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Abstract

A certified binary is a value together with a proof that the value satisfies a given specification. Existing compilers that generate certified
code have focused on simple memory and control-flow safety rather than more advanced properties. In this paper, we present a genera
framework for explicitly representing complex propositions and proofs in typed intermediate and assembly languages. The new framework
allows us to reason about certified programs that involve effects while still maintaining decidable typechecking. We show how to integrate
an entire proof system (the calculus of inductive constructions) into a compiler intermediate language and how the intermediate language can
undergo complex transformations (CPS and closure conversion) while preserving proofs represented in the type system. Our work provides
afoundation for the process of automatically generating certified binariesin a type-theoretic framework.
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Abstract

A certified binary is a value together with a proof that the value
sati sfies a given specification. Existing compilers that generate cer-
tified code have focused on simple memory and control-flow safety
rather than more advanced properties. In this paper, we present
a genera framework for explicitly representing complex proposi-
tions and proofs in typed intermediate and assembly languages.
The new framework allows us to reason about certified programs
that involve effects while still maintaining decidable typechecking.
We show how to integrate an entire proof system (the calculus of
inductive constructions) into acompiler intermediate language and
how the intermediate language can undergo complex transforma-
tions (CPS and closure conversion) while preserving proofs rep-
resented in the type system. Our work provides a foundation for
the process of automatically generating certified binaries in atype-
theoretic framework.

1 Introduction

Proof-carrying code (PCC), as pioneered by Necula and Lee [30,
29], adlows a code producer to provide a machine-language pro-
gram to a host, along with a formal proof of its safety. The proof
can be mechanically checked by the host; the producer need not be
trusted because a valid proof isincontrovertible evidence of safety.

The PCC framework is general because it can be applied to cer-
tify arbitrary data objects with complex specifications [32, 2]. For
example, the Foundational PCC system [3] can certify any property
expressible in Church’s higher-order logic. Harper et al. [19, 7]
call all these proof-carrying constructs certified binaries (or deliv-
erables[7]). A certified binary is avalue (which can be a function,
a data structure, or a combination of both) together with a proof
that the value satisfies a given specification.

Unfortunately, little is known on how to construct or generate
certified binaries. Existing certifying compilers [31, 9] have fo-
cused on simple memory and control-flow safety only. Typed inter-
mediate languages [22] and typed assembly languages [28] are ef-
fective techniques for automatically generating certified code; how-
ever, none of these type systems can rival the expressiveness of the
actual higher-order logic as used in some PCC systems|[3].

In this paper, we present a type-theoretic framework for con-
structing, composing, and reasoning about certified binaries. Our
plan is to use the formulae-as-types principle [24] to represent
propositions and proofs in a general type system, and then to in-
vestigate their relationship with compiler intermediate and assem-
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bly languages. We show how to integrate an entire proof system
(the calculus of inductive constructions [35, 11]) into an intermedi-
ate language, and how to define complex transformations (CPS and
closure conversion) of programs in this language so that they pre-
serve proofs represented in the type system. Our paper builds upon
a large body of previous work in the logic and theorem-proving
community (see Barendregt et al. [5, 4] for a good summary), and
makes the following new contributions:

e We show how to design new typed intermediate languages
that are capable of representing and manipulating proposi-
tions and proofs. In particular, we show how to maintain
decidability of typechecking when reasoning about certified
programs that involve effects. Thisis different from the work
done in the logic community which focuses on strongly nor-
malizing (primitive recursive) programs.

e \We maintain a phase distinction between compile-time type-
checking and run-time evaluation. This property is often lost
in the presence of dependent types (which are necessary for
representing proofs in predicate logic). We achieve this by
never having the type language (see Section 3) dependent on
the computation language (see Section 4). Proofs are instead
always represented at the type level using dependent kinds.

o We show how to use propositions to express program invari-
ants and how to use proofs to serve as static capabilities. Fol-
lowing Xi and Pfenning [44], we use singleton types [23]
to support the necessary interaction between the type and
computation languages. We can assign an accurate type to
unchecked vector (or array) access (see Section 4.2). Xi and
Pfenning [44] can achieve the same using constraint check-
ing, but their system does not support arbitrary propositions
and (explicit) proofs, so it isless general than ours.

e We use a single type language to typecheck different com-
piler intermediate languages. Thisis crucial becauseitisim-
practical to have separate proof libraries for each intermedi-
ate language. We achieve this by using inductive definitions
to define all types used to classify computation terms. Thisin
turn nicely fits our work on (fully reflexive) intensiona type
analysis[39] into asingle system.

e We show how to perform CPS and closure conversion on our
intermediate languages while still preserving proofs repre-
sented in the type system. Existing algorithms [28, 21, 26, 6]
all require that the transformation be performed on the entire
type language. This is impractical because proofs are large
in size; transforming them can alter their meanings and break
the sharing among different languages. We present new tech-
niques that completely solve these problems (Sections 5-6).



e Our type language is a variant of the calculus of inductive
constructions [35, 11]. Following Werner [41], we give rig-
orous proofs for its meta-theoretic properties (subject reduc-
tion, strong normalization, confluence, and consistency of the
underlying logic). We also give the soundness proof for our
sample computation language. See Sections 3 and 4, and the
appendix for more details.

As far as we know, our work is the first comprehensive study on
how to incorporate higher-order predicate logic (with inductive
terms and predicates) into typed intermediate languages. Our re-
sults are significant because they open up many new exciting pos-
sibilities in the area of type-based language design and compila-
tion. The fact that we can internalize a very expressive logic into
our type system means that formal reasoning traditionally done at
the meta level can now be expressed inside the actual language it-
self. For example, much of the past work on program verification
using Hoare-like logics may now be captured and made explicit in
atyped intermediate language.

From the standpoint of type-based language design, recent
work [22, 44, 13, 15, 40, 39] has produced many specialized,
increasingly complex type systems, each with its own meta-
theoretical proofs, yet it is unclear how they will fit together. We
can hope to replace them with one very general type system whose
metatheory isproved once and for all, and that allows the definition
of specialized type operators via the general mechanism of induc-
tive definitions. For example, inductive definitions subsume and
generalize earlier systems on intensional type analysis[22, 14, 39].

We have started implementing our new type system in the
FLINT compiler [36, 37], but making the implementation realis-
tic still involves solving many remaining problems (e.g., efficient
proof representations). Neverthel ess, we believe our current contri-
butions constitute a significant step toward the goal of providing a
practical end-to-end compiler that generates certified binaries.

2 Approach

Our main objectives are to design typed intermediate and low-level
languages that can directly manipulate propositions and proofs, and
then to use them to certify realistic programs. We want our type
system to be simple but general; we also want to support complex
transformations (CPS and closure conversion) that preserve proofs
represented in the type system. In thissection, we describethemain
challenges involved in achieving these goals and give a high-level
overview of our main techniques.

Before diving into the details, we first establish a few naming
conventions that we will use in the rest of this paper. Typed inter-
mediate languages are usually structured in the same way as typed
A-caleuli. Figure 1 gives a fragment of a richly typed A-calculus,
organized into four levels: kind schema (kscm) u, kind «, type 7,
and expression (exp) e. If we ignore kind schema and other exten-
sions, thisisjust the polymorphic A-calculus F, [18].

We divide each typed intermediate language into a type sub-
language and a computation sub-language. The type language con-
tains the top three levels. Kind schemas classify kind terms while
kinds classify type terms. We often say that akind term « has kind
schema u, or atype term 7 haskind x. We assume al kinds used
to classify type terms have kind schema Kind, and all types used to
classify expressions have kind 2. Both the function type 1 — 72
and the polymorphic type Vt : .7 have kind 2. Following the
tradition, we sometimes say “a kind <" to imply that x has kind
schema Kind, “atype 7 to imply that = has kind €2, and “a type
constructor 7" to imply that + haskind “x — - - - — Q.” Kind terms
with other kind schemas, or type terms with other kinds are strictly
referred to as “kind terms” or “type terms.”

THE TYPE LANGUAGE!

(kscm)  w = Kind | ...

(kind) kKu=kK1—k2 |Q]...

(type) Tu=t|Aik.T|TiT2|TI—>T2 | VKT ..
THE COMPUTATION LANGUAGE!:

(exp) eun=z|Ax:T.e|erex|At:k.e|e[r]]...

Figure 1. Typed A\-calculi—a skeleton

The computation language contains just the lowest level which
is where we write the actual program. This language will eventu-
ally be compiled into machine code. We often use names such as
computation terms, computation values, and computation functions
to refer to various constructs at this level.

2.1 Representing propositions and proofs

Thefirst step isto represent propositions and proofs for aparticular
logic in a type-theoretic setting. The most established technique
is to use the formulae-as-types principle (ak.a. the Curry-Howard
correspondence) [24] to map propositions and proofs into a typed
A-calculus. The essentia idea, which is inspired by constructive
logic, is to use types (of kind €2) to represent propositions, and
expressions to represent proofs. A proof of animplication PO Q is
afunction object that yields a proof of proposition ¢ when applied
to a proof of proposition P. A proof of aconjunction P A Q isa
pair (e1, e2) such that e; isaproof of P and e, isaproof of Q. A
proof of disjunction PV @ isapair (b, e)—atagged union—where
biseither 0 or 1 and if b=0, then e isaproof of P;if b=1thene
isaproof of Q. Thereisno proof for the false proposition. A proof
of a universally quantified proposition Vz € B.P(x) is a function
that maps every element b of the domain B into a proof of P(b)
where P isaunary predicate on elements of B. Finally, a proof of
an existentially quantified proposition 3z€B.P(x) isapair (b, e)
where b isan element of B and e isa proof of P(b).
Proof-checking in the logic now becomes typechecking in the
corresponding typed A-calculus. There has been a large body of
work done aong this line in the last 30 years, most type-based
proof assistants are based on this fundamental principle. Baren-
dregt et al. [5, 4] give agood survey on previous work in this area.

2.2 Representing certified binaries

Under the type-theoretic setting, a certified binary S is just a pair
(v, e) that consists of:

e avauew of type 7 where v could be a function, a data struc-
ture, or any combination of both;

e and a proof e of P(v) where P isaunary predicate on ele-
ments of type .

Here e isjust an expression with type P(v). The predicate P isa
dependent type constructor with kind 7 — Q2. The entire package S
has a dependent strong-sum type Xz : 7. P(z).

For example, suppose Nat is the domain for natural numbers
and Prime is a unary predicate that asserts an element of Nat as
a prime number, we introduce a type nat representing Nat, and a
type constructor prime (of kind nat — ) representing Prime. We
can build a certified prime-number package by pairing a value v



(a natural number) with a proof for the proposition prime(v); the
resulting certified binary hastype Xz :nat. prime(z).

Function values can be certified in the same way. Given afunc-
tion f that takes a natural number and returns another one as the
result (i.e., f hastype nat — nat), in order to show that f aways
maps a prime to another prime, we need a proof for the following
proposition:

Vaz€Nat. Prime(x) D Prime(f(x))

In atyped setting, this universally quantified proposition is repre-
sented as a dependent product type:

Iz : nat. prime(z) — prime(f(x))
The resulting certified binary has type
3 f:nat — nat. IIz:nat. prime(z) — prime(f(x))

Here the type is not only dependent on values but also on function
applications such as f(x), so verifying a certified binary involves
typechecking the proof which in turn requires evaluating the under-
lying function application.

2.3 The problems with dependent types

The above scheme unfortunately fails to work in the context of
typed intermediate (or assembly) languages. There are at least four
problems with dependent types; the third and fourth are present
even in the genera context.

First, real programs often involve effects such as assignment,
1/0, or non-termination. Effects interact badly with dependent
types. In our previous example, suppose thefunction f does not ter-
minate on certain inputs; then clearly, typechecking—which could
involve applying f—would become undecidable. It is possible to
use the effect discipline [38] to force types to be dependent on pure
computation only, but this does not work in some typed A-calculi;
for example, a“pure’ termin Girard’s AU [18] could still diverge.

Even if applying f does not involve any effects, we till have
more serious problems. In a type-preserving compiler, the body
of the function f has to be compiled down to typed low-level lan-
guages. A few compilers perform typed CPS conversion [28], but
in the presence of dependent types, this is a very difficult prob-
lem [6]. Also, typechecking in low-level languages would now re-
quire performing the equivalent of 3-reductions on the low-level
(assembly) code; thisis awkward and difficult to support cleanly.

Third, it is important to maintain a phase distinction between
compile-time typechecking and run-time evaluation. Having de-
pendent strong-sum and dependent product types makes it harder
to preserve this property. It is aso difficult to support first-class
certified binaries.

Finally, it would be nice to support anotion of subset types[10,
33]. A certified binary of type X« : nat. prime(x) containsanatural
number v and aproof that v isaprime. However, in some cases, we
just want v to belong to a subset type {« : nat | prime(x)},i.e, vis
aprime number but the proof of thisis not together with v; instead,
it can be constructed from the current context.

2.4 Separating the type and computation languages

We solve these problems by making sure that our type language is
never dependent on the computation language. Because the actual
program (i.e., the computation term) would have to be compiled
down to assembly code in any case, it is a bad idea to treat it as
part of types. This strong separation immediately gives us back the
phase-distinction property.

To represent propositions and proofs, we lift everything one
level up: we use kinds to represent propositions, and type terms
to represent proofs. The domain Nat isnow represented by akind
Nat; the predicate Prime isrepresented by a dependent kind term
Prime which maps a type term of kind Nat into a proposition. A
proof for proposition Prime(n) certifies that the type term n is a
prime number.

To maintain decidable typechecking, we insist that the type lan-
guage is strongly normalizing and free of side effects. Thisis pos-
sible because the type language no longer depends on any runtime
computation. Given atype-level function g of kind Nat — Nat, we
can certify that it always maps a prime to another prime by build-
ing a proof 7, for the following proposition, now represented as a
dependent product kind:

IT¢ : Nat.Prime(t) — Prime(g(t)).

Essentially, we circumvent the problems with dependent types by
replacing them with dependent kinds and by lifting everything (in
the proof language) one level up.

To reason about actual programs, we still have to connect terms
in the type language with those in the computation language. We
follow Xi and Pfenning [44] and use singleton types [23] to relate
computation values to type terms. In the previous example, we in-
troduce a singleton type constructor snat of kind Nat — Q2. Givena
type termn of kind Nat, if acomputation value v hastype snat(n),
then v denotes the natural number represented by n.

A certified binary for a prime number now contains three parts:
atype term n of kind Nat, a proof for the proposition Prime(n),
and a computation value of type snat(n). We can pack it up into
an existential package and make it afirst-class value with type:

In:Nat.3¢t:Prime(n).snat(n).

Here we use 3 rather than X to emphasize that types and kinds
are no longer dependent on computation terms. Under the erasure
semantics [16], this certified binary is just an integer value of type
snat(n) at runtime.

A value v of the subset type (for prime numbers) would simply
have typesnat(n) aslong aswe can construct aproof for Prime(n)
based on the information from the context.

We can also build certified binaries for programs that involve
effects. Returning to our example, assume again that f is a func-
tion in the computation language which may not terminate on some
inputs. Suppose we want to certify that if theinput to f isaprime,
and the call to f does return, then theresult isalso aprime. We can
achieve thisin two steps. First, we construct a type-level function
g of kind Nat — Nat to simulate the behavior of f (on al inputs
where f does terminate) and show that f has the following type:

Vn:Nat. snat(n) — snat(g(n))

Here following Figure 1, we use V and — to denote the polymor-
phic and function types for the computation language. The type for
f saysthat if it takes an integer of type snat(n) as input and does
not loop forever, then it will return an integer of type snat(g(n)).
Second, we construct a proof 7, showing that g aways maps a
prime to another prime. The certified binary for f now also con-
tains three parts: the type-level function g, the proof 7, and the
computation function f itself. We can pack it into an existential
package with type:

Jg:Nat— Nat. Jp: (It : Nat.Prime(t) — Prime(g(t))).
Vn:Nat. snat(n) — snat(g(n))

Notice this type aso contains function applications such as g(n),
but g isatype-level function which isaways strongly normalizing,
so typechecking is still decidable.



We can also restrict f so that it can only be applied to prime
numbers; al we need isto add an additional proof argument, so f
has type:

Vn:Nat.Vt: Prime(n). snat(n) — snat(g(n)).

Here, the parameter ¢ serves as a static capability; a proof for
Prime(n) existsonly if n isindeed a prime.

2.5 Designing the type language

We can incorporate propositions and proofs into typed intermedi-
ate languages, but designing the actual type language is still a chal-
lenge. For decidable typechecking, the type language should not
depend on the computation language and it must satisfy the usual
meta-theoretical properties (e.g. strong normalization).

But the type language also has to fulfill its usual responsibil-
ities. First, it must provide a set of types (of kind Q) to classify
the computation terms. A typical compiler intermediate language
supports alarge number of basic type constructors (e.g., integer, ar-
ray, record, tagged union, and function). These types may change
their forms during compilation, so different intermediate languages
may have different definitions of 2; for example, a computation
function at the source level may be turned into CPS-style, or later,
to one whose arguments are machine registers [28]. We also want
to support intensional type analysis [22] which is crucial for type-
checking runtime services [27].

Our solution is to provide a genera mechanism of inductive
definitions in our type language and to define each such Q as an
inductive kind. This was made possible only recently [39] and it
relies on the use of polymorphic kinds. Taking thetype languagein
Figure 1 as an example, we add kind variables k£ and polymorphic
kinds I1k : u. k, and replace 2 and its associated type constructors
with inductive definitions (hot shown):

(kscm)  w = Kind | ...
(kind) Kk :u=kr1—ke | k|Hk:iuk]...
(type) Tu=t|M:k.T|Ti7T2| Aeiu.T | T[R]|...

At the type level, we add kind abstraction Ak : «. 7 and kind appli-
cation 7[k]. Thekind 2 is now inductively defined as follows (see
Sections 34 for more details):

Inductive  : Kind (= —: Q—Q—Q

|V : 1k:Kind. (k—Q)—Q

Here — and V aretwo of the constructors (of §2). The polymorphic
type V¢ : k. 7 is now written as V[k] (At : k. 7); the function type
T1 — T2 iSjUS —»T172.

Inductive definitions also greatly increase the programming
power of our type language. We can introduce new data objects
(e.g., integers, lists) and define primitive recursive functions, al at
the type level; these in turn are used to help model the behaviors of
the computation terms.

To have the type language double up as a proof language
for higher-order predicate logic, we add dependent product kind
[Tt : k1. k2, which subsumes the arrow kind k1 — k2; we also add
kind-level functionsto represent predicates. Thusthetypelanguage
naturally becomes the calculus of inductive constructions [35].

Notice standard formulation of Church’s higher-order logic
puts propositions at the same level as terms (which are type terms
in our setup); proofs are then represented at alevel below (parallel
to our computation language). This does not work because we al-
ready require polymorphic kinds for the inductive definition of ;

with impredicative polymorphism on both the kind and type levels,
the proof language becomes Girard’'s AU [18] which is known to
be inconsistent.

2.6 Proof-preserving compilation

Even with a proof system integrated into our intermediate lan-
guages, we still have to make sure that they can be CPS- and
closure-converted down to low-level languages. These transforma-
tions should preserve proofs represented in the type system; in fact,
they should not traverse the proofs at all since doing so isimpracti-
cal with large proof libraries.

These challenges are non-trivial but the way we set up our type
system makes it easier to solve them. First, because our type lan-
guage does not depend on the computation language, we do not
have the difficulties involved in CPS-converting dependently typed
A-caleuli [6]. Second, all our intermediate languages share the
same type language thus al so the same proof library; thisis possible
because the 2 kind (and the associated types) for each intermediate
language isjust aregular inductive definition.

Finaly, a type-preserving program transformation often re-
quires translating the source types (of the source €2 kind) into the
target types (of the target 2 kind). Existing CPS- and closure-
conversion algorithms [28, 21, 26] al perform such trandlation at
the meta-level; they have to go through every type term (thus every
proof term in our setting) during the translation, because any type
term may contain a sub-term which has the source Q kind. In our
framework, the fact that each 2 kind is inductively defined means
that we can internalize and write the type-translation function in-
side our type language itself. Thisleads to elegant algorithms that
do not traverse any proof terms but still preserve typing and proofs
(see Sections 5-6 for details).

2.7 Putting it all together

A certifying compiler in our framework will have a series of in-
termediate languages, each corresponding to a particular stage in
the compilation process; all will share the same type language. An
intermediate language is now just the type language plus the cor-
responding computation terms, along with the inductive definition
for the corresponding 2 kind. In the rest of this paper, we first give
aformal definition of our type language (which will be named as
TL from now on) in Section 3; we then present a sample computa-
tion language A in Section 4; we show how A\ can be CPS- and
closure-converted into low-level languages in Sections 5-6; finaly,
we discuss related work and then conclude.

3 The Type Language TL

Our typelanguage TL resemblesthe cal culus of inductive construc-
tions (Cic) implemented in the Coq proof assistant [25]. Thisisa
great advantage because Coq is a very mature system and it has
alarge set of proof libraries which we can potentialy reuse. For
this paper, we decided not to directly use Cic as our type language
for three reasons. First, Cic contains some features designed for
program extraction [34] which are not required in our case (where
proofs are only used as specifications for the computation terms).
Second, asfar aswe know, there are still no formal studies covering
the entire Cic language. Third, for theoretical purposes, we want
to understand what are the most essential features for modeling cer-
tified binaries.

