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Abstract

A certified binary is a value together with a proof that the value satisfies a given specification. Existing compilers that generate certified
code have focused on simple memory and control-flow safety rather than more advanced properties. In this paper, we present a general
framework for explicitly representing complex propositions and proofs in typed intermediate and assembly languages. The new framework
allows us to reason about certified programs that involve effects while still maintaining decidable typechecking. We show how to integrate
an entire proof system (the calculus of inductive constructions) into a compiler intermediate language and how the intermediate language can
undergo complex transformations (CPS and closure conversion) while preserving proofs represented in the type system. Our work provides
a foundation for the process of automatically generating certified binaries in a type-theoretic framework.
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Abstract

A certified binary is a value together with a proof that the value
satisfies a given specification. Existing compilers that generate cer-
tified code have focused on simple memory and control-flow safety
rather than more advanced properties. In this paper, we present
a general framework for explicitly representing complex proposi-
tions and proofs in typed intermediate and assembly languages.
The new framework allows us to reason about certified programs
that involve effects while still maintaining decidable typechecking.
We show how to integrate an entire proof system (the calculus of
inductive constructions) into a compiler intermediate language and
how the intermediate language can undergo complex transforma-
tions (CPS and closure conversion) while preserving proofs rep-
resented in the type system. Our work provides a foundation for
the process of automatically generating certified binaries in a type-
theoretic framework.

1 Introduction

Proof-carrying code (PCC), as pioneered by Necula and Lee [30,
29], allows a code producer to provide a machine-language pro-
gram to a host, along with a formal proof of its safety. The proof
can be mechanically checked by the host; the producer need not be
trusted because a valid proof is incontrovertible evidence of safety.

The PCC framework is general because it can be applied to cer-
tify arbitrary data objects with complex specifications [32, 2]. For
example, the Foundational PCC system [3] can certify any property
expressible in Church’s higher-order logic. Harper et al. [19, 7]
call all these proof-carrying constructs certified binaries (or deliv-
erables [7]). A certified binary is a value (which can be a function,
a data structure, or a combination of both) together with a proof
that the value satisfies a given specification.

Unfortunately, little is known on how to construct or generate
certified binaries. Existing certifying compilers [31, 9] have fo-
cused on simple memory and control-flow safety only. Typed inter-
mediate languages [22] and typed assembly languages [28] are ef-
fective techniques for automatically generating certified code; how-
ever, none of these type systems can rival the expressiveness of the
actual higher-order logic as used in some PCC systems [3].

In this paper, we present a type-theoretic framework for con-
structing, composing, and reasoning about certified binaries. Our
plan is to use the formulae-as-types principle [24] to represent
propositions and proofs in a general type system, and then to in-
vestigate their relationship with compiler intermediate and assem-
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bly languages. We show how to integrate an entire proof system
(the calculus of inductive constructions [35, 11]) into an intermedi-
ate language, and how to define complex transformations (CPS and
closure conversion) of programs in this language so that they pre-
serve proofs represented in the type system. Our paper builds upon
a large body of previous work in the logic and theorem-proving
community (see Barendregt et al. [5, 4] for a good summary), and
makes the following new contributions:

• We show how to design new typed intermediate languages
that are capable of representing and manipulating proposi-
tions and proofs. In particular, we show how to maintain
decidability of typechecking when reasoning about certified
programs that involve effects. This is different from the work
done in the logic community which focuses on strongly nor-
malizing (primitive recursive) programs.

• We maintain a phase distinction between compile-time type-
checking and run-time evaluation. This property is often lost
in the presence of dependent types (which are necessary for
representing proofs in predicate logic). We achieve this by
never having the type language (see Section 3) dependent on
the computation language (see Section 4). Proofs are instead
always represented at the type level using dependent kinds.

• We show how to use propositions to express program invari-
ants and how to use proofs to serve as static capabilities. Fol-
lowing Xi and Pfenning [44], we use singleton types [23]
to support the necessary interaction between the type and
computation languages. We can assign an accurate type to
unchecked vector (or array) access (see Section 4.2). Xi and
Pfenning [44] can achieve the same using constraint check-
ing, but their system does not support arbitrary propositions
and (explicit) proofs, so it is less general than ours.

• We use a single type language to typecheck different com-
piler intermediate languages. This is crucial because it is im-
practical to have separate proof libraries for each intermedi-
ate language. We achieve this by using inductive definitions
to define all types used to classify computation terms. This in
turn nicely fits our work on (fully reflexive) intensional type
analysis [39] into a single system.

