ∧ (∆
′(α) = [arg : a] ∧ ∀α ′ , α .∆′(α ′) = ∆(α ′) ∧ s′ = s · ααα :::f ∧ ρ′ = ρ · ααα :::f

(∆, s , ρ) returnedα (f) (∆′, s′, ρ′) ⇐⇒

s′↾F ∈ ν ′F ∧ (∆
′, s′, ρ′) = (∆, s , ρ) ∧ (∃v ∈ ar(f).∆(α)(ret) = v ∧ (∃p .πα (ρ′) = p · v))

(∆, s , ρ) returnα (f) (∆′, s′, ρ′) ⇐⇒

∆′ = � ∧ ρ′ = ρ ∧ ∃v ∈ ar(f).∃p .πα (ρ) = p · v ∧ s′ = s · ααα :::v

Now, given a concurrent moduleM = (M[α])α ∈ϒ where the local implementations are given by

M[α] = (M[α]f)f ∈F verification is finalized by the following two rules:

∀f ∈ F .(∆0, ϵ , ϵ) ∈ P [α]f ∀f ∈ F .P [α]f ⊆ idleα stable(R[α], P [α]f)
stable(R[α],Q [α]f) R[α], G[α] |=α {invokeα (f) ◦ P [α]f } M [α]f {returnedα (f) ◦Q [α]f }

∀f , f ′ ∈ F .returnα (f ′) ◦ returnedα (f ′) ◦Q [α]f
′
◦ invokeα (f ′) ◦ P [α]f

′
⊆ P [α]f

R[α], G[α] |=α {∩f ∈F P [α]
f } M [α] {∪f ∈FQ [α]

f }
Local Impl

∀α ∈ A.R[α], G[α] |=α {P [α]} M [α] {Q [α]}
∀α , α ′ ∈ A.α , α ′ ⇒ G[α] ∪ invokeα (−) ∪ returnα (−) ⊆ R[α ′]

R[A], G[A] |=A {∩α ∈AP [α]} M [A] {∪α ∈AQ [α]}
Conc Impl

Several of the premises of Local Impl and Conc Impl are typical of rely-guarantee reasoning, and

the remaining ones are very similar to those found in Khyzha et al. [2017, 2016]. Of note, is the

highlighted premise in LocalImpl, which makes sure that the pre and post-conditions are defined in

such a way that after executing a method f ′ ∈ F the system satisfies all the requirements to safely

execute any other method f ∈ F . Meanwhile, the highlighted premise in ConcImpl makes sure that

the rely condition is stable not only under the guarantee but also under invocations and returns by

other agents. These two program logic rules are justified by the following soundness theorem.

Proposition 7.2 (Soundness). If R[A],G[A] |=A {P[A]} M[A] {Q[A]} and (ν ′E : †E,νE : †E) is
a linearizable concurrent object then

ν ′E ; ⟦M[A]⟧ ∩ ν ′F ⊆ KConc νF

The program logic can be extended with quality-of-life features like ghost state, and fancier

notions of possibilities such as using a set of plays of KConc νF , instead of a single play, for added

flexibility. Another point is that, other than paradigmatic modifications, our programming language

and program logic are close to those of Khyzha et al. [2017]. There are two major differences.

First, our program logic is built to reason about our notion of linearizability (Def. 5.1), while theirs

focuses on Herlihy-Wing linearizability. In particular, their operational semantics can assume that

operations in the source component are atomic, while we cannot. The second is that we maintain

that there exists a valid linearization of the possibility, while they maintain that every linearization

is valid. There are linearizable concurrent objects for which the stronger invariant on possibilities

cannot be maintained, see our technical report [Oliveira Vale et al. 2022]. This means that our

program logic is more expressive, and therefore any proof achievable with theirs should admit a

straight-forward adaption to ours.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:26 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

7.3 Example Revisited
We now revisit the example of §2.2. We start by assuming we have concurrent objects ν ′

fai
: †FAI,

ν ′
counter

: †Counter and ν ′
yield

: †Yield assembling into linearizable objects

(ν ′
fai

: †FAI,νfai : †FAI) (ν ′counter : †Counter,νcounter : †Counter) (ν
′
yield

: †Yield,νyield : †Yield)

where νfai is the atomic FAI object specification, νcounter is the semi-racy counter specification, and

νyield is the less concurrent Yield specification, all as described in §2.2. Using the locality property,

we can combine these linearizable objects into a composed linearizable object, written as (ν ′E ,νE):