Motivations Following the discussion in Section 2.5, we orga-
nize TL into the following three levels:



(kscm)  w =z | IMt: k. w | Tk u;. ug | Kind

(kind) &=k | At:k1. ke | R[T] | Ak u. k| K1 K2
| t: k1. k2 | Tk u. & | I1z: Ksem. K
| Ind(k:Kind){&} | Elim[s’, u](7){K}

(type) 7u=t|A:k.T|T1T2 | Akiu.T | T[R]
| Az:Ksem. 7 | 7[u] | Ctor (4, k)
| Elim[s, k] (") {7}

Here kind schemas (kscm) classify kind terms while kinds classify
type terms. There are variables at al three levels: kind-schema
variables z, kind variables k, and type variables t. We have an ex-
ternal constant Kscm classifying all the kind schemas; essentially,
TL has an additiona level above kscm, of which Ksem is the sole
member.

A good way to comprehend TL is to look at its five IT con-
structs: there are three at the kind level and two at the kind-schema
level. We use afew examples to explain why each of them isneces-
sary. Following the tradition, we use arrow terms (e.9., k1 — k2) &S
asyntactic sugar for the non-dependent I terms (e.g., [It : k1. k2 iS
non-dependent if ¢ does not occur freein kz).

e Kinds It : k1. k2 and k1 — ko are used to typecheck the
type-level function A\t : k.7 and its application form 7 7».
Assuming Q2 and Nat are inductive kinds (defined later) and
Prime is a predicate with kind schema Nat — Kind, we
can write a type term such as A\t : Q.t which has kind
Q — Q, atypelevd arithmetic function such as plus which
has kind Nat — Nat — Nat, or the universally quantified
proposition in Section 2.2 which is represented as a kind
I1¢ : Nat.Prime(t) — Prime(g(t)).

e KindsIIk : u. k and u — ~ are used to typecheck the type-
level kind abstraction Ak : u. 7 and its application form 7 [x].
As mentioned in Section 2.5, this is needed to support inten-
sional analysis of quantified types [39]. It can also be used to
define logic connectives and constants, e.g.

True : Kind IIk:Kind. k — k
False : Kind 11k :Kind. k

True has the polymorphic identity as a proof:
id : True = Mk:Kind. At:k.t

but False is not inhabited (this is essentially the consistency
property of TL which we will show later).

e Kind Iz : Kscm. k is used to typecheck the type-level kind-
schema abstraction Az : Ksecm. 7 and its application form
7[u]. Thisis not in the core calculus of constructions [11].
We use it in the inductive definition of Q (see Section 4)
where both the Vkscm and Jkscm constructors have kind 1z :
Ksem. (z— Q) — Q. These two constructors in turn allow
us to typecheck predicate-polymorphic computation terms,
which occur fairly often since the closure-conversion phase
turns all functions with free predicate variables (e.g, Prime)
into predicate-polymorphic ones.

e Kind schemas ITt : k. v and k — u are used to typecheck the
kind-level type abstraction \t: x1. k2 and itsapplication form
k[7]. The predicate Prime has kind schema Nat — Kind.
A predicate with kind schema I1t : Nat. Prime(t) — Kind is
only applicable to prime numbers. We can also define e.g. a
binary relation:

LT : Nat— Nat— Kind

so that LT ¢; t2 is a proposition asserting that the natural
number represented by ¢; islessthan that of ¢..

Inductive Bool : Kind := true : Bool
| false : Bool

Inductive Nat : Kind := zero : Nat
| succ : Nat— Nat
plus : Nat — Nat— Nat

At:Nat. ¢
At":Nat. succ ((plus t) t')

plus(zero)
plus(succ t)

ifez : Nat — (ITk: Kind. k — (Nat— k) — k)

Ak:Kind. At1:k. Mt2:Nat— k. t1
Ak:Kind. At1:k. Ata:Nat— k. to t

ifez(zero)
ifez(succ t)

le : Nat— Nat— Bool

At:Nat. true
At':Nat. ifez ¢’ Bool false (le t)

le(zero)
le(succ t)

It : Nat— Nat— Bool
It = MAt:Nat.le (succt)

Cond : Bool — Kind — Kind — Kind

Cond(true) k1 :Kind. M2 :Kind. k1
Cond(false) Ak1:Kind. A2 : Kind. k2

Figure 2: Examples of inductive definitions

e Kind schemas Ik : w;.u2 and u1 — us are used to type-
check the kind-level function Ak : u.x and its application
form k1 k2. We use it to write higher-order predicates and
logic connectives. For example, the logical negation operator
can be written as follows:

Not : Kind — Kind = Ak:Kind. (k— False)

The consistency of TL impliesthat aproposition and its nega-

tion cannot be both inhabited—otherwise applying the proof

of the second to that of the first would yield a proof of False.

TL aso provides a general mechanism of inductive defini-
tions [35]. The term Ind(k : Kind){&} introduces an inductive
kind %k containing a list of constructors whose kinds are speci-
fied by K. Here k must only occur “positively” inside each x;
(see Appendix D for the formal definition of positivity). The term
Ctor (1, ) refersto the i-th constructor in an inductive kind «. For
presentation, we will use a more friendly syntax in the rest of this
paper. Aninductivekind I = Ind(k:Kind){R} will be written as:

Inductive I : Kind :=c; : [I/k]k1
| Co ¢ [I/k]HQ

i Cn : [L/K]kn

We give an explicit name c; to each constructor, so c; is just an
abbreviation of Ctor (z,1). For simplicity, the current version of
TL does not include parameterized inductive kinds, but supporting
them is quite straightforward [41, 35].

TL provides two iterators to support primitive recursion on in-
ductive kinds. The small elimination Elim[x’, x](7'){7} takes a
type term 7’ of inductive kind «’, performs the iterative operation
specified by 7 (which contains a branch for each constructor of '),
and returns atype term of kind «[7'] as the result. The large elimi-
nation Elim[x’, u](7){K} takes atype term 7 of inductive kind &',
performs the iterative operation specified by &, and returns a kind



(sort) s ::= Kind | Kscm | Ext
(var) X ==z|k|t

(ptm) A,B:u=s|X|AX:A B|AB|IIX:A.B
| Ind(X :Kind){A} | Ctor (i, A)
| Elim[A’, B'|(A){B}

Figure 3: Syntax of the type language TL

term of kind schema u as the result. These iterators generalize the
Typerec operator used in intensional type analysis [22, 14, 39].
Figure 2 givesafew examples of inductive definitionsincluding
the inductive kinds Bool and Nat and several type-level functions
which we will use in Section 4. The small elimination for Nat
takes the following form Elim[Nat, &](7'){71; 2}. Here, x isa
dependent kind with kind schema Nat — Kind; 7’ is the argument
which has kind Nat. The term in the zero branch, =, has kind
k[r']. The term in the succ branch, 72, has kind Nat — &[r'] —
k[7']. TL uses the (-reduction to perform the iterator operation.
For example, the two (-reduction rules for Nat work as follows:

Elim[Nat, x](zero){r1; 72} ~», 1
Elim[Nat, x](succ 7){m1; 2} ~, 72 7 (Elim[Nat, 5](7){71; = })

The general «-reduction rule is defined formally in Appendix D.
In our examples, we take the liberty of using the pattern-matching
syntax (asin ML) to express the iterator operations, but they can be
easily converted back to the Elim form.

In Figure 2, plus is afunction which calculates the sum of two
natural numbers. The function ifez behaves like a switch statement:
if its argument is zero, it returns a function that selects the first
branch; otherwise, the result takes the second branch and applies
it to the predecessor of the argument. The function le evaluates to
true if its first argument is less than or equal to the second. The
function It performs the less-than comparison.

The definition of function Cond, which implements a condi-
tional with result at the kind level, uses large elimination on Bool.
It has the form Elim[Bool, u](7){k1; k2 }, where 7 is of kind Bool;
both the true and false branches (x; and x2) have kind schema w.

Formalization We want to give a formal semanticsto TL and
then reason about its meta-theoretical properties. But the five IT
constructs have many redundancies, so in the rest of this paper, we
will model TL as a pure type system (PTS) [4] extended with in-
ductive definitions. Intuitively, instead of having a separate syntac-
tical category for each level, we collapse all kind schemas u, kind
terms x, type terms 7, and the external constant Kscm into asingle
set of pseudoterms (ptm), denoted as A or B. Similar constructs
can now share typing rules and reduction relations.

Figure 3 gives the syntax of TL, written in PTS style. Thereis
now only one IT construct (ITX : A. B), one X-abstraction (A X :
A. B), and one application form (A B); two iterators for inductive
definitions are also merged into one (Elim[A’, B'|(A){B}). We
use X and Y to represent generic variables, but we will still uset,
k, and z if the class of avariable is clear from the context.

TL has the following PTS specification which we will use to
derive itstyping rules:

S = Kind, Kscm, Ext
A = Kind:Ksecm, Kscm: Ext
R = (Kind,Kind), (Kscm, Kind), (Ext, Kind)

(Kind, Kscm), (Kscm, Kscm)

Here S contains the set of sorts used to denote universes. We have
to add the constant Ext to support quantification over Kscm. Our

names for the sorts reflect the fact we lifted everything one level
up; they are related to other systems via the following table:

Systems Notations
TL Kind Kscm Ext
Werner [41] Set Type Ext
Coq/Cic[25] | Set,Prop Type(0) Type(1)
Barendregt [4] * m| VAN

The axioms in the set .4 denote the relationship between different
sorts; an axiom “s; : s2” means that s, classifies s;. Therulesin
the set R are used to define well-formed IT constructs, from which
we can deduce the set of well-formed \-definitions and applica
tions. For example, the five rules for TL can be related to the five
IT constructs through the following table:

PTSrules\ptm | IIX:A.B AX:A.B | AB
(Kind, Kind) IIt: k1. ko M:iKk. T T1 T2
(Ksecm, Kind) Ik:u. Kk Ak:u. T T[K]

(Ext, Kind) IIz:Ksem. k| Az:Ksem. 7 | 7[u]
(Kind, Kscm) It : k. u Ak k2 | K[T]
(Ksem, Ksem) | IIk:ui.us Ak:u. K KK

We define a context A asalist of bindings from variables to pseu-
doterms:

(etxt) An=-]AX:A

Thetyping judgment for the PTS-style TL now takestheform A +
A : A’ meaning that within context A, the pseudoterm A is well-
formed and has A’ as its classifier. We can now write a single
typing rule for al the IT constructs:

AFA:s1 AJX:AF B:sz (s1,82)€R
AFIIX:A B: so

Take therule (Kind, Kscm) as an example. To build awell-formed
term I1X : A. B, which will be a kind schema (because s; is
Kscm), we need to show that A is a well-formed kind and B is
awell-formed kind schema assuming X has kind A. We can aso
share the typing rules for al the A-definitions and applications:

AX:AF B: B AFIIX:A. B :s
AFMX:AB:1IX:A B

(PROD)

(FUN)

AF A:TIIX:B'. A A+ B:B
A+ AB:[B/X)A

The reduction relations can aso be shared. TL supports the stan-
dard $3- and n-reductions (denoted as ~»g and ~,) plus the previ-
ously mentioned (-reduction (denoted as ~~,) on inductive objects
(see Appendix D). We use >, &>, and t>, to denote the relations
that correspond to the rewriting of subterms using therelations~»3,
~>p, and ~, respectively. We use ~» and > for the unions of the
above relations. We also write =g,,, for the reflexive-symmetric-
transitive closure of .

The complete typing rules for TL and the definitions of all
the reduction relations are given in Appendix D. Following
Werner [41] and Geuvers [17], we have shown that TL satisfies
all the key meta-theoretic properties including subject reduction,
strong normalization, Church-Rosser (and confluence), and consis-
tency of the underlying logic. The detailed proofs for these proper-
tiesare given in Appendix D.

(APP)

4 The Computation Language A\ g

The language of computations Ax for our high-level certified in-
termediate format uses proofs, constructed in the type language, to



(exp) e u=zx|m|tt|ff|f|fixz:A f|ee |e[4]
[ (X=A,e:A") |openeas (X, z)ine
| (€0, ... en—1) | sel[A](e,€’) | e aop €’
| ecope’ |if[A, A'l(e, Xi1.e1, X2.e2)

wheren € N

(fun) f u=dz:Ae|AX:Af

(arith) aop ==+ ...

(cmp)  cop u=<]|...

Figure 4: Syntax of the computation language Az .

verify propositions which ensure the runtime safety of the program.
Furthermore, in comparison with other higher-order typed calculi,
the types assigned to programs can be more refined, since program
invariants expressible in higher-order predicate logic can be rep-
resented in our type language. These more precise types serve as
more complete specifications of the behavior of program compo-
nents, and thus allow the static verification of more programs.

One approach to presenting a language of computations is to
encode its syntax and semantics in aproof system, with the benefit
of obtaining machine-checkable proofs of its properties, e.g. type
safety. This appears to be even more promising for a system with
a type language like Cic, which is more expressive than higher-
order predicate logic: The Cic proofs of some program properties,
embedded as type terms in the program, may not be easily repre-
sentable in meta-logical terms, thus it may be simpler to perform
all the reasoning in Cic. However our exposition of the language
TL is focused on its use as a type language, and consequently it
does not include al features of Cic. We therefore leave this possi-
bility for future work, and give a standard meta-logical presentation
instead; we address some of the issues related to adequacy in our
discussion of type safety.

In this section we often use the unqualified “term” to refer to a
computation term (expression) e, with syntax defined in Figure 4.
Most of the constructs are borrowed from standard higher-order
typed calculi. To simplify the exposition we only consider con-
stants representing natural numbers (7 is the value representing
n € N) and boolean values (tt and ff). The term-level abstraction
and application are standard; type abstractions and fixed points are
restricted to function values, with the call-by-value semantics in
mind and to simplify the CPS and closure conversions. The type
variable bound by a type abstraction, as well as the one bound by
the open construct for packages of existential type, can have either
akind or akind schema. Dually, the type argument in a type ap-
plication, and the witness type term A in the package construction
(X =A, e: A") can be either atype term or akind term.

The constructs implementing tuple operations, arithmetic, and
comparisons have nonstandard static semantics, on which we focus
in section 4.1, but their runtime behavior is standard. The branch-
ing construct is parameterized at the type level with a proposition
(which is dependent on the value of the test term) and its proof; the
proof is passed to the executed branch.

Dynamic semantics We present asmall step call-by-value op-
erational semanticsfor A g inthe style of Wright and Felleisen [42].
The values are defined as

vu=n|tt|ff| f|fixz: A f(X=A4, v:A") | (vo, ... vn_1)

The reduction relation — is specified by the rules
(M:Ae)v — [v/z]e (R-5)

(AX:B. f)[A] — [A/X]f (R-TY-5)
sel[A]({vo, ... Vn—1), M) = Um (m < n) (R-sEL)
opi ([)5/;][1414/13(]12 Yas(X, z)ine (R-OPEN)
(fixz:A. v — ([fixx:A. f/z]f) v (R-FIX)
(fixz: A. f)[A] — ([fixz:A. f/z]f)[A"] (R-TYFIX)
M+M — m+n (R-ADD)

M<T — tt (m < n) (R-LT-T)

m<n — ff (m >n) (R-LT-F)

if[ B, A](tt, X1.e1, X2.e2) — [A/Xi]e1 (R-IF-T)
if[B, A](ff, X1.e1, X2.e2) — [A/Xa]ea (R-1F-F)

An evaluation context £ encodes the call-by-value discipline:

E:=e|FEe|vE|E[A|(X=A, E:A")
| open E as (X, z) ine |openvas (X, z) in E
| <’U0, cea Vg, E, €it2, « .., 6n71> | seI[A](E,e)
| sel[A](v, E) | Eaope|vaop E | E cope
| veop E | if[A, A'|(E, X1.e1, X2.e2)

The notation E{e} stands for the term obtained by replacing the
hole e in E by e. The single step computation — relates E{e} to
E{e'} whene — €', and —* isitsreflexive transitive closure.

As shown the semantics is standard except for some additional
passing of type termsin R-sSEL and R-1F-T/F. However an inspec-
tion of the rules shows that types are irrelevant for the evaluation,
hence atype-erasure semantics, in which all type-related operations
and parameters are erased, would be entirely standard.

4.1 Static semantics

The static semantics of Az shows the benefits of using a type lan-
guage as expressive as TL. We can now define the type construc-
torsof A as constructors of an inductive kind €2, instead of having
them built into Azz. Aswe will show in Section 5, this property is
crucia for the conversion to CPS, since it makes possible trans-
forming direct-style types to CPS types within the type language.

Inductive 2 : Kind :=snat :Nat—Q
| sbool : Bool — 2
| — Q—=0—-0Q
|tup :Nat— (Nat—Q)—Q
| Vking : Ik :Kind. (k— Q) —Q
| Fking : Ik :Kind. (k—)Q) —0
| Vksem : I1z:Ksem. (z— Q) —Q
| Fksem : [z:Ksem. (z— Q) —Q

Informally, all well-formed computations have types of kind €2, in-
cluding singleton types of natural numberssnat A and boolean val-
uessbool B, aswell asfunction, tuple, polymorphic and existential
types. To improve readability we also define the syntactic sugar

A— B=— AB
Ve X:A.B=V; A(AMX:A.B) .
S.X:A.B=13, A ()\X:A.B)} where s € {Kind, Kscm}
and often drop the sort s when s = Kind; e.g. the type void, con-
taining no values, isdefined asVt: Q. t = Vking 2 (A£: Q. 1).

Using this syntactic sugar we can give a familiar look to many
of the formation rules for Ay expressions and functional values.
Figure 5 contains the inference rules for deriving judgments of the



form A; T' + e : A, which assign type A to the expression e in a
context A and atype environment I" defined by

(typeernv) I'u=.|T,z:A

We introduce some of the notation used in these rulesin the course
of the discussion.

Rules E-NAT, E-TRUE, and E-FAL SE assign singleton types to
numeric and boolean constants. For instance the constant 1 hastype
succ zero inany valid environment. Inrule E-NAT we use the meta-
function = to map natural numbers n € N to their representations
as type terms. It is defined inductively by 0 = zero and n+1 =
succ m, SO A F 7 : Nat holdsfor al valid A andn € N.

Singleton types play a central role in reflecting properties of
values in the type language, where we can reason about them con-
structively. For instancerules E-ADD and E-LT use respectively the
type terms plus and It (defined in Section 3) to reflect the semantics
of the term operations into the type level via singleton types.

However, if we could only assign singleton types to computa
tion terms, in a decidable type system we would only be able to
typecheck terminating programs. We regain expressiveness of the
computation language using existential types to hide some of the
too detailed type information. Thus for example one can define the
usual types of all natural numbers and boolean values as

nat : Q = 3t:Nat.snat ¢
bool : 2 = J¢:Bool. sbool ¢

For any term e with singleton type snat A the package (¢ = A, e:
snat t) has type nat. Since in a type-erasure semantics of Ay
all types and operations on them are erased, there is no runtime
overhead for the packaging. For each n € N there is a value
of this type denoted by @ = (¢t =7, T : snat t). Operations on
terms of type nat are derived from operations on terms of singleton
types of the form snat A; for example an addition function of type
nat — nat — nat isdefined as the expression

add = Axj :nat. Ax2:nat.
open x; as (t1, X}) in open x2 as (t2, x5) in
(t=plus t1 t2, x] +x5:snat t)

Rule E-TuP assigns to a tuple a type of the form tup A B, in
which the tup constructor is applied to atype A representing the
tuple size, and a function B mapping offsets to the types of the
tuple components. This function is defined in terms of operations
on lists of types:

Inductive List : Kind :=nil : List
| cons :  — List— List

nth : List— Nat—Q
nth nil = At:Nat. void
nth (cons ¢ t2) = At:Nat.ifez t Q ¢1 (nth ¢2)

Thus nth L 7 reduces to the n-th element of the list L when n is
less than the length of L, and to void otherwise. We aso use the
infix form A:: A’ = cons A A’. The type of pairsis derived: A x
A’ = tup 2 (nth (A::A:nil)). Thus for instance - + (42,7) :
snat 42 x snat 7 isavalid judgment.

The rulesfor selection and testing for the less-than relation (the
only comparison we discuss for brevity) refer to the kind term LT
with kind schema Nat — Nat — Kind. Intuitively, LT represents a
binary relation on kind Nat, so LT m n is the kind of type terms
representing proofs of m < n. LT can be thought of as the param-
eterized inductive kind of proofs constructed from instances of the
axiomsVn € N.O < nt+landVm,n € N.m < n D m+l < nt+l:

Inductive LT : Nat — Nat— Kind
:= Itzs : II¢: Nat. LT zero (succ ¢)
| Itss : TT: Nat. IT#' : Nat. LT ¢ ¢ — LT (succ t) (succ t')

To simplify the presentation of our type language, we alowed in-
ductive kinds of kind scheme Kind only. Thus to stay within the
scope of this paper we actually use a Church encoding of LT (de-
fined later); thisis sufficient since proof objects are never analyzed
in Ax, so the full power of elimination is not necessary for LT.

