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Verified compilation
CompCert : verified C compiler (Leroy et al., first released in 2008)

C Clight Cshm Cminor CminorSel RTL LTL Linear Mach Asm

Used as a basis for a large number of extensions:
• alternate semantics: CompCertTSO (weak memory model, Sevcík et al., JACM’13), CompCertS

(undefined pointer arithmetic, Besson et al., ITP’17)
• a more concrete view of the stack: Quantitative CompCert (merge the stack blocks into a single

stack region, Carbonneaux et al., PLDI’14)
• compositional compilation: Compositional CompCert (Stewart et al., POPL’15), compositional

semantics (Ramananandro et al., CPP’15), SepCompCert (Kang et al., POPL’16)

Open problems:
• verified compilation to machine code
• port all compiler passes of CompCert, including challenging inlining and tailcall recognition
• verified compilation of heterogeneous modules (mix C and Asm modules)
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Contribution: Stack-Aware CompCert

A version of CompCert with:

1 compilation to machine code
• merge the stack blocks into a unique stack region
• eliminate CompCert’s pseudo-instructions
• generate machine code

2 complete extension: we support all CompCert passes
• including challenging optimizations (function inlining, tailcall elimination)

3 compositional compilation
• stack access policy
• mix C and Asm programs
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CompCert: memory model and values

void swap(int * p1, int * p2){
int tmp = *p1;
*p1 = *p2;
*p2 = tmp;

}
int main(){
int i = 3, j = 9;
int * x = &i;
int * y = &j;
swap(x,y);
return 0;

}
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CompCert: compilation and memory model
The memory model stays the same throughout compilation, but the memory blocks change shapes.
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The stack frames in Asm are in distinct blocks!
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The abstract stack

We maintain an abstract stack in memory states, that reflects the structure of the concrete stack.

Abstract stack: a list of abstract frames.

An abstract frame records useful information about a concrete
stack frame:
• the size of this stack frame at the assembly level;
• which blocks are part of that stack frame;
• which locations of these blocks are public or private
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Abstract stack: example
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The abstract stack at the C level is:
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Abstract stack: example
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The abstract stack at the Asm level is:
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;

Stack-access policy: we may write to
• all of bswap

• public locations in bmain
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Abstract stack primitives
Semantics of all intermediate languages instrumented with push_frame and pop_frame
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at function return

pop_frame

Key argument for merging stack blocks :
The push_frame primitive only succeeds if the sum of the frames’ sizes is lower than MAX_STACK .
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Preservation of stack usage with compilation

Since the semantics include stack consumption, it must be preserved by compilation
Property to ensure: at each program point, the size of source stack should be larger than (or equal to)
the size of target stack.
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Source Target

Regular case

The sizes of the source and target stacks are equal.

|f |+ |g|= |f |+ |g|

Recall |f | is the size of f ’s stack frame at the Asm level!
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Preservation of stack usage with compilation

Since the semantics include stack consumption, it must be preserved by compilation
Property to ensure: at each program point, the size of source stack should be larger than (or equal to)
the size of target stack.
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Function inlining

Source
void g(){

⇒ G;
}
void f(){

g();
}

Target
void g(){
G;

}
void f(){

⇒ G;
}

The sizes of the source stack is larger than the target stack.

|f |+ |g| ≥ |f |
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Preservation of stack usage with compilation

Since the semantics include stack consumption, it must be preserved by compilation
Property to ensure: at each program point, the size of source stack should be larger than (or equal to)
the size of target stack.
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Tailcall inlining

Source
void g(){

G;
}
void f(){

F;
⇒ tail g();
}

Target
void g(){
G;

}
void f(){

⇒ F;
G;

}

The sizes of the source stack is larger than the target stack.

|f | ≥ |f |
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Preservation of stack usage with compilation
Since the semantics include stack consumption, it must be preserved by compilation
Property to ensure: at each program point, the size of source stack should be larger than (or equal to)
the size of target stack.

g f

Source Target

Tailcall inlining

Source
void g(){

⇒ G;
}
void f(){

F;
tail g();

}

Target
void g(){
G;

}
void f(){
F;

⇒ G;
}

Problem: How to compare the sizes of the source and target stacks

|g|
?
≥ |f |
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Preservation of stack usage with compilation

Since the semantics include stack consumption, it must be preserved by compilation
Property to ensure: at each program point, the size of source stack should be larger than (or equal to)
the size of target stack.

f g f

Source Target

Tailcall inlining

Source
void g(){

⇒ G;
}
void f(){

F;
tail g();

}

Target
void g(){
G;

}
void f(){
F;

⇒ G;
}

We keep the history of tailcalled functions:

max(|f |, |g|)≥ |f |
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The structure of the abstract stack

The abstract stack is actually a list of list of abstract frames.

abstract frame

stage of abstract frames
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From CompCert Assembly to Machine Code

code glob stack

CompCert Asm

code glob stack

“Single-Stack” Asm

code glob stack

“Flat” Asm

mem

Plain Memory

merging stack blocks pseudo-instructions
elimination

flat memory layout

instruction encoding
(RockSalt: Morrisett et al.,

PLDI’12)
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Eliminating pseudo-instructions

•
s1

•
s′1

•
s2

•
s′2

•
s3

•
s′3

Single-Stack Asm

Real Asm

call
RA ← next(PC)

allocframe
RSP ← RSP - sz; store RA

call

RSP ← RSP - 8; store (next(PC))

allocframe

RSP ← RSP - (sz - 8)

Caller Callee

Mismatch between CompCert semantics and expected semantics

We get rid of the pseudo-register RA and can do away with pseudo-instructions (simple pointer
arithmetic)
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Stack access policy

Accessible locations are either top-frame locations or public locations.
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Contextual compilation

f
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ret

data

callee-save

link
args

When a function f calls a function g , the private regions of f ’s stack
frame should not be altered.

Programs compiled from C comply with that policy.

Characterization of acceptable Asm functions.

We apply this principle to CompCertX (Gu et al., POPL’15)
• contextual compiler developed for CertiKOS
• ability to mix C and Asm functions
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Comparison with existing work

Target Completeness Compositionality Time LOC
CompCert(3.0.1) CompCert Asm complete separate - 135k

Stack-Aware CompCert Machine Code complete contextual 10.5 +48k
Quantitative CompCert SingleStack Asm w.o. some opts. N/A - 100k

Compositional CompCert CompCert Asm w.o. some opts. general 10 200k
SepCompCert CompCert Asm complete separate 2 +3k

CompCertX CompCert Asm no s.a. data contextual - +8k
CompCert-TSO x86-TSO w.o. some opts. concurrency 45 85k

CompCertS CompCert Asm w.o. some opts. N/A 25 220k

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 15 / 16



Conclusion

We develop Stack-Aware CompCert, with three distinguishing features:

1 compilation to machine code
• finite-size stack
• more concrete memory layout for Asm
• closer to actual machine code: reduction of unverified part of the compiler

2 complete extension of CompCert
• function inlining and tailcall elimination

3 compositional compilation
• extension of CompCertX
• stack access policy

Further work and perspectives:
• port to other backends: ARM, RISC-V, x86-64

• main challenge: encoding and decoding of instructions

• define a stack analysis / verification framework to reason about the stack usage of programs and
prove they run in bounded stack
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