(ν ′E ,νE) := (ν
′
fai
⊗ ν ′

counter
⊗ ν ′

yield
,νfai ⊗ νcounter ⊗ νyield)

Observe that the code for Mlock appearing in Fig. 1 can be encoded in the programming lan-

guage of §7.1. We wish therefore to show that Mlock correctly implements a linearizable object

(ν ′
lock

: †F,νlock : †F) as described in §2.2 except for one extra assumption: that locally in ν ′
lock

, each

agent alternates between invoking acq and rel. This extra assumption becomes available in our

program logic. Because of the interaction refinement property, we need only consider linearized

traces, those in νE , for the source component. Because of that, it does not really matter what the

actual concurrent object ν ′E is! It only matters that it linearizes to νE . For example, ν ′
counter

could

very well be an atomic Counter provided by hardware somehow, or a Counter implementation

that misbehaves when two increments occur at the same time. Even then, it still linearizes to the

semi-racy counter specification, so the proof of correctness ofMlock will remain valid.

Verification with the program logic is straight-forward. The main invariant maintains that the

possibility ρ satisfies ρ = p ·ρO wherep ∈ νlock is an atomic trace representing the already linearized

operations, while ρO is a sequence of pending invocations yet to be linearized. When an agent

leaves the while loop in the code of acq, or executes the inc command in the body of rel we add the
corresponding return ok and linearize the operation to the end of p, like so:

ρ = p · ρ1 · ααα :::acq · ρ2 p · ααα :::acq · ααα :::ok · ρ1 · ρ2 = ρ′

ρ = p · ρ1 · ααα :::rel · ρ2 p · ααα :::rel · ααα :::ok · ρ1 · ρ2 = ρ′

assert(cur_tick = my_tick)

inc()

Please check our technical report for details. We denote the fact thatMlock is correct as:

⟦Mlock⟧ : (ν ′E ,νE) −→ (ν
′
lock
,νlock)

Along the same lines, we can verify that

⟦Msqueue⟧ : (ν ′
lock
⊗ ν ′

queue
,νlock ⊗ ν

′
queue
) −→ (ν ′

squeue
,νsqueue)

At this point, the two implementations can be composed together by using the tensor product
of concurrent games, the locality property and strategy composition. First, we use ccopy†Queue :

†Queue→ †Queue to “pass-through” the queue object toMlock, obtaining therefore an implemen-

tation Mlock ⊗ ccopy by using the code for ccopy− shown in §4.1. This implementation satisfies

that ⟦Mlock ⊗ ccopy⟧ = ⟦Mlock⟧ ⊗ ccopy†Queue and therefore that

⟦Mlock ⊗ ccopy⟧ : (ν ′E ⊗ ν
′
queue
,νE ⊗ ν

′
queue
) −→ (ν ′

lock
⊗ ν ′

queue
,νlock ⊗ ν

′
queue
)

By composing the two implementations together, we obtain that

⟦Mlock ⊗ ccopy⟧; ⟦Msqueue⟧ : (ν ′E ⊗ ν
′
queue
,νE ⊗ ν

′
queue
) −→ (ν ′

squeue
,νsqueue)

immediately from the fact that each of the two implementations is known to be correct.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:27

8 RELATEDWORK AND CONCLUSION
Herlihy and Wing [1990]. We revisit many, if not all, of the major points of their now classical

paper. In particular we generalize their definition and provide a new proof of locality. Overall, we

present new foundations to their original definition of linearizability.

Ghica [2019]; Ghica and Murawski [2004]; Murawski and Tzevelekos [2019]. Our concurrent game

model is heavily inspired by the model appearing in Ghica and Murawski [2004] and Ghica [2019],

and the genesis of our key result lies in the observation we outlined in §2.1.2. Despite that, our

game model both simplifies and modifies the one appearing there. It simplifies it in that they use

arena-based games, relying on justification pointers. They also have more structure on their plays

around a second classification of moves into questions or answers, in order to model Idealized

Concurrent Algol precisely. We believe that our formulation of linearizability readily extends to

other, more sophisticated formulations of concurrent games, including theirs. Our choice of this

simple game semantics is justified in §1.2. We also make a significant modification to their game

model in that we change the strategy composition operation. Theirs always applies a non-linear

self-interleaving operation on the left strategy so to obtain a Cartesian category. We instead use a

linear composition operation that leaves the left strategy as is, and fits our purposes better. Another

difference is that theirs is single-threaded (a single opening O move) while ours is multi-threaded.