In the component selection construct sel[A](e, ¢') the type A
represents a proof that the value of the subscript ¢’ is less than the
size of the tuple e. In rule E-SEL this condition is expressed as
an application of the type term LT. Due to the consistency of the
logic represented in the type language, only the existence and not
the structure of the proof object A isimportant. Since its existence
isensured statically in awell-formed expression, A would be elim-
inated in a type-erasure semantics.

The branching construct if[B, A](e, X1.e1, X2.e2) takes a
type term A representing a proof of the proposition encoded as ei-
ther B true or B false, depending on the value of e. The proof is
passed to the appropriate branch in its bound type variable (X7 or
X5). The correspondence between the value of e and the kind of
A is again established through a singleton type. Note that unlike
Xi and Harper [43] we alow imprecise information flow into the
branches by not restricting B false to be the negation of B true. In
particular this makes possible the encoding of the usual oblivious
(in proof-passing sense) if using B = At:Bool. True.

4.2 Example: bound check elimination

A simple example of the generation, propagation, and use of proofs
in g isafunction which computes the sum of the components of
any vector of naturals. Let us first introduce some auxiliary types
and functions. The type assigned to a homogeneous tuple (vector)
of n terms of type A is Bn.-convertible to the form vec i A for

vec : Nat—Q—Q
vec = At:Nat. \t': Q. tup ¢ (nth (repeat t t'))

where
repeat : Nat— (2 — List

repeat zero = At': Q. nil
repeat (succ t) = At': Q. #"::(repeat t) ¢’

Then we can define a term which sums the elements of a vector
with agiven length as follows:

sumVec: Vt:Nat.snat ¢ — vec t nat — nat
= At:Nat. An:snat ¢t. Av:vec ¢ nat.
(fix loop:nat — nat — nat.
Ai:znat. Asum:nat.
openias (t',i')in
if[LTOrTrue ¢’ ¢, ItPrf ¢’ t]
(i <n,
t1.loop (add i T)
(add sum (sel[t1](v,))),
ty.sum))00

where
LTOrTrue : Nat— Nat— Bool — Kind
LTOrTrue = At1:Nat. At2: Nat. A\t:Bool. Cond ¢ (LT ¢1 t2) True

and ItPrf of kind IT# : Nat. IT¢ : Nat. LTOrTrue ¢’ ¢ (It t' t) isa
type term defined later.

The comparison i’ < n, used in this example as a loop termina
tion test, checks whether theindex i’ is smaller than the vector size
n. If itis, the adequacy of the type term It with respect to the less-
than relation ensures that the type term ItPrf ' ¢ represents a proof
of the corresponding proposition at the type level, namely LT ¢ t.
This proof is then bound to ¢; in the first branch of the if, and the
sel construct uses it to verify that the i’-th element of v exists, thus
avoiding a second test. The type safety of Ay (Theorem 1) guaran-



A F Kind : Kscm AFT ok AFT ok
A F Kind : Kscm TE-MT e - - -
AF - ok ( ) ATFa: @ (EVAR ATF ti:sbooltrue (B TRUE)
AFT ok AFA:Q AFET ok AFT ok
TE-EXT S ok : -
AFTz:A ok ( ) A;T F m:snatn (E-NAT) A; T F ff: sbool false (E-FALSE)
AFA:Q AT AR f: A A;T F e:snat A A;T F € :snat A’
AT F fi A fFA (E-FIX) < 7 ° 7 (E-ADD)
; ixz: A f A; T F e+eé :snat (plus A A')
AFA:Q A;T,2:AF e: A (E-FUN) A;T - e:snat A A; T F € :snat A (E-LT)
AT E Azide: A— A A;T + e<e :shool (It A A')
AT e A— A AT Foex: A (E-APP) foralli<n AT F e A
AT Eerer: A A;T F (egy ... €ne1) (E-TUP)
AL B AXBIFfiA (XéA stup o (nth (Aoir. .. iAp—1nil))
) ) D, . ( ¢E ) (E-TFUN) . , ,
AT FHAX:B.f:VsX:B. A s # Ext A;T Fe:tupA” B A;T F € :snat A
AFA:LTA A" (E-SEL)

AT Fe:VeX:B A AFA:B

AT - o] AN (s # Ext) (E-TAPP)
AFA:B AF B:s
AT e [A/X)A (s # Ext) (E-PACK)

AT R (X=Ae:AY: 3, X:B. A

AT Fe:3:X':B.A AFA:Q
AX:B; Tz [X/X'NAF e A <X ¢ A) (E-OPEN)
A;T F openeas (X, z)ine : A’ s # Ext

A; T+ sel[A](e,e’) : B A

A F B:Bool—Kind A;T" e :sbool A”
AFA:BA" A, X1:Btrue;T'F e : A
AFA:Q A, Xo:Bfalse; T F ep: A (E-IF)
A;F = if[B,A](e, X1,617X2,€2)1A/
A;THe: A A =g, A AFA:Q
i c el (E-conv)
AT Fe: A

Figure 5: Static semantics of the computation language Az .

tees that implementations of sel need not check the subscript at run-
time. Since the proof ¢, isignored in the “else” branch, ItPrf ¢’ ¢
is defined to reduce to the trivial proof of True when the value of
is not less than that of n.

The usua vector type, which keeps the length packaged with
the content, is

vector : Q—Q = At:Q.3t':Nat.snat t’ x vec t’ t.

Now we can write awrapper function for sumVec with the standard
type vector nat — nat; we |eave the details to the reader.

4.3 Type safety

The type safety of Ay is a corollary of its properties of progress
and subject reduction. A pivoting element in proving progress
(Lemma 4 in Appendix A) isthe connection between the existence
of aproof (type) term of kind LT 7 7, provided by rule E-sEL, and
the existence of a (meta-logical) proof of the side condition m < n,
required by rule R-seL. Similarly, subject reduction (Lemmab5 in
Appendix A) in the cases of R-ADD and R-LT-T/F relies on the
adequate representation of addition and comparison by plus and It.

Lemma 1 (Adequacy of the TL representation of arithmetic)

1. Fordl m,n € N, plus m n =g,, m+n.
2. Fordlm,n € N, It m 1 =g, trueif and only if m < n.

3. Fordl m,n € N,m < nif and only if there exists atype A
suchthat- = A : LT m n.

Proof sketch (3) For the forward direction it suffices to observe
that the structure of the meta-logica proof of m < n (in terms
of the above axioms of ordering) can be directly reflected in atype
term of kind LT 7 7. Theinverse direction is shown by examining
the structure of closed type terms of thiskind in normal form. O

Theorem 1 (Safety of Ag) If ;- e: A, then either ¢ —™ v and
s v A, orediverges (i.e, for each €/, if e —* €, then there
existse” such that ¢’ — ¢”).

Proof sketch Followsfrom Lemmas4 and 5 (Appendix A). O

Since Cic and TL are more expressive than higher-order predi-
catelogic, adequacy of the representations of meta-proofs does not
holdin general; in particular, the ability to eliminateinductive kinds
in TL alows analysis of proof derivations to be used in proof con-
struction, a technique not employed in standard meta-reasoning.
This issue does not arise for first-order proof representations like
LT (where no constructors have parameters of afunction kind), and
we do not expect it to be aconcern in practice. In caseswhen it does
arise, it could be resolved by using the underlying consistent logic
of Cic instead of the meta-logic; for instance in our presentation
the question of adequacy is raised because the operational seman-
ticsof Ay isdefined in meta-logical terms, but this question would
be moot if Ay and its semantics were defined as Cic terms. To
eliminate the interaction with the meta-logic, this approach should
be applied all the way down to the hardware specification (as done
in some PCC system [3]); we plan to pursue thisin the future.



4.4 An example of proof generation

Here we show the type term ItPrf which generates the proof of the
proposition LTOrTrue ¢’ ¢ (It ¢’ t), needed in the sumVec exam-
ple. We first present a Church encoding of thekind term LT and its
“constructors’ ltzs and ltss.

LT : Nat— Nat— Kind

LT = At:Nat. A\t': Nat.
IIR:Nat— Nat— Kind.
(I1t: Nat. R zero (succ t)) —
(TT¢:Nat. TIt' : Nat. R t ' — R (succ t) (succ t')) —
Rtt

Itzs : IT¢: Nat. LT zero (succ t)

ltzs = At:Nat. AR:Nat— Nat— Kind.
Az :(IIt:Nat. R zero (succ t)).
As:(ITt:Nat. IT#' :Nat. R ¢ t' — R (succ t) (succ t')).
zt

Itss : TT¢:Nat. I1¢':Nat. LT ¢ ' — LT (succ t) (succ t')

Itss = \t:Nat. A’ :Nat. Ap:LT ¢ ¢'. \R:Nat — Nat — Kind.
Az :(IIt:Nat. R zero (succ t)).
As:(ITt:Nat. IT#' :Nat. R ¢t t' — R (succ t) (succ t')).
stt' (pRzs)

Next we define dependent conditionals on kinds Nat and Bool.

IIt: Nat. Ilk : Nat — Kind.
k zero— (ITt' :Nat. k (succ t')) —k t
= Ak:Nat— Kind. Aty : k zero.
At2: (Tt :Nat. k (succ t')). 1
dep_ifez (succ t) = A\k:Nat— Kind. ¢ : k zero.
Ato: (It :Nat. k (succ t')).ta t

dep_ifez :

dep_ifez zero

dep_if : I1t:Bool. Ilk: Bool — Kind. k true— k false — k ¢
dep_if true = Ak:Bool— Kind. At1:k true. Atz : k false. t1
dep_if false = Ak:Bool — Kind. Aty : k true. \to: k false. t2

Finally, some abbreviations, and then the proof generator itself.

LTcond : Nat— Nat— Kind
LTcond = At':Nat. A\t:Nat. LTOrTrue t' ¢ (It t' t)

LTimp : Nat— Nat — Bool — Kind
LTimp = At': Nat. At:Nat. A\t” : Bool.
LTOrTrue t’ t ¢ — LTOrTrue (succ t') (succ t) t”

[tPrf : TIt' : Nat. It : Nat. LTcond ¢ ¢
[tPrf = At : Nat.
Elim[Nat, At} : Nat. IT¢; : Nat. LTcond #] ¢1](¢'){
At1:Nat. dep_ifez t1 (LTcond zero) id ltzs;
M7 :Nat. Mp: (ITt: : Nat. LTcond 7 #1). At1:Nat.
dep_ifez t1
(LTcond (succ t1))
id
(At1 :Nat. dep_if It t/l t1)
(LTimp ¢} 1)
(Itss th t1)
(id True)
(

5 CPS Conversion

In this section we show how to perform CPS conversion on \g
while still preserving proofs represented in the type system. This
stage transformsall unconditional control transfers, including func-
tion invocation and return, to function calls and gives explicit
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names to al intermediate computations. The basics of our ap-
proach, i.e. the target language and the transformation of types, are
shown in this section. The static semantics of the target language
and the transformation of terms are given in Appendix B.

We call the target calculus for this phase Ak, with syntax:

(va) vi=z|n|tt|ff| (X=A,v:A") ]| (vo, ... vn-1)
| fix 2/ [X1: A1, ... Xn:Ap](z: A). €
(exp) e u=wv[A1, ... Ap](V) |letz=vine

|let (X, x)=openvine|let z=sel[A](v,v') ine
|letx=vaopv'ine|letz=vcopv ine
| if[A,A/](’U, X1.61, X2.62)

Expressionsin Ak consist of aseries of let bindings followed by a
function application or a conditional branch. Thereis only one ab-
straction mechanism, fix, which combines type and value abstrac-
tion. Multiple arguments may be passed by packing theminatuple.

Ak shares the TL type language with Ax. The types for A\x
al have kind Qx which, asin Ay, is an inductive kind defined
in TL. The Qx kind has all the constructors of 2 plus one more
(func). Since functions in CPS do not return values, the function
type constructor of Qx has adifferent kind:

We use the more conventional syntax A — 1 for — A. The new
constructor func forms the types of function values:

func QK — QK

Every function value is implicitly associated with a closure envi-
ronment (for all the free variables), so the func constructor is useful
in the closure-conversion phase (see Section 6).

Typed CPS conversion involves trand ating both types and com-
putation terms. Existing algorithms [21, 28] require traversing and
transforming every term in the type language (which would include
all the proofsin our setting). Thisisimpractical because proofs are
large in size, and transforming them can alter their meanings and
break the sharing among different intermediate languages.

To see the actual problem, let us convert the Ag expression
(X = A, e: B) to CPS, assuming that it has type 3X : A’. B. We
use Kyp to denote the meta-level translation function for the type
language and Kep for the computation language. Under existing
algorithms, the trandation also transforms the witness A:

Kep[(X=A,e:B)] =
Ak: Kyp[3X : A", B].
Keplle] (Ax: Kyp[[A/X]B].
X =Ryp[A], z: K[ B))

Here we CPS-convert e and apply it to a continuation, which puts
the result of its evaluation in a package and hands it to the return
continuation k. With proper definition of Ky, and assuming that
Kiyp[ X ] = X on al variables X, we can show that the two types
Kiyp[[A/X]B] and [Kiyp[ A/ X] (Kyp[ B]) areequivalent (under
=psn.)- Thusthe translation preserves typing.

But we do not want to touch the witness A, so the trandation
function should be defined as follows:

Kep[(X=A, ¢:B)] =
)\kIK{yp[[EIXZA,.B]].
Keolle] (Az:Kuyp[[A/X]B].
k(X=A, z:Kyp[B]))
To preserve typing, we have to make sure that the two types

Kuyp[[A/X]B] and [A/X](Kyp[B]) are equivalent. This seems
impossible to achieve if Iy is defined at the metalevel.



Our solution is to internalize the definition of Ky in our type
language. We replace Kyyp by atype function K of kind 2 — Q.
For readability, we use the pattern-matching syntax, but it can be
easily coded using the Elim construct.

K (snat t) = snatt

K (sbool t) = sbool t

K(ti —t2) = func ((K(t1) x Ke(t2)) —L)

K (tup t1 tz) = tupt ()\ti Nat. K(tg t))

K (VKind k t) = func (VKind k ()\t1:]€. Kc(t tl)—>J_))
K (3kind kt) = Fina & (M1:k.K(t t1))

K (Vksem 2t) = func (Vksem 2z (Ak: 2. Ke(t k) —L1))
K (@ksem 2t) = Fksem 2z (Ak:2. K(t k))

Ke = At:Q.func (K(t)—1)

The definition of K isin the spirit of the interp function of Crary
and Weirich[14]. However interp cannot be used in defining asim-
ilar CPS conversion, because itsdomain does not cover (nor isthere
an injection to it from) all types appearing in type annotations. In
Ax these types are in the inductive kind €2 and can be analyzed by
K. We can now prove K ([A/X]B) =, [A/X](K (B)) by first
reducing B to the norma form B’. Clearly, K ([A/X|B) =g,
K ([A/X]B') and [A/X](K (B')) =g, [A/X](K (B)). We
then prove K ([A/X]B’) =g, [A/X](K (B')) by induction over
the structure of the normal form B’. The complete CPS-conversion
algorithm isgiven in Appendix B.

6 Closure Conversion

In this section we address the i ssue of how to make closures explicit
for all the CPStermsin \ . Thisstage rewritesall functions so that
they contain no free variables. Any variables that appear freein a
function value are packaged in an environment, which together with
the closed code of the function form a closure. When afunction is
applied, the closed code and the environment are extracted from
the closure and then the closed code is called with the environment
as an additional parameter. Again, the basics of our approach are
shown in this section and more details are given in Appendix C.

Our approach to closure conversion is based on Morrisett et
al. [28], who adopt a type-erasure interpretation of polymorphism.
We use the same idea for existential types. The language that we
use for this phase is called A\c with syntax:

(va) wvu=z|n|tt|ff]fixa'[X1:41, ... Xn:An](z:A). e
| v[A] ] (vo, - .. vn—1) | (X=A, v: A")
(exp) eux=wvv |letz=vine|letz=sel[A](v,v')ine

|let (X, z)=openwvine|letz=vaopv ine
|let z=v copv'ine|if[B, A](v, Xi.e1, X2.e2)

Ac issimilar to Ak, the main difference being that type applica
tion and value application are again separate. Type applications
are values in \¢ reflecting the fact that they have no runtime ef-
fect in atype-erasure interpretation. We use the same kind of types
Qx asin Ax. We define the transformation of types as a function
Cl: Qg — Qx — Qk, the second argument of which represents the
type of the environment. Asin CPS conversion, we write Cl as a
TL function so that the closure-conversion algorithm does not have
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to traverse proofs represented in the type system.

Cl (snat t) = AM':Qk.snatt

Cl (sbool t) = At':Qxk.sbool t

Cl (t—1) = M:Qk.(t' xCl(t) L)—L

Cl (func t) = At,ZQK.EtligK.(C| (t) t1 Xt1)

Cl (tup t1 t2) = At/ZQK. tup t1 (/\t":Nat, Cl (t2 t”) t/)
Cl (VKind k t) = M :Qx.Vkind k ()\t1:l€. Cl (t t1) tl)
Cl(Fkina kt) = X :Qk.Fina b M1:k.Cl(tt1) t)
Cl (VKscm z t) = A :Qx.VKind 2 ()\k::z. Cl (t k) t/)

C| (EKscm z t) = At,ZQK. EKscm z ()\kZC| (t ) t/)

7 Related Work

Our type language is a variant of the calculus of constructions [11]
extended with inductive definitions (with both small and large elim-
ination) [35, 41]. We omitted parameterized inductive kinds and
dependent large elimination to simplify our presentation, however,
all our meta-theoretic proofs carry over to alanguage that includes
them. We support n-reduction in our language while the official
Coq system does not. The proofs for the properties of TL are
adapted from Geuvers [17] and Werner [41] (which in turn bor-
rows ideas from Altenkirch [1]); the main difference is that our
language has kind-schema variables and a new product formation
rule (Ext, Kind) which are not in Werner's system.

The Coq proof assistant provides support for extracting pro-
grams from proofs [35]. It separates propositions and sets into
two distinct universes Prop and Set. We do not distinguish be-
tween them because we are not aiming to extract programs from
our proofs, instead, we are using proofs as specifications for our
computation terms.

Burstall and McKinna[7] proposed the notion of deliverables,
which is essentially the same as our notion of certified binaries.
They use dependent strong sumsto model each deliverable and give
its categorical semantics. Their work does not support programs
with effects and has all the problems mentioned in Section 2.3.

Xi and Pfenning’'s DML [44] is the first language that nicely
combines dependent types with programs that may involve effects.
Our ideas of using singleton types and lifting the level of the proof
language are directly inspired by their work. Xi’'s system, however,
does not support arbitrary propositions and explicit proofs. It also
does not define the 2 kind as an inductive definition so it is un-
clear how it interacts with intensional type analysis[39] and how it
preserves proofs during compilation.

We have discussed the rel ationship between our work and those
on PCC, typed assembly languages, and intensional type analysis
in Section 1. Inductive definitions subsume and generalize earlier
systems on intensiona type analysis[22, 14, 39]; the type-analysis
construct in the computation language can be eliminated using the
technique proposed by Crary et al. [16].

Concurrently with our work, Crary and Vanderwaart [12] re-
cently proposed a system called LTT which also aims at adding
explicit proofs to typed intermediate languages. LTT uses Linear
LF [8] as its proof language. It shares some similarities with our
system in that both are using singleton types [44] to circumvent the
problems of dependent types. However, since LF does not have
inductive definitions and the Elim construct, it isunclear how LTT
can support intensional type analysis and type-level primitive recur-
sive functions [15]. In fact, to define Q as an inductive kind [39],
LTT would have to add proof-kind variables and proof-kind poly-
morphism, which could significantly complicate the meta-theory
of its proof language. LTT requires different type languages for
different intermediate languages, it is unclear whether it can pre-
serve proofs during CPS and closure conversion. The power of
linear reasoning in LTT is desirable for tracking ephemeral prop-



erties that hold only for certain program states; we are working on
adding such support into our framework.

8 Conclusions

We presented a general framework for explicitly representing
propositions and proofs in typed intermediate or assembly lan-
guages. We showed how to integrate an entire proof system into
our type language and how to perform CPS and closure conversion
while still preserving proofs represented in the type system. Our
work is afirst step toward the goa of building realistic infrastruc-
ture for certified programming and certifying compilation.

Our type system isfairly concise and simple with respect to the
number of syntactic constructs, yet it is powerful enough to express
all the propositions and proofs in the higher-order predicate logic
(extended with induction principles). In the future, we would like
to use our type system to express advanced program invariants such
as those involved in low-level mutable recursive data structures.

Our type language is not designed around any particular pro-
gramming language. We can use it to typecheck as many different
computation languages as we like; all we need isto define the cor-
responding 2 kind as an inductive definition. We hope to evolve
our framework into arealistic typed common intermediate format.
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A Properties of Ay

The proof of the following lemmais by induction on the structure
of typing derivations.

