
An Abstract Stack Based Approach to
Verified Compositional Compilation to Machine Code

Yuting Wang1, Pierre Wilke1,2, Zhong Shao1

Yale University1, CentraleSupélec2

POPL’19 – January 18th, 2019

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 1 / 16

Verified compilation
CompCert : verified C compiler (Leroy et al., first released in 2008)

C Clight Cshm Cminor CminorSel RTL LTL Linear Mach Asm

Used as a basis for a large number of extensions:
• alternate semantics: CompCertTSO (weak memory model, Sevcík et al., JACM’13), CompCertS

(undefined pointer arithmetic, Besson et al., ITP’17)
• a more concrete view of the stack: Quantitative CompCert (merge the stack blocks into a single

stack region, Carbonneaux et al., PLDI’14)
• compositional compilation: Compositional CompCert (Stewart et al., POPL’15), compositional

semantics (Ramananandro et al., CPP’15), SepCompCert (Kang et al., POPL’16)

Open problems:
• verified compilation to machine code
• port all compiler passes of CompCert, including challenging inlining and tailcall recognition
• verified compilation of heterogeneous modules (mix C and Asm modules)

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 2 / 16

Contribution: Stack-Aware CompCert

A version of CompCert with:

1 compilation to machine code
• merge the stack blocks into a unique stack region
• eliminate CompCert’s pseudo-instructions
• generate machine code

2 complete extension: we support all CompCert passes
• including challenging optimizations (function inlining, tailcall elimination)

3 compositional compilation
• stack access policy
• mix C and Asm programs

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 3 / 16

CompCert: memory model and values

void swap(int * p1, int * p2){
int tmp = *p1;
*p1 = *p2;
*p2 = tmp;

}
int main(){
int i = 3, j = 9;
int * x = &i;
int * y = &j;
swap(x,y);
return 0;

}

3
bi

9
bj

(bi,0)
bx

(bj,0)
by

(bi,0)
bp1

(bj,0)
bp2

3
btmp

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 4 / 16

CompCert: compilation and memory model
The memory model stays the same throughout compilation, but the memory blocks change shapes.

bi

bj

bx

by

bp1

bp2

btmp

main

swap

bi

bj

/0

AsmCminorClightC

The stack frames in Asm are in distinct blocks!

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 5 / 16

The abstract stack

We maintain an abstract stack in memory states, that reflects the structure of the concrete stack.

Abstract stack: a list of abstract frames.

An abstract frame records useful information about a concrete
stack frame:
• the size of this stack frame at the assembly level;
• which blocks are part of that stack frame;
• which locations of these blocks are public or private

bi

bj

bx

by

32

bmain

32

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 6 / 16

Abstract stack: example

bi

bj

bx

by

bp1

bp2

btmp

main

swap

bi

bj

/0

bmain

bswap

AsmCminorClightC

32

16

The abstract stack at the C level is:

bp1

bp2

btmp

bi

bj

bx

by

16 32

;

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 7 / 16

Abstract stack: example

bi

bj

bx

by

bp1

bp2

btmp

main

swap

bi

bj

/0

bmain

bswap

AsmCminorClightC

32

16

The abstract stack at the Asm level is:

bswap

bmain

16 32

;

Stack-access policy: we may write to
• all of bswap

• public locations in bmain

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 7 / 16

Abstract stack primitives
Semantics of all intermediate languages instrumented with push_frame and pop_frame

bmain

32

bmain

32

bswap

16

bmain

32

at function call

push_frame

at function return

pop_frame

Key argument for merging stack blocks :
The push_frame primitive only succeeds if the sum of the frames’ sizes is lower than MAX_STACK .

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 8 / 16

Preservation of stack usage with compilation

Since the semantics include stack consumption, it must be preserved by compilation
Property to ensure: at each program point, the size of source stack should be larger than (or equal to)
the size of target stack.

f

g

f

g

Source Target

Regular case

The sizes of the source and target stacks are equal.

|f |+ |g|= |f |+ |g|

Recall |f | is the size of f ’s stack frame at the Asm level!