They do use a multi-threaded model to explain the categorical structure of their model, but they do

not use the multi-threaded model as extensively as we do.

The fact that the category defined in Ghica and Murawski [2004] is a Karoubi envelope was

observed in a manuscript by Ghica [2019], but was not explored in detail. In particular, none of the

material in §6 appears in their work. Neither of these works deal with linearizability in any way,

nor observe the relationship between their rewrite relation and happens-before preservation.

The authors likely did notice that the rewrite relation in Ghica [2019]; Ghica and Murawski

[2004] is related to linearizability, as a variation of it appears in Murawski and Tzevelekos [2019].

In this paper, they revisit a higher-order variation of linearizability originally introduced in Cerone

et al. [2014] and strengthen the results from there. Meanwhile, we only address the more traditional

first-order linearizability, though we believe it could be generalized to a higher-order setting.

Despite that, they use a trace semantics, which, though inspired by game semantics, still relies

on syntactic linking operations and lacks a notion of composition beyond syntactic linking at the

single layer level. The approach fits into the typical approach we outline in §1. None of these works

observe the relationship between ccopy− and the Karoubi envelope with linearizability.

Goubault et al. [2018]. As we described in §2.1.2, Goubault et al. [2018] is another major reference

for our work. Many of our results are significant generalizations of theirs. They focus just on

concurrent object specifications, and use untyped specifications. We go beyond that by considering

a compositional model, featuring linear logic types, and strategy composition. Given the definition

of concurrent specification they use, and the background of the authors, they were likely inspired

by game semantics, and leave for future work a compositional variant of their results, which our

work addresses. Moreover, they only model non-blocking total objects, while we assume neither

restriction on our objects. Some of our results are generalizations of their results along several lines,

as our model is compositional, typed and does not assume totality (this last one is explicitly used to

simplify several of their proofs). In particular, while they prove a Galois connection, we prove a

weak biadjunction. Several of these generalizations are established using our novel techniques, such

as the algebraic characterization in terms of the Karoubi envelope, as opposed to proofs involving

the rewrite system. They also do not discuss horizontal composition and locality.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:28 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

Other Works. There are other approaches to concurrent game semantics such as Abramsky and

Mellies [1999] and Melliès and Mimram [2007] (this later one also involving a rewrite system),

and to concurrent models of computation [Castellan et al. 2017; Rideau and Winskel 2011]. An

important reference on the game semantics side, though we do not use the methods from there

explicitly, is Mellies [2019]. Our treatment of concurrent objects, appearing in §2.2, in §7.3 and in

our technical report traces back to Reddy [1993, 1996], which has been recently brought back to

attention by Oliveira Vale et al. [2022]. More broadly, our motivations seem to fit into a program

started by Koenig and Shao [2020]. Game semantics has been used to analyze concurrent program

logics in Melliès and Stefanesco [2020] to a much larger extent than what we endeavor in §7 .

Semicategories have been studied extensively in the context of theory of computation in order to

provide category theoretical formulations for models of the λ-calculus, notably in Hayashi [1985];

Hyland et al. [2006]. Our notions of semi-biadjunction and enriched semicategories trace back to

Hayashi [1985] and Moens et al. [2002] respectively. Semifunctors have been thoroughly studied in

Hoofman and Moerdijk [1995]. The Karoubi envelope often appears in the context of concurrent

models of computation beyond the already mentioned Ghica and Murawski [2004]; for instance in

Ghica [2013] to model delay insensitive circuits, in Gaucher [2020] on the flow model of concurrent

computation, in Piedeleu [2019] to give a graphical language to distributed systems, or in Castellan

et al. [2017]; Rideau and Winskel [2011] (though not explicitly mentioned).

As we noted in §2.2 there are manyworks that discuss variations of linearizability [Castañeda et al.

2015; Haas et al. 2016; Hemed et al. 2015; Neiger 1994]. Crucially, our methodology and formulation

differ widely from previousworks. In particular, we do not propose a notion of linearizability. Instead,

we define a model of concurrent computation and derive the appropriate definition of linearizability

intrinsic to the model. As far as we are aware, the only work that has noticed a relationship between

the copycat and linearizability is Lesani et al. [2022], which likely happened concurrently with our

own discovery. Despite that, they only discuss atomic linearizability, and do not explore the theory

surrounding their definition of linearizability. In particular, they do not prove the equivalence of

their definition to original Herlihy-Wing linearizability, which we address in depth in our technical

report [Oliveira Vale et al. 2022]. In this way, our work generalizes their development around

linearizability and, moreover, formally explains why their definition of linearizability is appropriate.