Lemma2 IfA,X:B;T - e: A and A - A: B,then
AT R [A/X]e: [A/ XA

We also need a proposition guaranteeing that equivalence of con-
structor applications implies equivalence of their arguments; itisa
corollary of the confluence of TL (Theorem 76).

Lemma3 If Ctor (i, I) A =, Ctor (¢/,I') A, theni = i’ and

1 =B I andA /BTZLA'

Lemma4 (Progress) If ;- e: A, then either e isavalue, or
thereexists ¢’ such that e +— ¢’.

Proof sketch By standard techniques [42] using induction on
computation terms. Dueto thetransitivity of =g,,, any derivation of
A; T+ e: A can be converted to a standard form in which there
is an application of rule E-CONV at its root, whose first premise
ends with an instance of a rule other than E-conv, al of whose
term derivation premises are in standard form.

We omit the proofs for the cases of standard constructs and the
induction on the structure of evaluation contexts. The interesting
case isthat of the dependently typed sel.

If e = sel[A’](v,v"), by inspection of the typing rules the
derivation of -;-+ ¢ : A in standard form must have an instance of
rule E-sEL inthe premise of itsroot. Hence the subderivation for v
must assign to it atuple type, and the whole derivation hasthe form

D D’ £
s vitupAs A” R v isnat Ay - AN LT Ay Ay
ok sel[A](v,0") : A" Ay
k sel[A'](v,0") - A
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where A =5, A” A;. By inspection of the typing rules, rules
other than E-cONV assign to all valuestypeswhich are applications
of constructors of 2. Since the derivation D isin standard form, it
ends with an E-CoNv, in the premise of which another rule assigns
v atype Bne-equivalent to tup Ax A”. Then by Lemma 3 thistype
must be an application of tup, and again by inspection the only
rule which applies is E-TuP, which impliesv = (vg, ... vp—1),
and the derivation D must have the form

‘ Di
Vi<n e
b wv s AV
5k (v, ... vpo1) s tup B AY

Also by Lemma 3 Ay =g, n. Similarly the only rule assigning
to a value a type convertible to that in the concl usion of D isE-
NAT, hence A; =g, m for somem € N, and v' = m. Then,
by adequacy of LT (Lemma 1(3)), the conclusion of £ |mpI|esthat
m < n. Hence by rule R-SEL e — vy,.

Lemma 5 (Subject Reduction) If
el A

sk e:Aande — ¢, then

Proof sketch  Since evaluation contexts bind no variables, it suf-
fices to prove subject reduction for < and a standard term substi-
tution lemma. We show only some cases of redexes involving sel
and if.

e The derivation for e = sel[A']({vo, ... vn—1),m) in stan-
dard form has the shape
D;
Vi<n ——— =
kv s AT G D
F (U) :tupn AY - msnat m £
b (U) i tup As A" F misnat A; - B A LT Ay Ao
5k sel[A]({vo, « .. vn—1),m) : A” A
-k sell[A]((vo, ... vp—1),m) : A

WhereA =gn A" A1, AY =g, A”,and Ay =g m. Since
e ¢ only by rule R-seL, wehavem < nand e’ = vy, SO
from D,,, and A} m _ﬁm A" m =g, A" A1 =g, Awe
obtain aderivation of -;-- ¢’ : A.

e Inthe case of if the standard derivation D of
ek if[B,14l](tt7 Xi.e1, X2.€2) tA

ends with an instance of E-CONV, preceded by an instance of
E-IF. Using the notation from Figure 5, from the premises
of this rule it follows that we have a derivation £ of - +
A" BA" and A" =g, true (since rule E-TRUE assigns
sbool true to tt), hencewe have - - A’ : B true by CONV.
By Lemma 2 from £ and the derivation of X; : B true; -

1 : A (provided as another premise), since X; isnot freein
A (ensured by the premise- = A : Q) we obtain aderivation
of -+ [A"/X1]er : A. O

B CPS Conversion (Details)

We start by defining a version of Az using type-annotated terms.
By f and e we denote the terms without annotations. Type annota-
tions allow usto present the CPS transformation based on syntactic



instead of typing derivations.

A

€

z|m|tt|ff| flfixx:A flee |e[A]
(X=A,e:A") |openeas (X, z)ine
(€0, ... en—1) | sel[A](e, ') | eaop e’
ecope’ |if[A, A'](e, X1.e1, X2.e2)

(fun) f == f4
fuo=dz:Ae|AX:Af

(exp)

9]

]

The target language Ak of the CPS conversion stage has been de-
fined in Section 5. We use the following syntactic sugar to de-
note non-recursive function definitions and value applications in
Ak (here ' isafresh variable):

Az:A.e=fixz'[|(z:A).e
vo' =v[](v')
AX1:A1. ... AX,: A, Az Ae
=fix o' [X1: A1, ... Xn: An](z: A). e

In the static semantics of Ak we use two forms of judgments.
Asin Ay, thejudgment A; T' Fx v : A indicatesthat the value v
iswell formed and of type A in thetype and value contexts A and T"
respectively. Moreover, A; I' Fx e indicates that the expression
e iswell formed in A and I'. In both forms of judgments, we omit
the subscript from Fx when it can be deduced from the context.

The static semantics of Ak is specified by the following forma-
tion rules (we omit the rules for environment formation, variables,
constants, tuples, packages, and type conversion on values, which
arethesameasin A\g):

forallie{l...n} AF A;:s;
A X1:A XA B AQ
A XA XAy T’ Al A e
AT F fixa' [X1:Ar, . X Ay (z:A)e s A
where
A’ =func (Vs, X1:A41.... Vs, Xp: Ap. A—1)

(K-FIx)

forallie{1...n} AF A;:B;
A; TRV func(Vs, X1:B1... . Vs, Xpn:Bn. A—1)
AT R oo [A/X0]. . [An/XR]A

AT V' [Ag, . Al (v)

(K-APP)

A;THo: A AT z:AFE e
A;T F letx=vine

(K-vAL)

AT FHo:tupA” B A;T F o csnat A
AR A:LTA A A;T,z:BA e

A; T F let x=sel[A](v,v") ine

(K-sEL)

A;TFHo:3,Y:B A
AX:B;Tz:[X/Y|A L e (X¢A)
A;T F let (X, z)=openvine \$ 7# Ext

(K-OPEN)

A;T F v:snat A A; T F o csnat A/
A; T, z:snat (plus A A') + e

A;T F letz=v+vine

(K-ADD)

A;T F v:snat A A;T F o csnat A/
A; T, x:sbool (It A A) F e

A;T F letx=v<v'ine

(K-LT)
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A F B : Bool—Kind AFA:BA
A; T F v:sbool A
A, X1:Btrue; T' F e A, Xo: B false; I' - e2

A; I+ if[B,A](U, X1.€1, X2.€2)

Except for the rules K-Fix and K-APP, which must take into ac-
count the presence of func, the static semantics for Ax isanatura
consequence of the static semantics for A\g.

The definition of the CPStransformation for computation terms
of Ay to computation terms of Ak is given in Figure 6, where we
use the abbreviations introduced in Section 5.

(K-1F)

Proposition 2 (Type Correctness of CPS Conversion)
If 5-bm e A then -k Kep[e?] : func (Ke(A) —L).

C Closure Conversion (Details)

The main difference in the static semantics between A and \¢ is
that in the latter the body of a function must not contain free type
or term variables. Thisisformalized in the rule C-Fix below. The
rules C-tapp and C-APP corresponding to the separate type and
value application in A\¢ are standard.

foralli<n A s
S X1:ALL XA E ACQ
G X1:A L, XAy 7B A e (C-FIX)
AT F fixa' [Xi:Ar, .. Xyt Ap)(z:A).e: B
where B =V, X1:A41.... Vs, Xpn: Apn. A—L
AT Fo:VsX:A.B AF A:A
(C-TAPP)
A; T F w[A]: [A/X)B
AT H vt A—L AT Hwe: A
(C-APP)

A;F}—’Ulvz

The definition of the closure transformation for the computation
terms of Ak isgivenin Figure 7.

Proposition 3 (Type Correctness of Closure Conversion)
If bk v: A then ;-k¢ Cuafv] : ClI (A) L.

D Formalization of TL (Details)

In this appendix we prove the meta-theoretic properties of our type
language TL. The proofs are based on the methods in Werner [41].
Weformalize thelanguagein Section D.1. In Section D.2 we prove
subject reduction, in Section D.3 we prove the strong normaliza-
tion, in Section D.4 we prove the Church-Rosser property, in Sec-
tion D.5 we prove the consistency of the underlying logic.

D.1 Syntax and semantics

The syntax for the pseudotermsis:

(ctxt) A =-]AX:A

(sort) s = Kind | Kscm | Ext

(var) X u=z|k|t

(ptm) A,Bu=s|X|AX:A.B|AB|IIX:A. B

| Ind(X:Kind){ff}LCtor (i, A)
| Elim[A’, B'|(A){B}



Kna[(Az:A. eBPYA7B] = Azarg : K(A) x Ke(B).
let = seI[ItPrfﬁﬁ](xarg,ﬁ) in
let k= seI[ItPrf 12](zarg, 1) in
Kep[e®] k

’Cfval[[(AX CA. fB)VSXA. B]] —

AX : A Ak:Ke(B). k (Knal[ f2])

Keple?] = Ak:Ke(A4). k (&)
for e one Of ZL'A —snat 7 ttsbool true ffsbool false
Keol /4] = Ak:Ke(4). k (/CfvaJ[[f )]]

Kewp[ (fix z: A. f4

= Ak:K¢(B).
Keo[er? 2] (Az1:K(A — B).
’C@(p[[EQA]] (AI'Q : K(A)
z1 (22,k)))

= Ak:K¢(B A).
Kep[e¥ A" B] (Az:K(V, A’ B).
z[A](k))

e TA] = Ak: Ko(A).

{Cap[[eo [ (Azo:K(Ao).

)] =
Nk Ke(A). k (fix [ (k: Ke(A)). k (Kna [ f*]))
Kep[(e1* ™" e2%)"]

Kag[(e¥s 4" P[A])P 4]

K@(p[[(ﬁo PRI

}Cs(p[[@fﬁ{l ()\l’n_l : K(An_l)
|(<J,‘()7 :L’n_1>))
lCap[[sel[A](elt“p A" B 62snat A’ )B A']]
Ak:Ke(B A). Kegler™ A" 2] (Az1:K(tup A” B).
Kep[e2™ '] (Az2:K(snat A).
let x'=seI[A](x1,x2) inkaz'))
Kep[ (X =A, e[A/X]B:B>A/]] =
M Ko(A)). KeeA/XIB] (Az:K([A/X]B).
k(X=A, z:K(B)))
Kexp[ (open e1 as (X, z)inex)A] =
Ak:Ke(A). Kapler Y4 B (Az1:K(3,Y: A, B).
let (X, =) =open z1 in Kep[e2] k)
K:a(p[[(elsnat A + et A’)snat (plus A A/)]] —
Xk:Ke(snat (plus A A")). Kep[e1™ “] (Az1:K(snat A).
Keple2™ A,]] (Az2:K(snat A").
let 2’ =21+ 22 ink ')

3:Y:A'. B

K:a(p[[(elsnat A < epnat A’)sbool (It A A/)]] —

Xk:Kg(sbool (It A A")). Kepe1*™ 4] (Az1:K(snat A).
Keple2™ A,]] (Az2:K(snat A").
let z' =21 <z2ink z'))
Keo[ (B, Al(e*® 47, X1.e14, Xa. €24 N ] =
Ak:Ko(A'). Kep[e A" ] (Az:K(sbool A”).

i'F[B,A](l‘7 Xl-lcap[[elAl]] k: XQ-K:WP[[eQAI]] k))

Figure 6: CPS conversion: from Ax to Ak

In addition to the symbols defined in the syntax, we will aso
use C' to denote general terms, Y and Z for variables, and I for

inductive definitions. We use A to denote a sequence of terms
Ai,. .., An. Also, we distinguish between A and A since every
element in A would be referred as A; anyway.

TL has the following PTS specification which will be used to
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=, for v oneof x, m, tt, ff

= (Cvaf[vo], ---Cvalvn—1])

=(X=A4, Calv]:Cl (B) 1)
Xn:iApl(z:A).e] =
<X :Aenv, <'Ucode [Yl] N

Cval[v]

Cua[(vo, .. vn_1)]
Cal(X=A, v:B)]
Cval[[fix x/[Xl :Al, ..
[Yin], Venv) : Ax)

where

Ax = A/x x X

A'x =V X1: A1 .. Ve, XntAn. (X x Cl (4) L)—L
{ago, .. a5y = FV(e) - {a, 2’}

v, ...Y,,‘? m} =

FTV(fix '[X1: A1, ... Xn 1 An](z: A).€)
Aeny = Cl (tup % (nth (A'gz:. .. A'jp—q:mil))) L
Venv = (Z0 - ..Tx—1)
Vcode = fiX Uﬁx[Yi :B/l, e Ym:B/m, X1 1A1, ..
(Targ : Aenv X Cl (A) L).
let Zeny =sel[ItPrf 0 2](zarg, 0) in
let 2 = sel[ItPrf T 2] (zarg, 1) in
let ' = (X = Acny,
(vax[Y1] ... [Yim], Tenv) : Ax) in
let z0 = sel[ItPrf 0 k] (Zenv, 0) in ...
let 24_1 =sel[ltPrf & — 1 k](Zenv, k — 1

cXn i Ap]

) in Cep[e]

.An](v2)] = let (Xenv, ZTarg) =open Cvav1] in
let Zeode = sel[ItPrf 0 2](Zarg, 0) in
let Zeny = sel[ItPrf T 2] (Zarg, 1) in
Zeode[A1] - - . [An] (Tenv, Cval[v2])
Cepllet z=vine] = let z=Cva[[v] in Cep[ €]
Ceq[let x =sel[A](v,v") ine] =
let z =sel[A](Cva[[v], Cva[v']) in Ceple]

Cepllet (X, z)=openvine] =
let (X, ) =open Cva[v] in Ceple]
= let z=Cuva[vi] +Cvav2] in Ceple]

Copllet z=v1i<vaine] =letxz=Cufvi]<Cuav2] in Ceple]

Ca(p[[if[B,A](’U, Xl.el, X2.€2)]] =

if[B,A](CVd[[’U]], Xl.Cexp[[el]], X2.Cs<p[[€2]])

Cexp[[l)l [Al, ..

Copllet z=v1 +v2in €]

Figure 7: Closure conversion: from Ak to Ac.

derive itstyping rules:

S = Kind, Kscm, Ext
A = Kind:Kscm, Kscm: Ext
R = (Kind,Kind), (Kscm, Kind), (Ext, Kind)

(Kind, Kscm), (Kscm, Kscm)

In order to ensure that the interpretation of inductive definitions
remains consistent, and they can be interpreted as terms closed un-
der their introduction rules, we impose positivity constraints on the
constructors of an inductive definition. The positivity constraints
are defined in Definition 4 and 5.

Definition 4 A term A is strictly positivein X if A iseither X or
1Y : B. A’, where A’ is dtrictly positive in X, X does not occur
freein B,and X # Y.

Definition 5 A term C is a well-formed constructor kind for X
(written wfc . (C)) if it has one of the following forms:

1. X,



2. IIY : B.C',whereY # X, X isnot freein B, and C’ isa
well-formed constructor kind for X; or

3. A— C’, where A is strictly positivein X and C’ is awell-
formed constructor kind for X.

Note that in the definition of wfc, (C'), the second clause covers
the case where C is of the form A — (’, and X does not occur
free in A. Therefore, we only alow the occurrence of X in the
non-dependent case.

In the rest of this paper we often write the well-formed con-
structor kind for X asI1Y ; B. X. We also denote terms that are
strictly positivein X by IT1Y : B. X, where X isnot freein B.

Definition 6 Let C' be awell-formed constructor kind for X. Then
Cisof theformITY : A. X. If dl the Y'sare t's, that is, C'is of
the form I1¢: A. X, then we say that C' isasmall constructor kind
(or just small constructor when there is no ambiguity) and denote it
as small(C).

Our inductive definitions reside in Kind, whereas asmall construc-
tor does not make universal quantification over objects of type
Kind. Therefore, an inductive definition with small constructors
isapredicative definition. While dealing with impredicative induc-
tive definitions, we must forbid projections on universes equal to
or bigger than the one inhabited by the definition. In particular, we
restrict large elimination to inductive definitions with only small
constructors.

Next, we define the set of reductions on our terms. The defi-
nition of 3- and n-reduction is standard. The ¢-reduction defines
primitive recursion over inductive objects.

Definition 7 Let C be a well-formed constructor kind for X and
let A’, B', and I be pseudoterms. We define ®x ; 5/ (C, A") re-
cursively based on the structure of C:

def

(PX,I,B’ .X A,) -
:B.C', A"
(IIY:B. X)—C", A"

A/
AY :B. ¢X,I,B’ (C/7A/ Y)
def

Definition 8 The reduction relations on our terms are defined as:

(AX:A.B) A’ ~sp [A//X]B

AMX:A.(BX) ~, B, ifX¢FV(B)
Elim[I, A”](Ctor (i, 1) A){B} ~, (®x,1,8:(Ci, Bi)) A
where 1 = Ind(X :Kind){C} )
B’ = )\Y:I.(Elim[I, A"](Y){B})
By >3, >y, and >, we denote the relations that correspond to
the rewriting of subterms using the relations ~»g, ~»,, and ~,
respectively. We use ~» and > for the unions of the above re-
lations. We also write >* and > (respectively > etc.) for
the reflexive-transitive and transitive closures of > (respectively
>3 etc.) and =g,, for the reflexive-symmetric-transitive closure
of >>. We say that a sequence of terms Aj,..., A,, such that
Ap> A > As...> A,,isachain of reductions starting from A.

Let usexaminethe -reductionindetail. InElim[I, A”](A){ B},

ey

the term A of type I isbeing analyzed. The sequence B contains
the set of branches for Elim, one for each constructor of I. In the
casewhen C; = X, whichimpliesthat A isof theform Ctor (¢, I),
the Elim just selects the B; branch:

Elim[I, A”](Ctor (i, I)){B} ~+. B
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In the case when C; = TIY : B. X where X _does not occur free
in B, then A must be in the form Ctor (i, I') A with A; of type B;.
None of the arguments are recursive. Therefore, the Elim should
just select the B; branch and pass the constructor arguments to it.
Accordingly, the reduction yields (by expanding the ® macro):

Elim[I, A”](Ctor (i, 1) A){B} ~», B; A

The recursive case is the most interesting. For simplicity assume
that the i-th constructor hasthe form I1Y : B’. X — I1Y”: B"". X.
Therefore, A is of the form Ctor (¢, 1) A with A, being the re-
cursive component of type ITY : B7. X, and A, . .. A,, being non-
recursive. The reduction rule then yields:

Elim[I, A”)(Ctor (i, 1) A){B}
~, Bi Ay (\Y : B'.Elim[I, A"](A; Y){B}) As... A,

The Elim construct selects the B; branch and passes the arguments
Ai,..., Ay, and the result of recursively processing A;. In the
general case, it would process each recursive argument.

Definition 9 defines the ¥ macro which represents the type of
the large Elim branches. Definition 10 defines the ¢ macro which
represents the type of the small elimination branches. The different
cases follow from the .-reduction rule in Definition 8.

Definition 9 Let C be awell-formed constructor kind for X and
let A’ and I be two terms. We define ¥ x ;(C, A’) recursively
based on the structure of C:

Ux (X, A) dof g
Ux (IIY:B.C", A') < TIY :B. Ux (C’, A)
Uy (A-c Ay

= [I/X]|A—[A/X]A—=Tx (C',A)

where X isnot freein B and A isstrictly positivein X.

Definition 10 Let C be awell-formed constructor kind for X and
let A’, I, and B’ be terms. We define (x,1(C, A’, B') recursively
based on the structure of C:

(x1(X, A, B) = A B

Cx1 (Y :B.C', A", B = 1Y :B.(x.1(C', A, B'Y)

Cxa(IV:B.X - O A B) =
NZ:(IIY:B.I).1IY:B. (A" (ZY)) — (x,1(C', A", B’ Z)

where X isnot freein B and B.

Definition 11 We use Al ;. to denote that the environment does
not contain any z variables.

Here are the complete typing rules for TL. The three weakening
rules make sure that all variables are bound to the right classes of
termsin the context. There are no separate context-formation rules;
a context A is well-formed if we can derive the judgment A +
Kind : Kscm (notice we can only add new variables to the context
viathe weakening rules).