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 9 / 16

Preservation of stack usage with compilation

Since the semantics include stack consumption, it must be preserved by compilation
Property to ensure: at each program point, the size of source stack should be larger than (or equal to)
the size of target stack.

f

g

f

Source Target

Function inlining

Source
void g(){

⇒ G;
}
void f(){

g();
}

Target
void g(){
G;

}
void f(){

⇒ G;
}

The sizes of the source stack is larger than the target stack.

|f |+ |g| ≥ |f |

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 9 / 16

Preservation of stack usage with compilation

Since the semantics include stack consumption, it must be preserved by compilation
Property to ensure: at each program point, the size of source stack should be larger than (or equal to)
the size of target stack.

f f

Source Target

Tailcall inlining

Source
void g(){

G;
}
void f(){

F;
⇒ tail g();
}

Target
void g(){
G;

}
void f(){

⇒ F;
G;

}

The sizes of the source stack is larger than the target stack.

|f | ≥ |f |

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 9 / 16

Preservation of stack usage with compilation
Since the semantics include stack consumption, it must be preserved by compilation
Property to ensure: at each program point, the size of source stack should be larger than (or equal to)
the size of target stack.

g f

Source Target

Tailcall inlining

Source
void g(){

⇒ G;
}
void f(){

F;
tail g();

}

Target
void g(){
G;

}
void f(){
F;

⇒ G;
}

Problem: How to compare the sizes of the source and target stacks

|g|
?
≥ |f |

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 9 / 16

Preservation of stack usage with compilation

Since the semantics include stack consumption, it must be preserved by compilation
Property to ensure: at each program point, the size of source stack should be larger than (or equal to)
the size of target stack.

f g f

Source Target

Tailcall inlining

Source
void g(){

⇒ G;
}
void f(){

F;
tail g();

}

Target
void g(){
G;

}
void f(){
F;

⇒ G;
}

We keep the history of tailcalled functions:

max(|f |, |g|)≥ |f |

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 9 / 16

The structure of the abstract stack

The abstract stack is actually a list of list of abstract frames.

abstract frame

stage of abstract frames

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 10 / 16

From CompCert Assembly to Machine Code

code glob stack

CompCert Asm

code glob stack

“Single-Stack” Asm

code glob stack

“Flat” Asm

mem

Plain Memory

merging stack blocks pseudo-instructions
elimination

flat memory layout

instruction encoding
(RockSalt: Morrisett et al.,

PLDI’12)

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 11 / 16

Eliminating pseudo-instructions

•
s1

•
s′1

•
s2

•
s′2

•
s3

•
s′3

Single-Stack Asm

Real Asm

call
RA ← next(PC)

allocframe
RSP ← RSP - sz; store RA

call

RSP ← RSP - 8; store (next(PC))

allocframe

RSP ← RSP - (sz - 8)

Caller Callee

Mismatch between CompCert semantics and expected semantics

We get rid of the pseudo-register RA and can do away with pseudo-instructions (simple pointer
arithmetic)

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 12 / 16

Stack access policy

Accessible locations are either top-frame locations or public locations.

bmain

32

bmain

32

bswap

16

bmain

32

at function call

push_frame

at function return

pop_frame

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 13 / 16

Contextual compilation

f

g

ret

data

callee-save

link
args

When a function f calls a function g , the private regions of f ’s stack
frame should not be altered.

Programs compiled from C comply with that policy.

Characterization of acceptable Asm functions.

We apply this principle to CompCertX (Gu et al., POPL’15)
• contextual compiler developed for CertiKOS
• ability to mix C and Asm functions

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 14 / 16

Comparison with existing work

Target Completeness Compositionality Time LOC
CompCert(3.0.1) CompCert Asm complete separate - 135k

Stack-Aware CompCert Machine Code complete contextual 10.5 +48k
Quantitative CompCert SingleStack Asm w.o. some opts. N/A - 100k

Compositional CompCert CompCert Asm w.o. some opts. general 10 200k
SepCompCert CompCert Asm complete separate 2 +3k

CompCertX CompCert Asm no s.a. data contextual - +8k
CompCert-TSO x86-TSO w.o. some opts. concurrency 45 85k

CompCertS CompCert Asm w.o. some opts. N/A 25 220k

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 15 / 16

Conclusion

We develop Stack-Aware CompCert, with three distinguishing features:

1 compilation to machine code
• finite-size stack
• more concrete memory layout for Asm
• closer to actual machine code: reduction of unverified part of the compiler

2 complete extension of CompCert
• function inlining and tailcall elimination

3 compositional compilation
• extension of CompCertX
• stack access policy

Further work and perspectives:
• port to other backends: ARM, RISC-V, x86-64

• main challenge: encoding and decoding of instructions

• define a stack analysis / verification framework to reason about the stack usage of programs and
prove they run in bounded stack

Yuting Wang, Pierre Wilke, Zhong Shao An Abstract Stack Based Approach to Verified Compositional Compilation to Machine Code 16 / 16