In terms of methodology, our work still differs widely and subsumes their model of computation,

especially when considering the object-based semantics model appearing in our technical report

[Oliveira Vale et al. 2022]. The main contribution of their paper is in showing how linearizability

can elegantly model transactional objects, a matter which is orthogonal to our development and

readily adaptable to our setting. All the works cited supra are strictly less expressive than the notion

of linearizability we derive. Our notion of linearizability corresponds to a generalization of interval-

sequential linearizability [Castañeda et al. 2015] (the most expressive notion of linearizability

prior to our work) to potentially blocking concurrent objects (while they only model non-blocking

objects, as is typical in the linearizability literature). See our technical report [Oliveira Vale et al.

2022] for a detailed comparison.

For our results on proof methods for proving linearizability we must mention Herlihy and

Wing [1990]; Khyzha et al. [2017]; Schellhorn et al. [2014]. In particular, our program logic and

programming language are adapted from Khyzha et al. [2017, 2016], but with some substantial

modifications: instead of interval partial orders, we use just a concurrent trace as our notion of

possibility; we follow the object-based semantics paradigm and therefore encapsulate all state in

objects instead of having programming language constructs that directly modify the shared state;

while they maintain as an invariant that every linearization of their possibility is valid, we only

maintain that there exists at least one valid linearization. We speculate that this last modification

should make our program logic complete, while theirs is not (see our technical report [Oliveira Vale

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

A Compositional Theory of Linearizability 38:29

et al. 2022]). Since our program logic strictly generalizes theirs, we can translate to our program

logic any proof using Khyzha et al. [2017]. Although we use the particular program logic in §7, we

do not see our program logic as a major contribution of our work. Rather, it serves the purpose of

illustrating the interaction of the theory with a concrete verification methodology and that objects

linearizable under our notion of linearizability are verifiable. We believe that other program logics,

and other proof methodologies can be connected with our framework.

There has been much work in building program logics for reasoning about concurrent programs

[da Rocha Pinto et al. 2014; Dinsdale-Young et al. 2010; Feng et al. 2007; Fu et al. 2010; Jung et al. 2018;

Nanevski et al. 2014; Svendsen and Birkedal 2014; Turon et al. 2013; Vafeiadis et al. 2006; Vafeiadis

and Parkinson 2007]. Most of these works only prove soundness with respect to the particular

combination of Rely/Guarantee, Separation Logic and/or Concurrent Separation Logic involved,

but not against linearizability. This sometimes happens even when a proof method for establishing

linearizability is presented, what they justify by citing Filipovic et al. [2010] and by claiming that

they can show observational refinement. This is despite the fact that their programming language,

and hence, notion of refinement differs from that in Filipovic et al. [2010]. Notable exceptions in

this matter are Birkedal et al. [2021]; Khyzha et al. [2017]; Liang and Feng [2016].

A close relative to linearizability is logical atomicity [da Rocha Pinto et al. 2014; Jung et al. 2019,

2015]. Logical atomicity does address some of the biases delineated in §1, and Jung et al. [2015]’s

framework, Iris, is compositional, although only within the confines of Iris. In fact, logical atomicity

is intimately tied to a program logic. Strictly speaking, it only characterizes objects realizable in a

particular operational semantics, and expressible in a particular program logic. It was invented to

make it easier to prove linearizability in Hoare logics. Until recently, there was no formal account

of the relationship between the two. It has been recently shown [Birkedal et al. 2021] that logical

atomicity implies Herlihy-Wing linearizability. There is no reason to believe the reverse implication

is provable. It is, moreover, tied to atomicity. Meanwhile, linearizability (both in our treatment and

in the original Herlihy-Wing paper) is not tied to a particular logical framework, or to realizability

under a programming language. In the original Herlihy-Wing paper, it characterizes any non-

blocking sequentially consistent concurrent object that behaves as if their operations happened

atomically. The concrete part of our paper characterizes sequentially consistent concurrent objects

whose operations behave as if they had linearization intervals.