- F Kind : Kscm (Ax1)
- F Ksem @ Ext (AX2)

FC:Ki :
AFC:Kind AF A:B t¢ Dom(A) (WEAK1)

At:C+H A:B



AFC:Ksem AR A:B k¢ Dom(A)

(WEAK?2)
Ak:CHA:B
AFC:Ext AFA:B D A
X z ¢ Dom(4) (WEAK3)
Az:CHA:B
A + Kind : Kscm X € Dom(A) (VAR)
AF X :AX)
AX:AFB: B AFIIX:A. B :s (FUN)
AFMX:AB:TIX:A.B
AFA:IIX:B'.A AFrB:B (APP)
A+ AB:[B/X)A
AFA:s1 AJX:AF B:sy (s1,82)€R (PROD)
AFIIX:A B: so
foralli A, X:Kind F C;: Kind  wfey (Ch) (ID)
= IND
A F Ind(X :Kind){C} : Kind
A F I:Kindwhere] = Ind(X :Kind){C'} (Con)
A+ Ctor (i, 1) : [I/X]C;
AFA:T AFA:I—Kind
for all ¢ AF B;: CX,[(Ci,A/,CtOI’ (7,7[))
= (ELIM)
A + Elim[I, A'|(A){B} QA, A
where I = Ind(X :Kind){C}
AR A:T Ay A : Ksem
foralli small(C;) AR B:: Ux 1(Ci, A) (L-ELIM)
A+ EIim[I,A'](A){B}_E A
where I = Ind(X :Kind){C'}
AFA:B
AFB:s AFrB:s B=p, B (conv)
AFA:B

D.2 Subject Reduction

The proof is structured as follows:

o Wefirst define a calculus of unmarked terms. These areterms
with no annotations at lambda abstractions. We show that this
language is confluent.

o Wethen prove Geuvers lemma—aweak form of confluence.
It says that a term that is equal to one in head normal form
can be reduced to an n-expanded version of this head normal
form.

e From Geuvers lemma, we are able to prove the inversion
lemma which relates the structure of a term to its typing
derivation.

e We are then able to prove the uniqueness of types and subject
reduction for 3. reduction.

e We are then able to prove that the system preserves sorts —
that is, if two terms are convertible and well sorted, then they
have the same sort.

o Finaly, we prove the strengthening lemma and then subject
reduction for n reduction.
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D.2.1 Unmarked terms

The PTS language is non-confluent. Nederpelt gave the fol-
lowing counterexample — let A be the term defined by A X :
A1 (AY:A5.Y)X. Then we have that A >3 AX : A;. X and
A, AY @ A2 Y. For our proofs we want to operate in a lan-
guage that is confluent. We will therefore introduce the notion of
unmarked terms. As non-confluence is due to the presence of type
annotations in \ abstractions, the unmarked terms are obtained by
erasing the type annotations.

The set of unmarked terms || A || are defined below. We are
given amarked variable _ that can not be used elsewhere.

Ilsll=s

[ X=X
[ A1 Az || = [ Ar || || Az |l
IAX: A1 Ao || = AX i || As|

ITX Ay Ap | =TIX A Ao |
1 ind(X : Kind){ A} || = Ind(X :Kind){]A[}

| Ctor (3, Ax) || = Ctor (i, | Ax |) -

| Elim([I, A2](A1){A} || = Elim[|| T]], [| A2 [I](l A2 DA}

Lemma6 Forall terms A, B, A’, B’, and for al variables X and
Y,wehavethat [\Y : A'. B/X]A =4, [\Y:B'. B/X]A.

Proof Consider Ao = [A\Z : A".(\Y:B'.B) Z/X]A. Then
Ay [(MNZ:A'.[Z)Y]|B)/X]A and A 1>, [\Y : B'. B/ X]A.
Alpha converting the first reduct leads to the required result. a

Lemma7 Forall terms A, wehave A =g, || A||.

Proof Followsfromlemma6. ]
Definition 12 (vo reduction) Wesay that At>,, || A || iff A>, A’
and || A[[#[ A"

Proposition 13 For all terms A and A', if A>3 A’, then || A ||
>g [[A'[[or || Al|=|| A" . Similarly, if we have that Ar>, A’, then
LAl 5 [ A" or [| Af|=[| A" . Moreover, if | Al B, [ A']l
then there existsa A” such that A >3, A” and || A" ||=|| A"|.

Lemma 8 (Confluencefor unmarked terms) For all unmarked
terms || A ||, the 8neo reduction is confluent.

The proof is based on the method of parallel reductions due to Tait
and Martin-Lof.

Definition 14 (Parallel reduction) Define—- onunmarked terms
asbelow, in which we assumethat A — A’, B — B’, etc:

A— A
AB— A B
AX:ZA— AX: LA
IIX:A.B—1IIX:A".B
Ind(X :Kind){A} — Ind(X :Kind){A’}
Ctor (i, I') —» Ctor (i, I")
Elim[A, C|(I){A} — Elim[A",C"|(I"){A"}
(AX:_.A) B— [B'/X]A
AX:LAX— A'if X ¢ FV(A)
Elim([Z, C)((Ctor (i, I) B){A} — (dx 1,5 (C}, A}) B’
where I = Ind(X :Kind){C}
B’ = \Y:_ (Elim[I',C"|(Y){A"})

The parallel reduction commutes with respect to substitution.



Lemma9 If A— A’ and B — B’, then
[B/X]A — [B'/X]A’.

Proof By induction over the fact that A — A’. O

The parallel reduction also has the following properties with
respect to terms such as products and inductive definitions. The
proof in each case is immediate and follows by induction over the
structure of the term.

Proposition 15 Suppose A = I1X : B.Y C. If A can be reduced
to A’ through areduction relation (—-, >4, €etc.), then A’ =

B'.Y C" where dll the B and C can be reduced to B’ and C” by
the same reduction relation.

Proposition 16 Suppose A = II1X : B.Y C and A’ = IIX :
B'.Y C" betwo termssuch that both can be reduced to A” through
areduction relation (—-, >4, etc.). Then A” = IIX : B".Y C"
where B and B’ can be reduced to B” by the same relation and
and C” can be reduced to C* by the same relation.

The parallel reduction isimportant because it subsumes the sin-
gle step reduction; that is, if A > A’, then we havethat A — A’
which alsoimpliesthat A>* A". From here, to show the confluence
of 1>, it suffices to show the confluence of parallel reduction.

Lemma 10 For all unmarked terms D, D', D", we have that if
D — D’ and D — D", then there existsa D’” such that
Dl —s D//l and D// s Dl//.

Proof The proof isby induction over the structure of D. We will
only show one case here.

e Suppose D = Elim[I, C]((Ctor (i, 1) B)){A}.

— We can then have D' = (®x 1/ 5 (Cl, A})) B’ and
DN = (QX,I”,B’ (C{/7A;/)) gl. We ha\/e that Il =
Ind(X : Kind){C"} and I"” = Ind(X : Kind){C"}.
Thisimpliesthat C; — C; and C; — C}’. By ap-
plying the induction hypothesis to the subterms, we get
that I’ — I"" and I — I"’ and so on for the other
subterms. From here and proposition 16, it follows that

we cantake D"’ = (®x i 5/ (CL, AY)) B,

— Suppose D' = Elim[I’,C"]((Ctor (i,1') B")){A"}
and D" = (D ;v 5 (C/,A)) B”. As above we
can again define I'’, C!”, etc. and take D" =
(®x.pmr 5 (CI, ALY) Bi,

— Also D' = Elim[I’,C"]((Ctor (4,
D’ = Elim[I",C")((Ctor (i,1")
case, we can again take that
D" =Elim[I",C""]((Ctor (3, I"") B™")){ A"}

) B"){A"} and

I
E?)) A7}, Inthis

O

As acorollary of the confluence of unmarked terms we get the
following:

Corallary 17 If A and B aretwo distinct sorts or two distinct vari-
ables or avariable and a sort, then we have that A # B.

We will need another lemma— that of the delay of n reduction.
But before that, we have to define another variant of the ¢ reduc-
tion. Thisessentially saysthat a. reduction that would appear only
after a series of eta reductions can be reduced straightaway with-
out going through the eta reductions. For well typed terms, thisis
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equivalent to . reduction, but it also allows us to retain the property
of delay of n reduction for ill-typed terms.

Elim[I, A"J(AX: A (Ctor (i, ) A)C"){B} >,
(®x,1,5/(Ci, By)) A
where I = Ind(X :Kind){C}
B' = \Y :I. (Elim[I, A"](Y){B})
Ci' >y Xsand X, ¢ FV(A) U FV(I)

Proposition 18 For all terms A; and Az, we have that A1 =g,
Ao if and onIy if A =g As.

Lemmall If A, A" g, A”, theneither A7, A”, or there
existsa A" suchthat A g, A" > A”.

Proof The proof is by induction over the structure of A. We
will consider only the cases that do not follow directly from the
induction hypothesis.

e A= C D. There are two cases.

— If C >, C’, then it follows immediately from the in-
duction hypothesis.

— f D>, D'andC = A\X:B.B and A” = [D'/X|B/,
then take A”" = [D/X]B’. The other cases follow
from the induction hypothesis.

e A=)XX:C.BX. Suppose A” = B’ where B >3, B'.
But then we also havethat A >5,, AX:C. B’ X. Sincethe
reduction does not introduce new free variables, thisterm can
now n-reduceto B’.

Lemma 12 (Delay of n reduction) For al terms A and A’, if
Ap* A’ thenthere existsaterm A” such that A7, A" ) A

Proof Followsfromlemma11. i

Wewill next prove Geuvers' lemmawhich isessentially aweak
form of confluence. Thisisenough to prove the uniqueness of types
and subject reduction. But before that we need to define the coun-
terpart of the ./ reduction for unmarked terms. We define it in the
obvious way

Definition 19 (. reduction) Wesay that Ar>,/
and || A[#]| A"].

s A A A7

As before it has the following property:

Proposition 20 Suppose A >,, A’. Then either | A||=|| A’ ||, or
| Al >, [[A"[l. Moreover, if [ A[| >, [[A’[|,then A >, A".

Lemma 13 (Geuverslemma)
o If A=g,, X A, then
A5, A\Y:A'.(X B C)
wherefor al i, A; =g, B; andforall j, C; >; Yj.
o If A=g,, IIX:A;. Ay, then
Ah, AY A" (T1X : A3. A4) B)

where Ay =g,, Az and Az =3, Agandforali, B; >, Yi.



e If A =g,, Ctor(i,I) C,then
Aph, AY DA ((Ctor (i, 1') C") B)

where for al i, C; =g, Ci and for dl j, B; >; Y;, and
I=p, I

o If A=g,, Ind(X:Kind){A} C,then
Ah, AY A ((Ind(X :Kind){A"}) C") B

wherefor al i, A; =gy, A and for al j, C; =3, C}, and
for al k, Bg >, Ys.

o If A=p,, Elim[I, A5](A1){A"} C, then
Aph, AY A (Elim[I’, B'|(B){B} C") B’
where A =Bne B, and Ao

all i, A;l =Bn B; and for al j, C]' =Bne
.B;’C I>;; Y.

=gy, B',and I =g,, I', and for
C;} and for al k,

Proof The proof for each of the casesis similar and is by induc-
tion over the length of the equivalence relation. We will show only
one case here.

e Suppose A =g,, X A. By the induction hypothesis, there
existsan A" such that

A" 5, AY AL (X B C)

and A >g, A" or A” >g, A.

— Thecasewhere A >, A” isimmediate.

— Thecasewhere A >, A” follows from the lemma of
delay of n-reduction.

— If A” g, A, thentherequired result follows from the
confluence of 3. reduction.

— Suppose A” >, A. Then from the confluence of
Bnug reduction on unmarked terms, we get that || A ||
>"X D where || B; || >g,, D:. Fromthelemma of
delay of n-reduction, we get that

[ Al > AY . X D'F >y X D

From proposition 20 we can deduce the existence of
aterm A; such that A >3, Ar and || A: [|= AY :
_.X D'F. Therequired result follows from here.

D.2.2 Classification of terms

Definition 21 We partition the set of terms into four classes: the
set of types Ty, the set of kinds Ki, the set of kind schemas Sc, and
Ex. The class of aterm isdefined as follows:

Cls(Kind) =

Cls(Kscm) =

Cls(t) =

Cls(k) =

Cls(2) =

C|S(A1 Az) C|S( )
) =Cls(A42)
)= Cls( 2)
)=
)=
)=

ClS()\XAl A2
C|S(HX : A1. AQ
Cls(Ind(X :Kind){A}
Cls(Ctor (¢, A1)
1A}

Cls(Elim[I, A2](A: y if Cls(A2) = Ki, else Ki
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We also define the following function:

lift (Ty) = Ki
lift (Ki) = Sc
lift(Sc) = Ex

Lemmail4 If A - A : A isderivable, then we have
lift(Cls(A1)) = Cls(Az). In particular, A; # Ext. Moreover, for
al pairs (X, A) in A, we have Cls(A) = lift(Cls(X)).

Pr oof

Immediate by induction over the derivation of the judg-
ment. O

D.2.3 Well typed terms

We now consider the well typed terms. The following lemmas are
proved essily by induction over the typing derivations.

Lemma 15 (Substitution) If we can derive
A1, (X,A),A2 F B:Cand Ay + A; : A, then we can derive

Proof Straightforward induction over the structure of the deriva-
tion. m|

Lemma 16 If wecan derive Ay, (X, A),A2 + B: C, thenwe
also havethat Ay + A : s for some sort s. Moreover, we also
havethat A1, (X, A),AQ FA:s.

Proof The proof is by induction over the structure of the deriva-
tion. m|

Lemma 17 If wehavethat A - II1X:A. B : s, then we have
tha A, X:AF B:s.

Proof Theonly interesting caseis for the cONV case which fol-
lows from Corollary 17. a

Lemma 18 If thejudgment A + A : B isderivable, then either
B =Ext,or A F B : sforsomesort s.

Proof The proof isastraightforward induction over the structure
of the derivation. O

Lemma 19 (Inversion) If thejudgment A + A : Bisderivable,



A=t = teA
B =gn. A(t)
A F B :Kind
A=k = keA
B =gy, A(k)
A+ B:Kscm
A==z = z€A
B =gy, A(z)
A+ B:Ext
B =3, Kscm
B = Ext
A+ A1 o S1
A,X:A1 [ A2 . S2
B =gy s2
where s; isany sort and
s2 = Kind, or
s1 € {Kind, Kscm} and
s2 = Kscm
A=)X:A,. A = AF A1 :8
A,X:Al l_ AQ : A3

A = Kind
A = Kscm
A = HXZAl.AQ

R

A=A As = AI—A1:HX:B’.A’

A =Ind(X:Kind){A} = A, X:Kind - A, : Kind
wfex (Ai)
B =, Kind
A = Ctor (i, 1) = I =Ind(X:Kind){A}
same conditions on I
 B=p, I/XIA
A = Elim[I, A')(A){B} = I = Ind(X:Kind){A}
same conditions on I
AFA:T
AF A : T — Kind
A+ B:Kind B=g, A A
A+ B;:
Cx,1(As, A’ Ctor (3, 1))
A =Elim[I, A')(A){B}= I =Ind(X:Kind){A}
same conditions on I
AFA:T
A F A :Ksem
A F B:Kscmand B =g, A’
A l_ Bl : \leyj(Ai,A/)
for alli small(A;)

Proof By induction over the structure of the derivation. For every
case we consider the set of possible typing derivations. m|

Lemma 20 (Uniquenessof types) If A - A : A; and
AF A:As then A =pBn. Aa.

Proof By induction over the structure of A. We use the fact that
if Ay =g, Band Az =g,, B, then A1 =g, A.. For every case,
we use the corresponding clause from lemma 19. |

Corollary 22 Suppose A isawell typed term. If A >, A’, then
A, A
D.2.4 Reductions on well typed terms

Lemma 21 (Subject reduction for 3. reduction) If the
judgment A + A : Bisderivable, andif A >4, A" and
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A g, A, thenwe have that

A+ A:B AN+ A:B

Proof Theinteresting cases are the APP and ELIM.
e APP When only the sub-terms reduce without a reduction at

the head, thelemmafollows by using the induction hypothesis
on the sub-terms. Suppose that

A+ A:NIX:B'" A AF B:B
A+ AB:[B/X]|A

and A B >4 [B/X]Az. Weknow from lemma 19 that

A,X:Al }_ A22A3
IMX:A:. Az =35 nx:B.A
A [ A1 181

A [ B/ 1 S2

A: )\X:Al.AQ

Thisimpliesthat A; =g, B' and A3 =g,, A’. Moreover,
Cls(B') = Cls(A1) = lift(Cls(X))
Therefore, we get from lemma 14 that
Cls(s2) = Cls(s1) = s2=s1

Applying the conv rule we get that A - B : A;. By
lemma 15 we get that A + [B/X]A2 : [B/X]As. We can
show in asimilar manner as before that Cls(As) = Cls(A”).
This alows us to apply the coNv rule again which leads to
the required result.

L-ELIM We will only consider the case when an ¢ reduction
takes place at the head. The other casesfollow easily by struc-
tural induction.
AFA:T AF A :Kscm
for all i AtF Bi:Ux(Ci, A"

A+ Elim[I, A')(A){B} : &'
where I = Ind(X : Kind){C}and Vi. small(C})

The interesting case is when we consider the reduction

Elim[Z, A')(Ctor (i, 1) A){B} >, (®x.1.5(Ci,B:)) A
where I = Ind(X :Kind){C}
B’ = \Y:I.(Elim[I,A"|(Y){B})

Suppose A” = (®x.;.p/(Ci, Bi)) A. Suppose that A =
Ai.n. Wehavethat A = B; : Ux ;(C;, A"). The proof is
by induction on the fact that C; isakind of a constructor and
the length of A. We consider the different cases by which C;
isakind of aconstructor.

— If C; = X, then A” = B;. From definition 9 we can
seethat in this case, B; hasthetype A’

- IfC; =11Y : B. C, then
A" = (®x 1,5 ([A1/Y]C, B; A1)) Az..n. We have
that A F B; A1 ‘I/X?[([Al/Y]CEAI). By the in-
duction hypothesis, the reduct has type A’.

- IfC; =TIY:B. X —C, then

A// —
Dy;5(C,Bi AL A\ :B.B (A Y))) Az

From Definition 9 we have that

AF B : [I/X]A—[A"/X]A—Tx (C',A"). We
also know that A + A; : [I/X]A. From here, we can
apply the induction hypothesis and show that the reduct
hastype A’.



e ELIM We will only consider the case when an « reduction
takes place at the head. The other casesfollow easily by struc-
tural induction.

AFA: T AF A :I—Kind
for alli A& B;: (x,1(Cs, A, Ctor (i, 1))
A b Elim[I, A)(A){B} : A’ A*
where I = Ind(X : Kind){C'}

The interesting case is when we consider the reduction

Elim[I, A')(Ctor (i, I) A){B} >, (®x.1.5(Ci, B)) A
where I = Ind(X :Kind){C}
B' =AY :1.(Elim[I,A"|(Y){B})

Suppose A” = (®x.;.p/(Ci, Bi)) A. Suppose that A =
A1..n. Wehavethat A + B; : (x,1(C;, A’, Ctor (3, 1)). By
using the inversion lemmawe can get that A - B’ : 11X :
I. A’ X. By induction on the structure of C; (where C; isa
kind of aconstructor), we can show that if C; = I1Y : B. X,
then A - ®x ;. p/(Ci, B;) : IY : B. A’ Ctor (i, I) Y. The
required result follows from here.

O

Corollary 23 Suppose A isawell formed term. If A5,/ A’,then
A, A" and A" iswell formed.

Corollary 24 Suppose A isawell formed term. If A >* A’, then
there exists awell formed term A" such that A 75, A” 7 A'.

Lemma22 Let A - A: Band A + A’ : B’ betwo derivable
judgments. If A =g, A’, then Cls(A) = Cls(A").

Proof Weknow that || A || and || A’ || have acommon reduct, say
As. Thisimplies that

Al >3, B>y A2 and A" >5,, B' >, As

From here we get that
A, Boand A’ >3, B'o where || Bo||= Band || B'o||= B’

Eta reduction does not change the class of aterm. Moving from
marked to unmarked terms al so does not change the class of aterm.
Therefore, we get that

Cls(A) = Cls(Boy) = ClIs(B) = Cls(A2) and

Cls(A2) = Cls(B") = ClIs(B’p) = Cls(A")
O

Corollary 25 Let A F A: sy and A + B : s2 betwo derivable
judgments. If A =g, B, then s; = so.

Lemma23 If A1,Y:C,A2 - A: Band
Y ¢ FV(A2) U FV(A), thenthere existsa B’ such that
A1As = A: B'. (Thisaso impliesthat B =g,, B').

Proof The proof isby induction on the structure of the derivation.
We will consider only the important cases.
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e case FUN. We know that

A1,Y:C,Ay, X:AF+ B: B
A1,Y:C,As FIIX:A.B :s

ALY :C,Ax F MDX:A.B:1IX:A. B’

Applying the induction hypothesis to the formation of B
AA, XA B:C' B =5, C
By lemma 18 we have that

A1DA2, X:A R C': swhichimplies
AlAQ [ HX:A.C, .S

Therefore we get that
A1As HF AX:A.B:1IIX:A.C’

e case APP We know that

ALY :C,As - A:TIX:B'. A
A17Y:C7A2 F B: B,

A,Y:C,As = AB:[B/X]A

By applying the induction hypothesis we get that
AlAQ - A: AQ and AlAQ F B: A3 where
AQ =B IX:B. A and A3 =B B’

Fromlemma 13, A >4, AY : A. (IIX:B". A”) B. Since
(B¢ reduction preserves type, and A iswell formed, we have
that A> >4, 11X : B”. A”. Thisimpliesthat A" =g,, A’
and B” =g,, B’. We adso get that A3 =g, B"”. From
corollary 25 we get that A; and B” have the same sort. By
applying the CONV rule we get that

A1As - A:TIX:B". A”and A1As - B: B”
Therefore, we get that
A1As F AB:[B/X]A"

Asacorollary we now get that

Lemma 24 (Strengthening) If A, Y:C, A2 - A: Band
Y ¢ FV(A2) UFV(A)UFV(B),then A1Ax - A: B.