Conclusion. We believe that linearizability beyond atomicity is currently underdeveloped in

the theory, and hope that our analysis contributes to divorcing linearizability from atomicity,

as it presents a strong argument that preservation of happens-before order is the core insight of

linearizability. Along these lines, there are both practical (relaxed memory models and architectures)

and theoretical (strengthening some results appearing in the appendices) reasons to consider models

that are not sequentially consistent. We believe the framework presented here readily generalizes

to many contexts, what we intend to explore in the future. Finally, one of the main intended

applications of this work is to provide a fertile ground for developing compositional verification

methods for concurrent systems, and for proving theoretical properties of such systems.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their helpful feedback. This material is based

upon work supported in part by NSF grants 2019285, 1763399, and 2118851, and by the Defense

Advanced Research Projects Agency (DARPA) and Naval Information Warfare Center Pacific

(NIWC Pacific) under Contract No. N66001-21-C-4018. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not necessarily reflect

the views of the funding agencies.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

38:30 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

REFERENCES
Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. 2000. Full Abstraction for PCF. Inf. Comput. 163, 2 (2000),

409–470. https://doi.org/10.1006/inco.2000.2930

Samson Abramsky and Guy McCusker. 1999. Game Semantics. In Computational Logic, Ulrich Berger and Helmut Schwicht-

enberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–55. https://doi.org/10.1007/978-3-642-58622-4_1

S. Abramsky and P.-A. Mellies. 1999. Concurrent games and full completeness. In Proceedings. 14th Symposium on Logic in
Computer Science (Cat. No. PR00158). IEEE Computer Society, USA, 431–442. https://doi.org/10.1109/LICS.1999.782638

Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem Jaber, Kasper Svendsen, and Nikos Tzevelekos. 2021.

Theorems for Free from Separation Logic Specifications. Proc. ACM Program. Lang. 5, ICFP, Article 81 (aug 2021), 29 pages.
https://doi.org/10.1145/3473586

Andreas Blass. 1992. A Game Semantics for Linear Logic. Ann. Pure Appl. Log. 56, 1–3 (1992), 183–220. https://doi.org/10.

1016/0168-0072(92)90073-9

Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. 2015. Specifying Concurrent Problems: Beyond Linearizability

and up to Tasks. In Proceedings of the 29th International Symposium on Distributed Computing - Volume 9363 (DISC 2015).
Springer-Verlag, Berlin, Heidelberg, 420–435. https://doi.org/10.1007/978-3-662-48653-5_28

Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. 2017. Games and Strategies as Event Structures.

Logical Methods in Computer Science Volume 13, Issue 3 (Sept. 2017), 49. https://doi.org/10.23638/LMCS-13(3:35)2017

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2014. Parameterised Linearisability. In Automata, Languages, and
Programming, Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 98–109. https://doi.org/10.1007/978-3-662-43951-7_9

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data Abstraction.

In ECOOP 2014 – Object-Oriented Programming, Richard Jones (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

207–231. https://doi.org/10.1007/978-3-662-44202-9_9

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

Abstract Predicates. In ECOOP 2010 – Object-Oriented Programming, Theo D’Hondt (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 504–528. https://doi.org/10.1007/978-3-642-14107-2_24

Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. 2007. On the Relationship Between Concurrent Separation Logic and

Assume-Guarantee Reasoning. In Programming Languages and Systems, Rocco De Nicola (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 173–188. https://doi.org/10.5555/1762174.1762193

Ivana Filipovic, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. 2010. Abstraction for Concurrent Objects. Theor.
Comput. Sci. 411, 51–52 (dec 2010), 4379–4398. https://doi.org/10.1016/j.tcs.2010.09.021

Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about Optimistic Concurrency Using a Program

Logic for History. In CONCUR 2010 - Concurrency Theory, Paul Gastin and François Laroussinie (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 388–402. https://doi.org/10.1007/978-3-642-15375-4_27

Philippe Gaucher. 2020. Flows revisited: the model category structure and its left determinedness. Cahiers de topologie et
géométrie différentielle catégoriques LXI, 2 (2020), 208–226. https://hal.archives-ouvertes.fr/hal-01919037

Dan R. Ghica. 2013. Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits. In Computation, Logic, Games,
and Quantum Foundations. The Many Facets of Samson Abramsky: Essays Dedicated to Samson Abramsky on the Occasion of
His 60th Birthday, Bob Coecke, Luke Ong, and Prakash Panangaden (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