Lemma 25 (Subject reduction for n reduction) If A - A: B,
and A >, A'and A >, A’,thenwehavethat

A+ A:B A+ A:B
Proof

A F AXZALAQX:B X¢FV(A2) )\X:Al.AQXDnAQ

The interesting case isthat of functions. Suppose that

From lemma 19 we know that

AX:A A X A3 B=g, IX:A1.A3 AF B:s
Again applying lemma 19 we get that
AX:ALF Ay TIYV:B. A" B' =4, A1 A3z =5, [X/Y]A

By applying the conv rule now, we get that A, X : A; + Az : B.
By applying lemma 24 we get that A + As : B. m|

Theorem 26 (Subject reduction) If A - A: B,and A> A’
and A > A, thenwehavethat: A - A': B and A’ - A: B.

Proof Followsfrom lemma 21 and 25. ]



D.3 Strong Normalization
The proof is structured as follows:

e Weintroduce a calculus of pure terms. Thisisjust the pure A
calculus extended with a recursive filtering operator. We do
this so that we can operate in a confluent calculus.

e We define a notion of reducibility candidates. Every schema
givesriseto areducibility candidate. We also show how these
candidates can be constructed inductively.

e \We then define a notion of well constructed kinds which is a
weak form of typing.

e We associate an interpretation to each well formed kind. We
show that under adequate conditions, this interpretation is a
candidate.

e We show that type level constructs such as abstractions and
constructors belong to the candidate associated with their
kind.

e We show that the interpretation of a kind remains the same
under 3n reduction.

e We define anotion of kinds that are invariant on their domain
—these are kinds whose interpretation remains the same upon
reduction.

e We show that kinds formed with large elimination are invari-
ant on their domain.

e From here we can show the strong normalization of the cal-
culus of pure terms. We show that if a type is well formed,
then the pure term derived from it is strongly normalizing.

e We then reduce the strong normalization of all well formed
terms to the strong normalization of pure terms.

D.3.1 Notation
The syntax for the language is:

(etxt) A o=-]AX:A

(sort) s ::= Kind | Kscm | Ext

(var) X =u=z|k|t

(ptm) A,B:u=s|X|AX:A. B|AB|IIX:A.B
| Ind(X :Kind){A} | Ctor (i, A)
| Elim[A", B')(A){5}

The proof of strong normalization uses the stratification in the
language shown below.

(ctxt) A=A, z:Ksem | A k:u | Atk
(kscm) w ==z |It:k.u| Ik :u1. uz | Kind
(kind) & ==k|At:k1. ke | K[T] | Ak:u. k| K1 K2
| IIt: k1. k2 | Tk u. k| IIz: Ksem. &
| Ind(k:Kind){<} | Elim[x’, u](T){K}
(type) 7 u=t|At:k.7 |72 | Aeiu. T | T[K]

| Az:Ksem. 7 | 7[u] | Ctor (i, k)
| Elim[s’, k] (7"){7} | Elim[s’, &](7"){7}

In this section, the types are a so referred to as proof terms. We
sometimes use [ to refer to an inductive definition.
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D.3.2 Pureterms

The pure terms are defined as:

(A) a,b,c:=t|ab]|At.a]|Co(n)|matcht.{a}

The set of reductions on the pure terms are defined as:

(At.a) br>g [b/t]a
M.(at)>ya ift ¢ FV(a)
matcht.{@} (Co(i) b) &>, ([matcht.{@}/t]a;) b

The trandation from types to pure terms is defined as:

|t

| 7172

| 7[K]

| 7[u]

[At:k. T

[Nk u. T

| A\z:Ksem. T

| Ctor (n, k)

|Elim[x, &'](1){7} | =

(match t.{T(Hi, |Ti |7 >\t2.tt2)}) |7’|

where x = Ind(k: Kind){<} and

1] |72

—_— . ———
393
E

R

0
2
3

(k al,ag):m
T(Ht Ki1.K2,01,Q 2):)\t.T(HQ,G1 t,az)
YT(Ilk:u. k,a1,a2) =Y (k,a1,a2)
T(Hz Ksem. k, a1, a2) =T (k, a1,a2)

T(HX.A. k — Kk,a1,a2)=
MY (k,a1 t (N X a2 (¢t | X)), a2)

Lemma 26 Let T and 7' be two well formed types and let t bea
type variable. Then | [« /t]T |=[| '] /t] | T].

Proof Itisastraightforward proof by induction over the structure
of 7. a

The following lemma uses Definitions 9 and 7 in Section D.2
and aso the definition of Y from above.

Lemma27? |®x 5k, 7)|=

[match t.{T(/ii, |T~; |, Ata.tto }/t]T(H, |’7’|, Ata.t t2)

Proof The proof is by induction on the fact that « isthe kind of
aconstructor. O

Lemma 28 For all well formed proof terms 7, and 72, if
71 > 1o, then|7i| 7 |72 | wherej <.

Proof  Followsfrom lemmas 26 and 27. a

D.3.3 Interpretation of schemas

Definition 27 (Arity) We call ground kind schemas arities de-
noted as arity(u, Kind). The arities are defined with the following
grammar:

(kscm)  w = Kind | Hk:uy. ug | It k. u

Definition 28 (Schema map) We define a kind schema mapping
K as afunction mapping kind schema variables z to arities. We
alsouse I, z: u to say that K has been augmented with the mapping
Z = U.



Definition 29 We define the function p(u)x as:

pu)x = po(K(u))

e po(Kind) isthe set of sets of pure terms;

where

e po(Ilk:u1.uz) istheset of functions from po(u1) to po(u2);
and

e po(It: k. u) isthe set of functions from A to po(u).

Definition 30 For each kind schema u and mapping /C, we define
in p(u)x the relation of partial equivalence written as ~(,) as
follows:

e forall C'and C’ in po(Kind), we havethat C' ~inq C' <
c=ca6

e foral Cand C"in po(Ilk:u1. uz), wehave C ~mpw,. uy C'
<= fordl C; and C2 in po(u1) with C1 ~,, C> we get
that C' C1 Mg c’ Ca; and

e foral C and C'inpo(Ilt: k. u), we have that C ~riy. o, C’
<= fordlaandbinA suchthat a =3, b, we get that
Ca~, C'h.

Definition 31 (Invariant) Given C in p(u)x, wesay that C'isin-
variant <= C ~x ) C.

Definition 32 (Neutral terms) A term is called neutral if it has
neither of the following forms— At.a, Co(é) @, or matcht.{a}.

Definition 33 We define CRo(Kind) as consisting of al sets C
such that:

e if a € C, then a isstrongly normalizing;
e ifai>azanda; € C,thenasz € C; and

e if aisneutral andfor al termsa’ suchthat at>a’ anda’ € C,
thena € C.

Definition 34 (Candidates) We define CR(u)x as a subset of

p(u)k as:
CR(u)k = CRo(K(u)) where
e CRo(Kind) isdefined asin Definition 33;

(
e CRo(IIt : k. u) isthe set of invariant elements C' belonging
to po(I1t: k. u) such that C A C CRo(u); and
(
(

e CRo(Ilk:u1. u2) istheset of invariant elements C' belonging
tOp() Hk:ul.uQ) such that C' (CR()(ul)) C CR()(UQ).

Proposition 35 All reducibility candidates are invariant.

Proposition 36 Let (C;), ., beafamily of reducibility candidates
of Kind indexed by aset I. ThenN;c;C; isareducibility candidate
of schema Kind.

Lemma?29 LetC € p(u)k. If Cisinvariant, then
C € CR(u)k <= YC' € Dom(CR(u)x).C C' € CR(Kind)x

Proof  Straightforward induction over the structure of C(u). O

Definition 37 Let a; be a strongly normalizing term. Then the
length of the longest sequence of reductions to a normal form is
denoted as v (a1).
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Lemma 30 Leta; and az betwo termsand let C' € CRo(Kind)
be areducibility candidate. If a2 isstrongly normalizing, and if
laz/t]lar € C,then (At.a1) a2 € C.

Proof By induction over v(a1) + v(az). O

Corollary 38 Let a; be a pure term and let C' be a reducibility
candidate of schemaKind. Let#'and o’ be respectively a sequence
of variables and terms of the same length. If for all 4, a; is strongly
normalizing, and if [a’ /t]a: € C, then (M.a1) o’ € C.

Lemma 31 For al reducibility candidates C' of kind Kind, for all

sequences of strongly normalizing @ and b and for all i less than
the length of @, we have that

matcht.{@} (Co(i) b) € C' <= ([matcht.{@}/t]a;) b€ C

Proof  Followsby induction over v(a;) + v(b;) (forali). O

Definition 39 (Canonical candidates) Define Can(u)x as:
Can(u)x = Cang(K(u)) where
e Canp(Kind) isthe set of al strongly normalizing terms;

e Cang
Cano

II¢ : k. u) is the function mapping al pure terms to
u); and

—~ o~~~

e Cang(IIk : ui.u2) is the function mapping al elements of
po(ul) to Cano(uQ).

D.3.4 Properties of candidates

In this section, we state some properties of the reducibility candi-
dates. The properties with respect to the union and the intersection
of a family of candidates will be used for the inductive construc-
tions of candidates.

Definition 40 (Order over candidates) For each kind schema u
and mapping /C, we define in p(u)x therelation <, asfollows:

e foral C and C’ in po(Kind), wehavethat C' <kjng C' <=
C cc

e foral Cand C’in po(Ilk:u1. uz), wehave C <rigu;. uy C’
< foral Cyinpo(u1), wegetthat C Cy <., C' C1; and

e foral C and C’ in po(Ilt: k. u), we have that C' <irg.« C’
< foradlainA,wegettha C a <, C’ a.

Definition 41 For all schemas v and mapping /C, for al families
of elementsin p(u)x, we define A, C; as:

o forall C; € po(Kind), A,c; Ci = NierCi;

o fordl C; € po(lt:k.u), \ic; Ci =b €A — N\,c;Ci b
and

e foradl C; pQ(HkZU1.UQ), /\ie] Ci = C’ € po(U1) —
/\iel G

Lemma 32 Let u beaschemaand K amapping and C; afamily

of elements of p(u)xc. ThenVj € I, Ao, Ci <i) Cj-

Proof It follows in a straightforward way by induction over the

structure of 1C(u). O
The following two propositions also follow easily by induction

over the structure of KC(u).



Proposition 42 Let u beaschemaand K amapping and C; afam-
ily of elements of p(u)kc. If al C; are invariants, then the same
holdsfor A, Ci.

Proposition 43 Let u be aschemaand £ amapping and C; afam-
ily of elements of CR(u)x. Then we also have that A,_, C; €
CR(u)k.

iel

Corollary 44 We get that (CR(u)k, <k (v)) iSan inf-semi-lattice
for all schemaw and mapping K. We use min (KC(u)) to denote the
smallest element.

Definition 45 For all schemas v and mapping /C, for al families

of elementsin p(u)«, we define\/,.; C; as:

o foral C; € po(Kind), \/,c; Ci = UierCy;

o forall C; € po(Ilt : k. u), \/
and

e foral C; € p()(Hkiul.UQ), viEI C; = (o= po(ul) —
\/iEI C; ¢,

Ci=beAm\, ., Cib

iel

Lemma 33 Let u beaschemaand K beamapping. Let (C;)
and (C";),; betwo families of elements of p(u)x. If for all
elements of I we havethat C; ~(,) C;, then we also have that

Vier Ci =k Vies Ci-

Proof

iel

Straightforward induction over the structure of /C(u). O

Corollary 46 Letu beaschemaand K beamapping. Let (C;)
be a family of elements of p(u)k.
V,e; Ci isdsoinvariant.

i€l
If dl C; are invariant, then

Lemma 34 Letu beaschemaand K be amapping. Let (Ci),;
be afamily of elements of p(u)x and C' € p(u)x. If for dl i,
C; <K(w) C, then V C; <K (u) C.

iel

Proof  The proof is by induction over the structure of (u). O

Lemma35 Let (C;),, beatotaly ordered family of elements of
CR(u)x. ThenV,.; Ci € CR(u)x.

Proof  The proof isby induction over the structure of K (). Sup-
pose\/, , Ci=C".

e K(u) = Kind. We have to make sure that all three conditions
in Definition 33 are satisfied. The first two conditions follow
obvioudly. For the third case, assume that a is neutral and for
al terms a; such that a > a;, we have that a; € C’. This
implies that a; € C; for some j. Since there are finitely
many such C; and they are totally ordered, we can choose a
C} among them that contains all the Cjs. Since this Cy, is
aso acandidate, it contains a. Therefore, a € /., Ci.

e K(u) = It : k.u. Since dl the C; are invariant, it follows
from Definitions 30 and 31 that for aterma € A, we havethat
C; aisinvariant. Again from Definition 40, it is clear that the
C; a aretotaly ordered. Also from Corollary 46 we get that
V.e: Ci aisinvariant. Applying theinduction hypothesis we
getthat \/,.; Cs a € CRo(u). From Definition 34, it follows
that \/ C; e CRO(HtZK/. u)

i€l

e KC(u) = IIk:u1. uz. Similar to the previous case.
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Definition 47 (Schema interpretation) A schema interpretation
U isafunction that maps akind variable & to an element of p(u)x.
We also use U, k : C to say that U has been augmented with the
mapping k — C.

Definition 48 (Well formed kinds) Let u be a schema, x be a
kind, C be a mapping, and ¢/ be an interpretation. We say that
 isawell formed kind of schema /C(u) under K and ¢/ iff :

1L k=kandU(k) = p(u)x;

2. k = IIt : k1. k2 With K(u) =p,, Kind and k; and k2 are
both well constructed of schema Kind under £ and U/

3.k = IIk : u'. k' with K(u) =g, Kind and ' is well con-
structed of schema Kind under K and U/, k: p(v/)xc;

4. K = Ilz:Ksem. &’ with (u) =g, Kind and for al «’ such
that v’ € arity(u1, Kind), we havethat «’ iswell constructed
of schema Kind under iC, z: v/ and Uf;

5. k = K1 k2 if there exists two schemas u: and ug with k2
well constructed of schema /C(u2) under X and U/, aso k1
well constructed of schema KC(I1k : uz. u1) under K and U,
and p(u)ic = p([ra/KJur )xc;

6. k = k1 71 if there exists a schema u2 and kind x2 such that
1 iswell constructed of schema KC(I1¢ : k2. u2) under K and
U and p(u)xc = p([11/t]uz)k;

7. kK = Ak : uy. Ky if there exists a uz such that «; is well
constructed of schema KC(u2) under ICand U, k: p(u1)x and
p(u)k = p(Ilk:u1. u2)x;

8. Kk = At : K1.ke if there exists a ug such that k2 is well
constructed of schema KC(u2) under IC and U and p(u)x =
p(Ht:Hl.uQ)}c;

9. k = Ind(k : Kind){&} if dl x; are kinds of constructors
and well constructed of schema Kind under 1 and U, k :
po(Kind), and p(u)x = po(Kind); and

10. & = Elim[x’,«'|(7){R} if &' = Ind(k : Kind){x"}, and &’
is well constructed of schema Kind under K and U/, aso v/
isaschemaand K(u) =gy, v, and x; iswell constructed of
schema KC(Uy, ./ (K3, ) under K and U.

Definition 49 We define compatible mappings and interpretation
as:

1. A mapping K iscompatible with acontext A if for al z € A,
we have IC(z) = arity(u, Kind).

2. An interpretation U is compatible with a context A and a
compatible mapping K if for al pairs (k,u) € A, we have
U(k) € p(u)k.

Lemma36 If A - k: u,thenfor al compatible I and U/, we
have that ~ iswell constructed of schema C(u).

Proof By induction over the structure of . |



D.3.5 Inductive constructions

Consider an increasing function F in po(Kind) for the order <gind.
Denote the smallest element of po(Kind) as L. Since po(Kind) is
closed under N, and (po(Kind), <kind) is an inf-semi-lattice, the
function F has aleast fixed point (I fp). We will construct this least
fixed point inductively. Wefirst define the transfinite iteration of F.

Definition 50 Let C' € po(Kind) and o be an ordinal. We define
the iteration of order o of F over C as:

e FU(C)=C,
o [°TH(C) = F(F°(C)); and

° Flim(U) — erUFO(C).

Lemma 37 Let o bean ordina; we have F°(L) <kind {fP(F).

Proof The proof isby induction over o. If o = 0, then it follows
immediately. Otherwise,

e 0 = o + 1 Then we have that F°(L) = F(F°(L)).
By the induction hypothesis, we get that F(F“,(J_)) <Kind
F(Lfp(F)). Thisimpliesthat F(F° (1)) <wina Lfp(F).

e o = lim(U) Followsimmediately from the induction hypoth-
esis and lemma 34.

O

Remark 51 Since we do not consider the degenerate case of
F(1) = L, it follows from lemma 37 that for some ordina o,
we havethat [ fp(F) = F°(L).

Lemma 38 Suppose S isasubset of po(Kind) satisfying:

e if (C;),, isatotaly ordered family of elements of S, then
UierCs € S;

e F(1)eS;ad
e foral CinS, F(C) € S.
Thenifp(F) € S.

Proof  Follows from the fact that [ fp(F) = F°(L) for some
ordinal o. O

Definition 52 Let a € I fp(F). We define deg(a) as the smallest
ordinal such that a € F&(*) (1),

Definition 53 Todl a € I fp(F'), we associate pred(a) defined as
Fdeg(a)fl(J_)'

Lemma 39 For al a, deg(a) isan ordina successor.

Proof  Suppose it is the limit of the set U. From Definition 50,
there exists some o € U for whicha € F°(L). Thisleadsto a
contradiction. ]

Definition 54 (Partial order) Suppose C and C’ aretwo elements
of CRo(Kind). Wesay that C <p C"if C = F°(L)and C' =
FOI(J_), ando < 0.
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D.3.6 Interpretation of kinds

In this section we interpret kinds as members of reducibility candi-
dates. First we augment the schema interpretation

Definition 55 We augment ¢/ so that it maps akind variable to an
element of p(u)x, and atype variable to apure term a.

Definition 56 We denote the interpretation of a type 7 as Cly (7).
To form this, wefirst construct the corresponding pureterm | | and
then substitute the type variables by the corresponding pure terms
inU. Thisisequivalent to (| 7 |).

Definition 57 (Interpreting kinds) Consider a kind «, a schema
u, amapping K, and an interpretation /. Suppose « is well con-
structed of schema /C(w) under K and /. We define by recursion
on k.

1. cly(k) = U(k)

2. C(It : ki.ke) = {a € AVai € CN(ki1),aa1 €
c&,t:al (K’2)}

3. Cﬁ(l’[k:ul. K1) = Ncecr ul),C05 ko (K1)

4. CZ/{ (HZ Kscm. K/l) = mulearlty(u Klnd)C (K'l)

5. Cli (k1 7) = Ci(k1) Cly ()

6. Cly (k1 k2) = Cli(r1) Cly (k2)

7. Cli(Mik1. ko) = a € A — Cff 1.0 (K2)

8. Cly(Mk:ur. k1) = C € CR(u1)k — Cff (k1)

9. ¢ (Ind(k : Kind){R}) = the least fixed point of the function
F from po(Kind) to po(Kind) defined as:
foradl S € po(Kind), for al C" in CR(I — Kind)x (where
I = Ind(k : Kind){R}), for al sequences of pure terms b;,
with for all 4,

bi € Cl);,k:S,A’:C’,B’:Co(i) (Ck,I(K/i? A/7 B/))
F(S) isthe union of min(Kind) with the set of pureterms a
such that
(match t'{cl’j,a,;:b,; (T(Hi, a;, Atz.ttg))}) acC a
10. Cfj (Elim[r, u](){x'}) = G(Cl; (x))

where k = Ind(k : Kind){R} is well constructed of schema
Kind under K and & and G(C) € p(u)k is defined for all
C € dom(<) asfollows (< is the order induced by the
inductive definition «):

e If Cf () hasanormal form b = Co(i) @ such that b €
C

G(C) = Cl);,tlzG(pred(b))((I'k,I,tl (K’U H;)) (E")
e Can(u)x otherwise

Lemma40 The function I in Definition 57.9 is monotonic.