52–68. https://doi.org/10.1007/978-3-642-38164-5_5

Dan R. Ghica. 2019. The far side of the cube. CoRR abs/1908.04291 (2019). arXiv:1908.04291 http://arxiv.org/abs/1908.04291

Dan R. Ghica and Andrzej S. Murawski. 2004. Angelic Semantics of Fine-Grained Concurrency. In Foundations of Software
Science and Computation Structures, Igor Walukiewicz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 211–225.

https://doi.org/10.1016/j.apal.2007.10.005

Éric Goubault, Jérémy Ledent, and Samuel Mimram. 2018. Concurrent Specifications Beyond Linearizability. In 22nd
International Conference on Principles of Distributed Systems (OPODIS 2018) (Leibniz International Proceedings in Informatics
(LIPIcs)), Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira (Eds.), Vol. 125. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 28:1–28:16. https://doi.org/10.4230/LIPIcs.OPODIS.2018.28

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). Association for Computing Machinery,

New York, NY, USA, 595–608. https://doi.org/10.1145/2676726.2676975

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (OSDI’16). USENIX Association, USA, 653–669.

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David

Costanzo, and Tahina Ramananandro. 2018. Certified Concurrent Abstraction Layers. In Proceedings of the 39th ACM

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1007/978-3-642-58622-4_1
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1145/3473586
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1007/978-3-662-48653-5_28
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.1007/978-3-662-43951-7_9
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.5555/1762174.1762193
https://doi.org/10.1016/j.tcs.2010.09.021
https://doi.org/10.1007/978-3-642-15375-4_27
https://hal.archives-ouvertes.fr/hal-01919037
https://doi.org/10.1007/978-3-642-38164-5_5
https://arxiv.org/abs/1908.04291
http://arxiv.org/abs/1908.04291
https://doi.org/10.1016/j.apal.2007.10.005
https://doi.org/10.4230/LIPIcs.OPODIS.2018.28
https://doi.org/10.1145/2676726.2676975

A Compositional Theory of Linearizability 38:31

SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2018). Association for Computing

Machinery, New York, NY, USA, 646–661. https://doi.org/10.1145/3192366.3192381

Rachid Guerraoui and Eric Ruppert. 2014. Linearizability Is Not Always a Safety Property. In Networked Systems, Guevara
Noubir and Michel Raynal (Eds.). Springer International Publishing, Cham, 57–69. https://doi.org/10.1007/978-3-319-

09581-3_5

Andreas Haas, Thomas A. Henzinger, Andreas Holzer, Christoph M. Kirsch, Michael Lippautz, Hannes Payer, Ali Sezgin,

Ana Sokolova, and Helmut Veith. 2016. Local Linearizability for Concurrent Container-Type Data Structures. In 27th
International Conference on Concurrency Theory (CONCUR 2016) (Leibniz International Proceedings in Informatics (LIPIcs)),
Josée Desharnais and Radha Jagadeesan (Eds.), Vol. 59. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 6:1–6:15. https://doi.org/10.4230/LIPIcs.CONCUR.2016.6

Susumu Hayashi. 1985. Adjunction of semifunctors: Categorical structures in nonextensional λ calculus. Theoretical
Computer Science 41 (1985), 95–104. https://doi.org/10.1016/0304-3975(85)90062-3

Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. 2015. Modular Verification of Concurrency-Aware Linearizability. In

Proceedings of the 29th International Symposium on Distributed Computing - Volume 9363 (DISC 2015). Springer-Verlag,
Berlin, Heidelberg, 371–387. https://doi.org/10.1007/978-3-662-48653-5_25

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (jul 1990), 463–492. https://doi.org/10.1145/78969.78972

R. Hoofman and I. Moerdijk. 1995. A remark on the theory of semi-functors. Mathematical Structures in Computer Science 5,
1 (1995), 1–8. https://doi.org/10.1017/S096012950000061X

J. M. E. Hyland and C.-H. L. Ong. 2000. On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163, 2 (2000), 285–408.

https://doi.org/10.1006/inco.2000.2917

Martin Hyland. 1997. Game Semantics. In Semantics and Logics of Computation, Andrew M. Pitts and P.Editors Dybjer (Eds.).