Proof Wemust provethat if C; <king Co, then

Cg,k:)gz,A’:C’,B’:Co(i) (Cr,1(ki, A’y B')) <kind
/ ’
Cu,k;cl,Af;Cf,B':CO(i)(Ck,l("di,A ,B'))

The proof is by induction on the fact that x; is the kind of a con-
structor.

e If x; = k, then both sides reduce to C’ Co(%).

e If k;, =TI1X: Ay. As, thenit follows directly from the induc-
tion hypothesis and because k does not occur in A; .

o Ifr; =TIX: A k — A, then

Ck,[(”{i7A/7B/) =
1Z:(ILX: A k). TLX": A (A’ (Z X)) — Cor(Aa, A", B' Z)

Suppose U’ = U,k : C"", A" : C', B’ : Co(i) where C" is
either Cy or C>. Therequired set isthen

a € A, suchthat Va, € CS (11X : A. k),
Vaz € Clir 4.0, IX': A A" (Z X))
aaraz € CS’,Z:a,l (Ck,I(A%A/vB/ Z))

The set of a; and a2 islarger for the LHS. By the induction
hypothesis, the result a a1 a2 must occur in asmaller set for
the LHS. The required result follows from this.

O

Remark 58 The previous lemma ensures that the interpretation of
an inductive type sets up a well defined order. This ensures that
the interpretation of large elimination (Definition 57.10) is well
formed.

We get a bunch of substitution lemmas. The proof for each of
theseis similar and follows directly by induction over the structure
of k. We state them below:

Proposition 59 Let x be awell constructed kind of schema v un-
der K and U. Let ¢ be a type variable, and 7 a type. We have

that c c
Cu([T/t]r) = Cyf e (r) (%)

Proposition 60 Let x be awell constructed kind of schema v un-
der L andU. Let k be akind variable and ; akind such that ; is
well constructed under /C and U of the same schema asi/(k). We

have that . ©
CE ([0 /K1) = Cf puc (o1 ()

Proposition 61 Let x be awell constructed kind of schema u un-
der I and 4. Let z be aschema variable, and u; be a schema such
that /C(u1) isan arity. We have that

Cg([ul/Z]:‘i) = CE’Z:’C(“U (K,)

D.3.7 Candidate interpretation of kinds

Definition 62 We say that &/ and U/’ are equivalent interpretations
if for al k, we have that U/(k) ~ U’ (k) and for al ¢ we have that
Ut) =pn U'(t).

Lemma4l Letu beaschema, K be amapping, and/ and I/ be
two equivalent interpretations. Suppose « iswell constructed of
schema KC(u) under K and both ¢/ and /. Then

Cli (K) ~kc(uy Clyr (K).
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Proof The proof isby induction over the structure of <. Most of
the cases follow directly from the induction hypothesis.

e k = Elim[’,u](7){s'}. Here ' = Ind(k : Kind){R}.
First note that C (x') = CX, (k). Therefore, the function
F whose [ fp generates the inductive definition is the same.
Moreover, Ci (1) =g, CN/ (7). Since the set of pure terms
is confluent, CJy () and CJy, () have the same normal form.
We can now do induction on the structure of «; to prove that

C&,tl:G(pred(b)) (q)k,l,tl (K'iv "i;)) =
Cgf,tlzc(pred(b))(‘bk,l,tl (Ki, /‘02))

]

Lemma 42 Let KC be amapping, U acandidate interpretation, s
be akind and u be a schema such that  isawell constructed kind
of schema IC(u). Then CfS (k) € CR(u)k.

Proof  The proof isby induction over the structure of x. Most of
the cases follow in adirect way.

e x = Ind(k : Kind){<}. We will use lemma 38 to prove
this. For S € CRo(Kind), the first condition is satisfied by
lemma 35.

— Suppose S = L. If none of the branches is recur-
sive then the function F' is a constant function and the
proof is similar to the non-bottom case. Suppose the
sthbranch isrecursive. Then it is easy to see that the b;
defined as:

bi € Cly ket ar:0.57-Coti) (G (Kiy A, B'))

includes the set of al terms, including non-normalizing
ones. Therefore, there are no terms a that would satisfy
the condition that:

(match t.{CLf o, (T (Ki, ai, Mot t2))}) a € C a

Thisimplies that F(1L) = L and we know that L €
CRo(Kind).

— Consider any other S. We will show that F'(S) sat-
isfies the conditions in Definition 33 and hence be-
longs to CRo(Kind). F'(S) is defined as the union of
min(Kind) with the set of pure terms a such that

(matcht.{ClY a,, (T (Ki, as, M.t t2))}) a € C a

Since C is a candidate, the terms a must be strongly
normalizing.

To see that the set is closed under reduction, sup-
pose a > a’. Since C is a candidate we have that
(matcht.{...}) ' € C a. Moreover, we have that
Ca=C d. Therefore, o’ isasoin the generated set.
Suppose a is a neutral term and for all ' such that
a > a/, we have that o’ belongs to this set. We have
to prove that a belongs to this set. Thisimplies that we
must prove:

(match t.{CLy a,, (T (Kiy ai, Mot t2))}) a € C a

Since a is aneutral term, the above term does not have
aredex at the head. From the induction hypothesis, we
get that Cl)fl:.,k:S,A’:C,B’:Co(i (Ck-,f(“iiv A/7 B/)) isacan-
didate and therefore closed under reduction. Moreover,
the b; are strongly normalizing. We can now consider
all possible redices and prove by induction over v(b;)
that the above condition is satisfied.



e = Elim[x’, u](7){+'} where &’ = Ind(k : Kind){R}. First
note that C/5 («") is a candidate by induction and gives rise to
awell founded order on CRo (Kind). Wewill do induction on
this order. Suppose C5 (k) = G(Cf5 (x")). Wewill show that
for all sets S belonging to the order generated by «’, and for
al puretermsb, we havethat G(S) € CR(u)«. For the non-
recursive case, the proof isimmediate. For the recursive case,
consider Cff ;.. (prea(v)) (Pro,w 1 (K, 7). Note that pred (b)
belongs to the same order. The required result follows now
by doing induction over the structure of «; and applying the
induction hypothesis to G (pred(b)).

O

Definition 63 Suppose A isa context and K and U/ are a mapping
and an interpretation. We say that K and U/ are adapted to A if:

e Vz € A,wehavethat K(z) isanarityand - + K(z) : Kscm.
o Vk € A,wehavethat U/ (k) € CR(A(k))k.
o Vt € A, wehavethatU(t) € CN(A(L)).

D.3.8 Interpretation of abstractions

We get abunch of lemmas that state that an abstraction at the type
level belongs to the corresponding kind. The proof of each of these
lemmas is straightforward and follows in a similar way. We will
show the proof for only one of the lemmas.

Lemma43 Let A + M:x.7 :IIt: k. k1 beajudgment and K
and U be amapping and a candidate interpretation adapted to A.
We have ClY (\t: k. 7) € Cfy (ITt: k. k1) if and only if for al pure
termsa € Cff (r), wehavethat Cff 1., (7) € Cff 4.q(k1).

Lemmad4 Let A - Ak:u.7 : IIk:u. k beajudgment and IC
and U be amapping and a candidate interpretation adapted to A.
We have ClY (\k:u.7) € ClY (TTk:u. x) if and only if for all
reducibility candidates C' € CR(u)x we have that

Cg,k:C(T) € Cg,k:C(K') .

Lemmad5 Let A F Az:Ksecm. 7 : I1z: Kscm. x be ajudgment
and K and I/ be amapping and a candidate interpretation adapted
to A. We have Cly (\z:Kscm. 7) € C (T1z: Kscm. ) if and only

if for al u € arity(u/, Kind) we have that CY (1) € Cpy'*™ (k).

Proof By definition Cjy(\z : Ksem.7) = Cfi(7). Similarly
Cl (T2 : Ksem. k) = My, carity(ukind)Cag = “* (). The if part fol-
lows directly from the definition.

For the only if, suppose that C5 (1) € CJy*" (k) for dl arities
u. Thisimplies that C(7) € Nu, carity(uking)Cig = ** (k). This
impliesthat Cfy (7) € CY (T1z: Kscm. ). O

D.3.9 Interpretation of weak elimination

For this section x = Ind(k : Kind){<}. Suppose aso that C' €
CR(H i Klnd)]C and Ti € CZ’;,A’:C,B,:CO(Z') (Ck,[("ih Al7 Bl))

Lemma 46 Supposea € (5 (k). We have then

(match t.{Y (ks, 73, AMt2.t t2)}) a € C a

Proof  Followsimmediately from the definition of C5 (k). O
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Lemma47 Let A + Elim[x, x1](7){7'} : 1 beaderivable
judgment where x4 isakind. Suppose K isamapping and U/ isa
candidate interpretation adapted to A. If C (1) € Cf (k) and

Cl (1)) € 5 (Cr,1(Ks, k1, Ctor (4, k))), then we have

CE(EIim[H, m](r){;’}) € Cg(m)

Proof  Follows now from the previous lemma. |

D.3.10 Interpretation of constructors

For this section, suppose I = x = Ind(k : Kind){&K}. Also, sup-
pose C € CR(I — Kind)k.

Lemma48 Fordl i, Co(i) € CX (ks).

Proof We know that x; is of the form I1.X : A. k. Suppose B €
Cg,k:cg(z)(X:A)- Then we need to prove that Co(i) B € CN(I).

This means that we need to prove that
(match t.{Y (ks, ai, At2.t t2)}) (Co(i) B) € C (Co(i) B)

where a; belongs to the appropriate candidate. This implies that
we need to prove that

Y (Ki, ai, Ato.match t.{... } t2) B € C (Co(i) B)

Thisfollows directly by an induction over the structure of ;. O

D.3.11 Invariance under 3 reduction

In this section, we show that the interpretation of kinds remains
invariant under (3 reduction.

Lemma49 Let x beawell constructed kind of schema « under a
mapping K and candidate interpretation . If < >3 ', then &’ is
well constructed of schema v under X and &/, and

Cli (k) = Cly (k).

Proof  The proof is by induction over the structure of x. Most

of the cases follow directly from the induction hypothesis. We will
only consider 3 reductions at the head.

e k= (At:K1.kK2) 7. By definition,
Cli((Mt:k1. ko) T) = Clf (M k1. ka) Coy ()

Again by definition thisis equal to Cj; 1.k (7 (K2)- BY propo-
4:Cf
sition 59 thisis equal to Cj ([7/t]k2)
e k= (Mk:ui.k1) k2. By definition,

Cl (Nk:uy. k1) K2) = Cly Mk :uy. k1) Clf (k2)

By lemma 42 we have that Cjf (k2) € CR(u1)x. Therefore,
we get that

Cli(Nk:u. k1) ko) = Cf,k:clf;(@)(m)

By proposition 60 thisis equal to CS ([r2/k]k1).



D.3.12 Invariance under n reduction

In this section, we show that the interpretation remains the same
under n reduction. The unmarked terms || « || are defined in Sec-
tionD.2.1.

Lemma50 Let x beawell constructed kind of schema v under a
mapping K and candidate interpretation . If x >, ', then s’ is
well constructed of schema v under K and U/, and

cli (k) = Ci (k).

Proof The proof is again by induction over the structure of «.
We will consider only the cases where the reduction occurs at the
head.
e k= At:ki. (k2 t). By definition C5 () isequa to:
ac Ar— cg,t:a(ﬁa) Cl)f,i:a(t)
Since t does not occur freein ko, thisis equivalent to

aeAr— Cl(k2)a

Since a does not occur free now in Cfy (k2), we get that this
is equivalent to C5 (k2). Note from Definition 34 that the
domain of C/f (k2) isA.

o 1= Mk:uy. (ke k). By definition C (x) isequal to:
C € CR(u1)x +— Ciy w.o(k2) Clf yo(k)
Since k does not occur freein k2, thisis equivalent to
C € CR(u1)x — Cly (r2) C

Since C' does not occur free now in Cfy (k2), we get that this
is equivalent to Cjj (k2). Note from Definition 34 that the
domain of C$ (k2) iISCR(u1)k.

O

Lemma 51 For al well constructed kinds « of schema v under K

and U, we have CS (k) = C5 (|| «|))-
Proof Followsfrom thefact that k =g, ||~ ||. O
D.3.13 Invariance under . reduction

In this section we essentially show that interpretation remains the
same under large elimination.

Lemma52 Let Elim[x,u](7){x’} bewell constructed of schema
K(u) under K and U. Suppose k = Ind(k:Kind){R}. Suppose G
isthe function used for the interpretation of the large elimination.
If CfY (1) € CfY (), thenfor all C' € CRo(Kind) withCfy (1) € C,
we have that G (Cfy (x)) = G(C).

Proof The proof isimmediate. a
Lemma 53 Suppose I = x = Ind(k:Kind){R}. Suppose the
constructors of I are al small. Suppose the mth constructor of I
has the form ITY : 5. k and we have a sequence of termsb such
that Co(m) b € CJy (I). Then we have that

K
bi € CLI \Vk<i.Yj,:by,k:pred(Co(m) b) (B )

Proof We can have two cases.
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e pred(Co(m) b) # L
Thisimpliesthat pred(Co(m) b) € CRo(Kind). Suppose
S =ck (B;). Then we have that

U,VE<i.Y}, by, k:pred(Co(m) b)
S is a candidate of schema Kind. Suppose also that C’ be-
longs to CR(I — Kind)x and maps elements in the do-
main of I — Kind to S. Then for al indices z, we

have that Cfy , i cotm) y.arcr (Gr1 (i, A', Ctor (i', 1))
isareducibility candidate of Kind.

To prove the lemma we need to show that if for al indices

Ti € Cu pred(Co(m) B, arsc (Ceu1 (R A', Ctor (i, 1))

then we havethat @, 1 g/ (Km, Tm ) Can reduceto b; by ahead
reduction. To have this, for the indices i # m choose 7; as
some variable. For 7, choose the term that returns the ith
argument of the constructor.

e pred(Co(m) b) = L We can show that the constructors now
are not recursive. Hence k does not occur free in any of the
B;s. The proof for the previous case can be reused here.

]

Lemma54 Let A  Elim[x,u](7){s'} : u beaderivable
judgment. Let K be amapping and U/ be an interpretation adapted
to A. Suppose I = k = Ind(k: Kmd){n} Suppose

cl (1) € (k) and T >* Ctor (4, k) A. Also suppose

B’ = Xt:I.Elim[k, u](t){x’'}. Wethen have that

Cly (Elim[s, ul(T){r'}) = Cif (P, 1,5 (i, ;) (A)).

Proof Let G bethe function used for interpreting large elimina-

tion. Suppose Co(i) @ is the normal form of CY (7). Then given
the assumptions we have that:

Cfj (Elim[s, u](m){s'}) =
CZ’;,B’:G(pred(Co(i) a))(cbk,I,B’(’fiv’i;)) (@)

We therefore have to prove that

—

Cg,B’:G(pred(Co(i) a))(‘bk,l,g’ (ki,K7)) (@) =
Cli (P, 1,5 (ki 17) (A))

o r; = kitfollowsdirectly.
e rx; = IIt: k1. k2 We have to prove that
Cli pr. G(pred(Coi) @)t a1 (Pr,1 B’("f?v K 1)) (a2.n) =
CM t:ag ((pk I, B’(KQ? K/ t) (A2 "))
Applying the induction hypothesis leads to the resullt.

e r; = It R. k — ko The LHS becomes

CK (@1 pr (K2, Kit(AY :R. B'(tY)))) (az2..n)

whereld’ = U, B' : G(pred(Co(i) @)),t : a1

By lemma53, a1 belongsto Cff .orea(co(sy a) (112 . k). This
impliesthat a; Y € pred(Co(i) @). Moreover, by lemma 52
G(pred(Co(i) @))(a1 Y) is equal to G(C (k) (ar ¥) and

which is in turn equal to CY(Elim[x, u](A; Y){x'}). The
required result follows directly from here by performing one
head reduction on the RHS and applying the induction hy-
pothesis.

]



D.3.14 Kinds invariant on their domain

Definition 64 Let A F k : u be a derivable judgment and K
and U be a mapping and an interpretation adapted to A. We say
(k,u, A, K,U) isinvariant if:

e u = Kind and for all x’ such that x >* ', we have that
Cli (k) = Cli (&);

e u = ITt: k1. uy then for al derivable judgments A + 7 : k1
and CY (1) € Cfy(r1), we have that (s 7, [7/t]u1, A, K, U)
isinvariant;

e u = IIk:u1.us then for al derivable judgments A + k3 :
u1, wehavethat (k k1, [k1/k]uz, A, K, U) isinvariant.

e u = z and we havethat (K(k), K(u), C(A), K,U) isinvari-
ant.

Lemmabs5 Let A F k3 : Kindand A + k2 : Kind betwo
derivable judgments and X and U/ be a mapping and an
interpretation adapted to A. If (1, Kind, A, KC,U) and
(k2,Kind, A, K, U) areinvariant and k1 =g, k2, then

Cli (k1) = Cli (k2).

Proof We know that there exists a B such that || x1 || >*B and
|| k2 || " B. Thisimpliesthat there existsa s} and axs (lemma 13
and 12) such that x1 >4, &1 and || k1 || 5 B. Similarly, k2 >, 2
and || k5 || t>5 B. From here we get that

Cli (k1) = Gy (K1) = Cl{ (B) = Cy (k) = Clf (k2)

O

Proposition 65 If ([7/t]k,u, A, K,U) isinvariant, and also A
(At:k1.k) 7w, then (Mt: k1. k) 7,u, A IC,U) isinvariant.

D.3.15 |Interpretation of large elimination

Lemma56 Let A - Elim[x,u](7){x'} : u beajudgment.
Suppose I = k = Ind(k:Kind){<}. Let K and &/ be amapping
and an interpretation adapted to A. Suppose

1 Cf(r) e cl(x).
2. foral i, (k}, Ok r(ki,u), A, K,U) isinvariant.

Then we have that (Elim[r, u](7){s'}, u, A, K,U) isinvariant.

Proof  Suppose k; = Elim[k, u(7){x’}. Supposewe are given
a sequence of terms A of the proper type so that x; A isin Kind.

To show the invariance, we have to show that if x1 A >* kg, then
Cl (k1 A) = Cf (r2). Wewill reason by induction on Cf5 () over
the order defined by 1.

o If the term C/S(7) can not be reduced to a term of the form
Co(4)d, then it is minimal with respect to the order defined
by I. Then k2 isnecessarily of the form

Elim[x’,u'](7"){x""} A’ and we have that the interpretation
of both 1, A and k2 is Cang(Kind).

e Suppose the term Cu( ) can be reduced to a term of the
form Co(: )a but 7 is not reduced to a term of the form

Ctor (i, I)C. Then k is again of the form
Elim[x"",u'](7"){x"} A’. By definition, we have that

By :CZ);(K’l A) Cgt a((kaB’(K’l? z 514
By = Ci(rk2) = Cff 7.2(Pk.1r, (K7 KN (DA

2’7,

where B’ = AY : I.Elim[k,u](7){s'}, and B” = Y :
I’ Elim[s"",u')(7"){s""}. Itis evident that B. is areduct of
Bs, and therefore we need to prove that (B1, Kind, A, IC, U)
isinvariant.

This follows by an induction over the structure of «; and by
using the condition 2. The non-recursive cases follow di-
rectly. For the recursive case, we use lemma 53 to show that
B’ is applied to a smaller argument with respect to the order
defined by 1.

o Weareleft with the case when 7 reduces to aterm of the form
Ctor (i, I)C. In going from x; A to ko, we will now have a
¢ reduction. The sequence of reductions is now

k1 A " Elim[k, u](Ctor (i, 1) A){r'}
B (P, 1,0 (10, B') (B))A
> Ko

The first reduction does not change the interpretation since
we are reducing only atype. By lemma 54, the second does
not change the interpretation. Finaly, as above, we can prove
that the result of the . reduction isinvariant over Kind.

D.3.16 Instantiation of contexts

Definition 66 Let A be awell formed context. Let © be a con-
text and ¢ be a mapping from variables to terms such that VX ¢
A p(X) = X.

We say that (O, ¢) is an instantiation of A if for all variables
X € A,wehavetha © F ¢(X) : ¢(A(X)).

Lemma57 Let A - A : B beaderivable judgment and (©, ¢)
aninstantiation of A. Then© + ¢(A) : ¢(B).

Proof By induction over the structure of A. ]

Definition 67 (Adapted instantiation) We say that an instantia-
tion (©, ¢) is adapted to a context A if:

o foralt e A, ¢(t) € CL, o) (B(AR));

o foralk € A, (¢(k), s(A(K)), ©,0, Cano(0)) isinvariant;

o foral z € A, (¢(z),Ksem, ©,0, Cang(©)) isinvariant and
@(z) isan arity.

Definition 68 Suppose A + « : w is aderivable judgment. We
say that al instantiations of (x,u, A) areinvariant if for al instan-
tiations (O, ¢) adapted to A and for all interpretations ¢/ adapted
t0 O, we have that (¢(), p(u), ©,0,U) isinvariant.