Cambridge University Press, Cambridge, UK, 131–184. https://doi.org/10.1017/CBO9780511526619.005

Martin Hyland, Misao Nagayama, John Power, and Giuseppe Rosolini. 2006. A Category Theoretic Formulation for

Engeler-style Models of the Untyped λ-Calculus. Electronic Notes in Theoretical Computer Science 161 (2006), 43–57.
https://doi.org/10.1016/j.entcs.2006.04.024 Proceedings of the Third Irish Conference on the Mathematical Foundations

of Computer Science and Information Technology (MFCSIT 2004).

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),

e20. https://doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2019.

The Future is Ours: Prophecy Variables in Separation Logic. Proc. ACM Program. Lang. 4, POPL, Article 45 (dec 2019),
32 pages. https://doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. SIGPLAN Not. 50, 1 (jan 2015), 637–650.

https://doi.org/10.1145/2775051.2676980

Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew Parkinson. 2017. Proving Linearizability Using Partial Orders.

In Programming Languages and Systems: 26th European Symposium on Programming, ESOP 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings.
Springer-Verlag, Berlin, Heidelberg, 639–667. https://doi.org/10.1007/978-3-662-54434-1_24

Artem Khyzha, Alexey Gotsman, and Matthew Parkinson. 2016. A Generic Logic for Proving Linearizability. In FM 2016:
Formal Methods, John Fitzgerald, Constance Heitmeyer, Stefania Gnesi, and Anna Philippou (Eds.). Springer International

Publishing, Cham, 426–443. https://doi.org/10.1007/978-3-319-48989-6_26

Jérémie Koenig and Zhong Shao. 2020. Refinement-Based Game Semantics for Certified Abstraction Layers. In Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’20). Association for Computing Machinery,

New York, NY, USA, 633–647. https://doi.org/10.1145/3373718.3394799

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (July 2009), 107–115. https:

//doi.org/10.1145/1538788.1538814

Mohsen Lesani, Li-yao Xia, Anders Kaseorg, Christian J. Bell, Adam Chlipala, Benjamin C. Pierce, and Steve Zdancewic.

2022. C4: Verified Transactional Objects. Proc. ACM Program. Lang. 6, OOPSLA1, Article 80 (apr 2022), 31 pages.

https://doi.org/10.1145/3527324

Hongjin Liang and Xinyu Feng. 2016. A Program Logic for Concurrent Objects under Fair Scheduling. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). Association for

Computing Machinery, New York, NY, USA, 385–399. https://doi.org/10.1145/2837614.2837635

Paul-André Mellies. 2019. Categorical Combinatorics of Scheduling and Synchronization in Game Semantics. Proc. ACM
Program. Lang. 3, POPL, Article 23 (jan 2019), 30 pages. https://doi.org/10.1145/3290336

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1007/978-3-319-09581-3_5
https://doi.org/10.1007/978-3-319-09581-3_5
https://doi.org/10.4230/LIPIcs.CONCUR.2016.6
https://doi.org/10.1016/0304-3975(85)90062-3
https://doi.org/10.1007/978-3-662-48653-5_25
https://doi.org/10.1145/78969.78972
https://doi.org/10.1017/S096012950000061X
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1017/CBO9780511526619.005
https://doi.org/10.1016/j.entcs.2006.04.024
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2775051.2676980
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1007/978-3-319-48989-6_26
https://doi.org/10.1145/3373718.3394799
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3527324
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/3290336

38:32 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

Paul-André Melliès and Samuel Mimram. 2007. Asynchronous Games: Innocence Without Alternation. In CONCUR 2007 –
Concurrency Theory, Luís Caires and Vasco T. Vasconcelos (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 395–411.

https://doi.org/10.1007/978-3-540-74407-8_27

Paul-André Melliès and Léo Stefanesco. 2020. Concurrent Separation Logic Meets Template Games. In Proceedings of the
35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’20). Association for Computing Machinery, New

York, NY, USA, 742–755. https://doi.org/10.1145/3373718.3394762

M.-A. Moens, U. Berni-Canani, and Francis Borceux. 2002. On regular presheaves and regular semi-categories. Cahiers de
Topologie et Géométrie Différentielle Catégoriques 43, 3 (2002), 163–190. http://www.numdam.org/item/CTGDC_2002_

_43_3_163_0/

Andrzej S. Murawski and Nikos Tzevelekos. 2019. Higher-order linearisability. Journal of Logical and Algebraic Methods in
Programming 104 (2019), 86–116. https://doi.org/10.1016/j.jlamp.2019.01.002

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In Programming Languages and Systems, Zhong Shao (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 290–310. https://doi.org/10.1007/978-3-642-54833-8_16

Gil Neiger. 1994. Set-Linearizability. In Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing (PODC ’94). Association for Computing Machinery, New York, NY, USA, 396. https://doi.org/10.1145/197917.

198176

Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco. 2022. Layered and Object-Based

Game Semantics. Proc. ACM Program. Lang. 6, POPL, Article 42 (jan 2022), 32 pages. https://doi.org/10.1145/3498703

Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen. 2022. A Compositional Theory of Linearizability. Technical Report
YALEU/DCS/TR-1564. Yale Univ. https://flint.cs.yale.edu/publications/ctlinear.html

R Piedeleu. 2019. Picturing resources in concurrency. Ph.D. Dissertation. University of Oxford.

Uday S. Reddy. 1993. A Linear Logic Model of State. Technical Report. Dept. of Computer Science, UIUC, Urbana, IL.

Uday S. Reddy. 1996. Global State Considered Unnecessary: An Introduction to Object-Based Semantics. LISP Symb. Comput.
9, 1 (1996), 7–76. https://doi.org/10.1007/978-1-4757-3851-3_9

Silvain Rideau and Glynn Winskel. 2011. Concurrent Strategies. In 2011 IEEE 26th Annual Symposium on Logic in Computer
Science. IEEE Computer Society, USA, 409–418. https://doi.org/10.1109/LICS.2011.13

Gerhard Schellhorn, John Derrick, and Heike Wehrheim. 2014. A Sound and Complete Proof Technique for Linearizability

of Concurrent Data Structures. ACM Trans. Comput. Logic 15, 4, Article 31 (sep 2014), 37 pages. https://doi.org/10.1145/

2629496

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In Programming Languages and
Systems, Zhong Shao (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 149–168. https://doi.org/10.1007/978-3-642-

54833-8_9

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying Refinement and Hoare-Style Reasoning in a Logic for

Higher-Order Concurrency. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming
(ICFP ’13). Association for Computing Machinery, New York, NY, USA, 377–390. https://doi.org/10.1145/2500365.2500600

Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. 2006. Proving Correctness of Highly-Concurrent

Linearisable Objects. In Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’06). Association for Computing Machinery, New York, NY, USA, 129–136. https://doi.org/10.1145/

1122971.1122992

Viktor Vafeiadis and Matthew Parkinson. 2007. A Marriage of Rely/Guarantee and Separation Logic. In CONCUR 2007 –
Concurrency Theory, Luís Caires and Vasco T. Vasconcelos (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 256–271.

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.

https://doi.org/10.1007/978-3-540-74407-8_27
https://doi.org/10.1145/3373718.3394762
http://www.numdam.org/item/CTGDC_2002__43_3_163_0/
http://www.numdam.org/item/CTGDC_2002__43_3_163_0/
https://doi.org/10.1016/j.jlamp.2019.01.002
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/3498703
https://flint.cs.yale.edu/publications/ctlinear.html
https://doi.org/10.1007/978-1-4757-3851-3_9
https://doi.org/10.1109/LICS.2011.13
https://doi.org/10.1145/2629496
https://doi.org/10.1145/2629496
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/1122971.1122992
https://doi.org/10.1145/1122971.1122992

	Abstract
	1 Introduction
	1.1 The State of the Theory of Linearizability
	1.2 Summary and Main Contributions

	2 Background and Overview
	2.1 Background
	2.2 An Example on Compositionality
	2.3 Overview

	3 Concurrent Games
	3.1 Sequential Games
	3.2 Concurrent Games

	4 Concurrent Games and Synchronization
	4.1 The Copycat Strategy
	4.2 Concurrent Games and Saturated Strategies
	4.3 Refinement for Concurrent Strategies
	4.4 The Semifunctors K Conc and Emb Conc
	4.5 Fine-Grained Synchronization in Concurrent Games

	5 Linearizability
	5.1 Linearizability
	5.2 Strong Linearizability
	5.3 Computational Interpretation of Linearizability
	5.4 Interaction Refinement
	5.5 Locality

	6 The Karoubi Envelope and Abstract Linearizability
	7 Pragmatics
	7.1 Programming Language
	7.2 Program Logic
	7.3 Example Revisited

	8 Related Work and Conclusion
	Acknowledgments
	References