D.3.17 Kind schema invariant on their domain

Definition 69 Let A + w : Kscm be a derivable judgment and /C
and U be a mapping and an interpretation adapted to A. We say
that (u, Ksem, A, IC,U) isinvariant:

e if u = Kind, then (u, Kscm, A, K, /) isinvariant;

e if u = IIt : k1.u1, then it is invariant if and only if
(k1, Kind, A, KC,U/) isinvariant and for all terms = such that
A F 7 Ky isderivable and Cff (1) € Cl (11), we have that
([ /t]ur, Ksem, A, KC,U) isinvariant;



e if u = TIk : wi.ue, then it is invariant if and only if
(u1, Ksem, A, IC,U) isinvariant, and for all kinds  such that
A F k:uisderivableand (k, u1, A, IC,U) isinvariant, we
havethat ([x/k]uz, Ksem, A, KC,U) isinvariant;

o if u = 2, thenitisinvariant iff (K(2),Ksem, A, IC,U) is
invariant.

Lemma58 Let A - x:uand A F o' : Kscm be derivable
judgments. Let K and & be amapping and an interpretation
adapted to A. Suppose u =g, v, and (u, Kscm, A, K,U/) and
(v, Ksem, A, K, U) areinvariant. If (x,u, A, KC,U) isinvariant,
then (k,u', A, K, U) isadso invariant.

Proof The proof is by induction over the structure of w and v’'.

e if u =’ = Kind, thenitistrivialy true.

e if u=u' = 2, thenagainitistrivialy true.

o if u = It : ki.ux and v’ = IIt : Ka.ueo, then we have
that k1 =gy, k2 and w1 =g, u2. By assumption, we
know that (x1,Kind, A, KC,U) and (k2, Kind, A, KC,U) are
invariant. This means that Cfy (k1) = Cfj(r2). Moreover,

A+ 7 kpistrueiff A B 71 kg istrue. Applying the
induction hypothesis now leads to the required result.

o ifu=1IIk:ui.us and v’ = IIk:uf. uj, the proof issimilar
to the previous case.

O
Definition 70 Suppose A F u : Kscm is a derivable judgment.
We say that all instantiations of (u,Kscm, A) are invariant if for
al instantiations (O, ¢) adapted to A and for all interpretations ¢/
adapted to ©, we have that (¢(u), Ksem, ©, 0, ) isinvariant.
D.3.18 Strong normalization of pure terms

Theorem 71 Let A + 7 : k beaderivable judgment and 1 and
Ubea mapgi ng and an interpretation adapted to A. Then
Cli (1) € Cif (K).

Proof The proof isby induction over the length of the derivation.
The induction hypothesis are as follows:

e if A+ 7: xand K and/ beamapping and an interpretation
adapted to A, then Cf5 (1) € Cf (k);

e if A F k:u,thendlinstantiationsof (k,u, A) areinvariant;
e if A b u: Kscm, then al instantiations of (u,Kscm, A) are
invariant;
type formation rules This paragraph deals with rules of the
foomA F 7: k.

e abstractions — Follows directly from the induction hypothesis
and lemmas 43 and 44 and 45.

e var — Follows because the interpretation U is adapted to the
context A.

o weak elimination — Follows from lemma47.
e constructor — Follows from lemma 48.

e weakening — Follows directly from the induction hypothe-
sis since the mapping and interpretation remain adapted for
asmaller context.
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e conv — Follows from the recursion hypothesis and lemma 55.

e app — All three cases of app are proved similarly. We will
show only one case here.

— A F 7[t] : k. Then weknow that A + 7 : Ilz:
Ksem. k1 and A F o' : Ksem and [u'/2]k1 = k. By
the induction hypothesis

Cly (T) € Nuy carity(uking)Cag = (K1)

Suppose uj; = K(u'). Then we know that Cf5 (1) €
Cly*"(k1). By proposition 61 weknow that C (1) €

Cli([u' /2)m). ButCly (r[u)) = Cy (r).
kind formation rules This paragraph deals with rules of the
formA F k: u.

e product — All the product formation rules are proved in the
same way. We show only one case here.

— Consider the following formation rule

A, z:Ksecm + & : Kind
A F IIz:Ksem. & : Kind

We have to prove that for al instantiations (0, ¢) we
havethat (I1z: Kscm. ¢(k), Kind, ©, 0, /) isinvariant.
This implies that we must prove that if « > ', then
Cl(I1z : Ksem. ¢(k)) = CL(I1z : Kscm. ¢(x')). By
the induction hypothesis, for all instantiations (©, ¢; z:
arity(u, Kind)) we have that

(¢; 2 arity(u, Kind) (x), Kind, ©, 0, U)
isinvariant. Thisimpliesthat if x > ' then

Cl,;:arity(u,Kind) (:‘i) _ Cl,;:arity(u,Kind) (:‘i/)

The required result follows from here.
e var —follows since the instantiation is adapted.
e conv —follows from lemma 58.

e application — Both of the applications are proved similarly
and follow directly from the induction hypothesis. We will
show only one case here.

—If A F ki1 Kk2 : [k2/k]u, then given ©, ¢, and U,
we must prove that (¢(k1 k2), ¢([k2/klu), ©,0,U) is
invariant. But by the induction hypothesis we know that
(d(k1), p(ITk : u1.u),©,0,U) isinvariant and A +
Ko @ U1. By lemma57 © qb(/ig) : qb(ul) Thisleads
to the required result.

e ind — Suppose I = Ind(k : Kind){R}. Note that Cjy(I)
dependsonly on Cg,k:S,A’:C,B’:Co(i) (C’%I(“ih Al7 Bl)) where
S € po(Kind) and C € CR(I — Kind)x. By induction on
the structure of «;, we can show that thisisinvariant. Thisim-
pliesthat if x; > x; then the interpretation remains the same.
If I > I', then for somes, ; I> ;. From here we can deduce
that if 7 > I’, then Cfy (I) = Cfy (I').

o large elim — Follows from lemma 56.

e abstraction — Both of the abstractions are proved similarly. So
we will show only one of the cases.



— A F M:ki.ke @ It : k1.u. We must prove that
(6Nt = K1.K2), (1Tt @ K1.uw),©,0,U) is invariant,
given ©, ¢, and . Thisimpliesthat if © + 7 : ¢(k1)
and 7 belongs to the appropriate candidate, then we
must have (¢(At : k1. ko) T, [T/t]p(u), ©,0,U) isin-
variant. By proposition 65 we must prove that

([T/t]¢(”2)a [T/t]¢(u)7 67 @, Z/{)

is invariant. But (¢,t : 7) is an instantiation that is
adapted to (A, ¢ : x1). Applying the induction hypoth-
esis now leads to the result.

schema formation rules This paragraph deals with rules of
theform A F u : Ksem.

e 1 = Kind follows directly.
e u = 2 follows since the instantiation is adapted.

e u = ITk : u1.u2 Given ©, ¢, and U/ we have to prove that
(p(I1K : wi.uz2), Ksem, ©, 0, U) is invariant. By the induc-
tion hypothesis, we know that (¢(u1), Ksem, ©,0,U) isin-
variant. The induction hypothesis also says that
([p,k : K](u2),Ksem, ©,0,U) is invariant. We also know
that A F k: ¢(u1) and (k, p(u1), ©,0,U) isinvariant since
the instantiation is adapted. Thisimplies that
(¢([K/K]uz), Kscm, ©,0,U) isinvariant.

o v = IIt: k1. uy the proof isvery similar to the above case.

O

Coroallary 72 If 7 isawell formed type, | 7| is strongly normaliz-
ing.

Proof Since 7 is well formed we havethat A + 7 : k. We
only need to construct an interpretation and a mapping. For the
interpretation, let 1/(t) = t for every type variable. Then we get
Cli (1) =|7.

We can build therest of ¢/ and K as:

e if A =-thenl/(k) = Cang(Kind) and K(z) = Kind for dll
variables k and z;

o if A = A’ t: k then return the 4’ and K associated with
A

e if A=A k:uthenld =U'k: Cand K = K', where
C € CR(u)xr and K’ and U’ are associated with A';

e if A=A"z:KscmthenK =K',z : Kindand Y = U/’
where K’ and U/’ are associated with A'.

D.3.19 Normalization of terms

In this section, we use an encoding that maps all well formed terms
to types. This encoding preserves the number of reductions. The
ideais similar to that of Harper et al [20].

The encoding uses two constants. A isakind and B is a type.
x isavariablethat is never used, it isawild-card.

A :Kind
B :I1k:Kind. k&
* unused variable

The encoding for Kscm is as follows:

31

S(Kscm) = Kscm
U(Kscm) = Kind
K(Kscm) = A

The encoding for schemas is as follows:

U(Kind) = Kind
Ult:k.u)=1It: K(k). U(u)
U(Hk:u1.u2):Hk:U(ul).Htk:K(ul).U(ug)
U(z)==
K(Kind)=A
K(IIt:k.u)=1It: K (k). K (u)
(Hk Uui. UQ):HI{I U(ul).Htk:K(ul).K(uQ)
K(z)=k.
T(Kind)=B A
T(It:k.u)=B[A — IIt: K (k). A — A]

)-

T(k)(At: K(r). T (u))
T(Hk:ul.ug):B[AﬁHk U( 1) Htk ( ) A—>A]
T(e)=t T(ur)(Me:U(ur). Atg: K (ur). T (uz2))

The encoding for kindsis asfollows:

K(k)=k
K(Ht:ﬁl.ﬁg):HtZK(Hﬂ K(/ig)
K(Ik:u. k) =1k:U(u). ity : K(u). K(k)
K(I1z:Ksem. k) =11z : Ksem. ITk. : Kind. It : A. K (k)
KMk:u.k)=Mk:U(u). Mg : K(u). K(k)
K()\tZH1./i2):At:K(/i1) K(/ig)
Kk 1)=K(k) T(1)
K(k1 ko) = K(k1) K(r2)T (r2)
K(Ind(k:Kind){&}) =Ind(k:Kind){K(x)}
K (Elim[r, u](7){x'}) = Elim[K (), U(w)](T(7)){K (x')}

T(k) =tk
T(IIt:k1.k2) =B[A — IIt: K(k1). A — A]
T'(k1)(At: K (k1). T (k2))
T(Mk:u.k)=B[A — Ik:U(u). Ity : K(u). A — A]
T(w)( Nk :U(u). Mty : K (u). T(K))

T(Ilz:Ksem. k) =

B[I1z: Kscm. k. : Kind. IT¢. : A. A — A]
(Az:Ksem. Ak, :Kind. At;: A. T'(k))
T(A\k:u.k)
A U(u
T(At K1. Hg)
T(k )
)

(H1 K2

Atk K (u). (A AT (8)T (w)
MK 1) ()\*ZA.T(KQ))T(/ﬂ)
T(x)
T (k1

I H &1

(k
T(r)
K (k2)]T (k2)

B[(Kind - A —(A—... > A) — A) — A

(A :Kind. Mgt A XY (A = ... — A). (Y T (k1))
T(Elim[s, u|(T){x}) =

Elim[K (), (Ax: K (k). K(uw))|(T(7))
{O: A X AT (6)T(5)T(u)}

T(Ind(k:Kind){K}) =

The encoding for typesis as follows:



T(t)=t
TAt:k.T)=M:K(k). A AT (7)T(K)
T(T1 T2) = T(Tl) T(Tg)
TAk:u.7)=Xk:U(u). M : K(u). A: A.T(7))T(u)
T(r[s]) =T () [K(r)]T(r)
T(Az:Ksem. 7) = Az:Ksem. Ak : Kind. Xt : A. T'(7)
T(r[u)) =T (7)[U(w)][K(w)] T (u)
T(.Ctor (7, k)) = (Ax: A. Ctor (i, K (k)))T' (k)
T (Elim[x, k1](T){T}) =

Elim[K (k), K (k1 (IN{O*: A X AT ()T (5)T (k1) }

=

We have to define a similar transformation on contexts:

() -, A:Kind, B: 11k : Kind. k&

(A t:k) i I'(A),t: K(k)
LA k:u) = T(A),k:U(u),tr: K(u)
I'(A,z:Kscm) = T'(A),z:Ksem, k. :Kind,t.: A

D.3.20 Coding and reduction

In this section we state lemmas that prove that the coding preserves
the number of reductions. We omit the proofs since they follow by
astraightforward induction over the structure of terms.

Lemma59 For al well typed terms A, if A>3 A’, then we have

T(A) >g+ T(A)
K(A)>jh K(A")
U(A) >3 U(A")

Moreover, if || A|| >3 A1, then there exists A2 such that
[ Az[|= Ay and [T (A)| ' |T(Az)].

Lemma 60 For al well typed terms A, if A >, A’, then we have

T(A) >t T(A)
K(A) > K(A')
U(A)>; UA")

Moreover, if || A|| ., A1, then there exists A, such that
[Az|= Avand [T(A)| > |T(A2)].

Lemma 61 For al well typed terms A, if A >,, A’, then we have

T(A) >y T(A)
K(A) 5, K(A)
U(A) 5, U(A)

D.3.21 Coding and typing

In this section we show that the coding of awell typed term isaso
well typed. For this we need to prove that the coding preserves
Bne equality. Thisrequires a confluent calculus. Therefore, we use
the unmarked terms from Section D.2.1. We extend the coding to
unmarked terms by defining:

It is now easy to prove by a straightforward induction on the
structure of terms that the following lemma holds:
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Lemma 62 Suppose A - A : B and B # Ext. Then we have
that

T(A) - T(A) : K(B)andT(A) - K(B) : Kind
D(A) - K(A): U(B)and T(A) - U(B) : Kscm if defined
T(A) - U(A): S(B)andT(A) - S(B): Ext if defined

Corollary 73 Suppose A - A : B and B # Ext. Then |T(A) |
is strongly normalizing.

D.3.22 Normalization of unmarked terms

Lemma 63 For al well typed terms A, we havethat || A|| is
strongly normalizing for 3n.o reduction.

Proof  Since there can not be an infinite sequence of 7 reductions
and we can delay 7 reductions, we need to prove the normalization
for Buo reductions only. Suppose || A || is not normalizing and
there exists a sequence A; ... A;... such that A; g, Ait1
and Ay =|| A||. By lemma59 and 60, we get that there exists a
sequenceof terms A ... A} ... suchthat | 4} ||= A; and | T(A}) |
|>}7‘f | T(A'i+1) | and also | T(A) | D},f | T(A])]. Thisimplies
that | 7'(A) | is not strongly normalizing which is a contradiction.
O

D.3.23 Normalization of all terms
Lemma 64 Suppose A >3, B. Then ||T(A)| >4 | T(B)|.

Proof By induction over the derivation of A >3, B. Note that
intaking aterm A to T'(A), al theterms C that appear as annota-
tions at lambda abstractions are duplicated with the corresponding
T(C). |

Lemma65 Suppose A = A : B. Then A isstrongly

normalizing.

Proof We only haveto prove normalization for 3. reduction. By
lemma 64, if A isnot normalizing, then || T'(A4) || is aso not nor-
malizing. But by lemma 62 we havethat T'(A) - T'(A) : K(B)
which implies ( lemma 63) that || 7'(A) || is strongly normalizing.
O

Theorem 74 (Strong normalization) All well typed terms are
strongly normalizing.

Proof Followsfrom lemma 65. O

D.4 Church-Rosser Property
The proof is structured as follows:

e Wefirst prove that awell typed term A in 8. normal form has
the same 7 reductionsas || A ||.

e From here we know that if A and A’ arein normal form, then
|| Al and || A’ || are equal. We then show that the annotations
in the \-abstractions are equal.

D.4.1 Structure of normal forms

Lemma 66 All well typed 3. normal terms N have the following
form:

1. >\X:N1.N2.
2. HX:Nl.NQ.



s € {Kind, Kscm, Ext}.
X N.
Ind(X :Kind){N}.

o o M~ W

Ctor (i, N) N where N isof the form 5.

7. Elim[N, No](N1){N} N’ where N isof theform 5 and N,
is of theform 4.

Lemma67 LetA, X:C,A’" - A: Bbeajudgment and A in B¢
normal form. If X does not occur in
FV(BYUFV(A"YUFV(||A|),then X ¢ FV(A).

Proof  The proof is by induction over the size of A. We use
lemma 66 to enumerate the different cases.

e Thecase where A isavariable or asort isimmediate.

e Suppose A, X : C,A’ + IIY : Ni. N2 : B. It follows
directly from the induction hypothesis that X does not occur
in N1 and Ns.

e Suppose A, X:C,A" F \Y:N1.N> : Band B = IIY :
N;. A’. Weknow that A, X :C, A’ - N; : s and therefore
X ¢ FV(N,). Also B>*ITY : N{. A” and A, X :C, A", Y :
Ni F Ny : A”. Since X ¢ FV(A")U FV(N1), wecan
apply the induction hypothesis and therefore X ¢ FV (N:).

e Suppose A, X:C,A’ - Y N : B. Thisimpliesthat A, X :
CANFY :IZ: A Ayand A X : C,A" - Np :
Ai. From lemma 23 and 13 we have that A, X : C, A"
Y : I1Z : As. Ay where X does not occur free in As and
As =gy, A1 and Ay =g, A2. From here we can show that
A, X:C,A" F Ny : Az. We can now apply the inductive
hypothesis to show that X ¢ FV (NN1). Iterating in this way,
we can show that X ¢ FV (N;).

e Suppose A, X : C, A’ + Ind(Y : Kind){N} : B. Follows
directly from theinduction hypothesisthat X ¢ FV (1V;).

e Suppose A, X:C, A’ + Ctor (i, I) N : B. Follows directly
from the induction hypothesisthat X ¢ F'V (I). We can then
show as abovethat X ¢ FV (N;).

e Suppose A, X : C, A’ + Elim[N, N1](N2){N} N’ : B.
Since A, X : C,A’ - N : Kind, it follows from the induc-
tion hypothesis that X ¢ FV(N). Similarly, since A, X :
C,A" - Ny :Kscm,or A, X:C,A’ - N1 : N — Kind, it
followsthat X ¢ F'V(N:). Similarly we can prove directly
from the induction hypothesisthat X ¢ FV (No) U FV (N).

Finally, as above we can provethat X ¢ FV (N'). O

Corollary 75 Let A + A : B. If Aisinnormal form, then || A ||
isalso in normal form.

Proof We must show that || A || does not contain any 7 re-
ductions. The interesting case is when A is of the form \X :
Ni. Nz X. We want to show that if X ¢ FV(|| N2 ||), then
X ¢ FV(N2). Sinceit iswell typed we know that A + A\X :
Ni.Na X : IIX : N;.C. Wehavethat X ¢ FV(IIX : N;.C).
From here we get that A, X : Ny = N : IIX : N;.C. This
impliesthat if X ¢ FV (|| N2 ||), then X ¢ FV(N2). O
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D.4.2 Church-Rosser

Theorem 76 (Church-Rosser) LetA - A: Band A - A': B
be two derivable judgments. If A =3, A’, andif Aand A" arein
normal form, then A = A’.

Proof Weknow that || A || and || A’ || arein normal form. Since
the unmarked terms are confluent we have that || A ||=|| A" ||. The
proof is by induction over the structures of A and A'.

e Thecasewhen A = A" = sor A = A’ = avaiableis
immediate.

e Suppose A = AX:N;. Noand A’ = AX: N{. N3. Weknow
that B =Bn IIX : Ni. Az =Bne HXN{ Ag ThlSImp'leS
that N1 =g, Ni which implies that both of them have the
same sort. Thisimpliesthat N; = N7. We can now apply the
induction hypothesisto N> and N; to get that N> = N3,

e Suppose A =I1X:N;. N2 and A’ = I1X : Ni. N3. Follows
directly from the induction hypothesis.

e Suppose A = X N and A’ = X N’. We know that in the
context A, the variable X hasthetypeIIY : 5. As. Therefore
each of the N; and N; have the same type. Applying the
induction hypothesis to each of them leads to the required
result.

e Suppose A = Ind(X : Kind){N} and 4’ = Ind(X :
Kind){N"}. By the typing ruleswe know that A, X : Kind +
N; : Kind and A, X : Kind = N/ : Kind. Applying the
induction hypothesis leadsto N; = N/.

e Suppose A = Ctor (i, N) N and A’ = Ctor (i, N')N'. We
know that both V and N’ have type Kind. The induction
hypothesis directly leadsto N = N’. We can then show as
abovethat N; = N.

e Suppose A = Elim[N, N1](N2){N} No and
A" = Elim[N', N{](N5){N'} N’y. Since N and N’ are
both of type Kind, it followsthat N = N’. From here we get
that N2 = N3. Since both N1 and N; have the type Kscm or
havethetype N — Kind, it followsthat N; = N7. Fromthis
we can show that the IV; and N, are equal. Finally as above,
we can show that the Ny; and the N'y; are equal. O

Theorem 77 (Confluence) Let A - A: Band A + A’ : Bbe
two judgments. If A =g,, A’, then A and A" have acommon
reduct — there existsaterm C such that A >* C and A’ >* C.

Proof We know that both A and A’ reduce to normal forms A4;
and Af. Due to subject reduction, both A; and A} have the same
type B. By the previous lemma A; = A’. O

D.5 Consistency

Theorem 78 (Consistency of thelogic) There exists noterm A
for which- - A : TIX :Kind. X.

Proof Suppose there existsaterm A for which- + A : I1X :
Kind. X. By theorem 74, there exists anormal form B for A. By
the subject reduction - + B : I1X : Kind. X. We can show now
that this leads to a contradiction by case analysis of the possible
normal forms for the types in the calculus. a