• We show how to perform CPS and closure conversion on our
intermediate languages while still preserving proofs repre-
sented in the type system. Existing algorithms [28, 21, 26, 6]
all require that the transformation be performed on the entire
type language. This is impractical because proofs are large
in size; transforming them can alter their meanings and break
the sharing among different languages. We present new tech-
niques that completely solve these problems (Sections 5–6).



• Our type language is a variant of the calculus of inductive
constructions [35, 11]. Following Werner [41], we give rig-
orous proofs for its meta-theoretic properties (subject reduc-
tion, strong normalization, confluence, and consistency of the
underlying logic). We also give the soundness proof for our
sample computation language. See Sections 3 and 4, and the
appendix for more details.

As far as we know, our work is the first comprehensive study on
how to incorporate higher-order predicate logic (with inductive
terms and predicates) into typed intermediate languages. Our re-
sults are significant because they open up many new exciting pos-
sibilities in the area of type-based language design and compila-
tion. The fact that we can internalize a very expressive logic into
our type system means that formal reasoning traditionally done at
the meta level can now be expressed inside the actual language it-
self. For example, much of the past work on program verification
using Hoare-like logics may now be captured and made explicit in
a typed intermediate language.

From the standpoint of type-based language design, recent
work [22, 44, 13, 15, 40, 39] has produced many specialized,
increasingly complex type systems, each with its own meta-
theoretical proofs, yet it is unclear how they will fit together. We
can hope to replace them with one very general type system whose
meta theory is proved once and for all, and that allows the definition
of specialized type operators via the general mechanism of induc-
tive definitions. For example, inductive definitions subsume and
generalize earlier systems on intensional type analysis [22, 14, 39].

We have started implementing our new type system in the
FLINT compiler [36, 37], but making the implementation realis-
tic still involves solving many remaining problems (e.g., efficient
proof representations). Nevertheless, we believe our current contri-
butions constitute a significant step toward the goal of providing a
practical end-to-end compiler that generates certified binaries.

2 Approach

Our main objectives are to design typed intermediate and low-level
languages that can directly manipulate propositions and proofs, and
then to use them to certify realistic programs. We want our type
system to be simple but general; we also want to support complex
transformations (CPS and closure conversion) that preserve proofs
represented in the type system. In this section, we describe the main
challenges involved in achieving these goals and give a high-level
overview of our main techniques.

Before diving into the details, we first establish a few naming
conventions that we will use in the rest of this paper. Typed inter-
mediate languages are usually structured in the same way as typed
λ-calculi. Figure 1 gives a fragment of a richly typed λ-calculus,
organized into four levels: kind schema (kscm) u, kind κ, type τ ,
and expression (exp) e. If we ignore kind schema and other exten-
sions, this is just the polymorphic λ-calculus Fω [18].

We divide each typed intermediate language into a type sub-
language and a computation sub-language. The type language con-
tains the top three levels. Kind schemas classify kind terms while
kinds classify type terms. We often say that a kind term κ has kind
schema u, or a type term τ has kind κ. We assume all kinds used
to classify type terms have kind schema Kind, and all types used to
classify expressions have kind Ω. Both the function type τ1 → τ2

and the polymorphic type ∀t : κ. τ have kind Ω. Following the
tradition, we sometimes say “a kind κ” to imply that κ has kind
schema Kind, “a type τ” to imply that τ has kind Ω, and “a type
constructor τ” to imply that τ has kind “κ→ · · ·→Ω.” Kind terms
with other kind schemas, or type terms with other kinds are strictly
referred to as “kind terms” or “type terms.”

THE TYPE LANGUAGE:

(kscm) u ::= Kind | . . .
(kind) κ ::= κ1→κ2 | Ω | . . .
(type) τ ::= t | λt :κ. τ | τ1 τ2 | τ1→τ2 | ∀t :κ. τ | . . .

THE COMPUTATION LANGUAGE:

(exp) e ::= x | λx :τ. e | e1 e2 | Λt :κ. e | e[τ ] | . . .

Figure 1: Typed λ-calculi—a skeleton

The computation language contains just the lowest level which
is where we write the actual program. This language will eventu-
ally be compiled into machine code. We often use names such as
computation terms, computation values, and computation functions
to refer to various constructs at this level.

2.1 Representing propositions and proofs

The first step is to represent propositions and proofs for a particular
logic in a type-theoretic setting. The most established technique
is to use the formulae-as-types principle (a.k.a. the Curry-Howard
correspondence) [24] to map propositions and proofs into a typed
λ-calculus. The essential idea, which is inspired by constructive
logic, is to use types (of kind Ω) to represent propositions, and
expressions to represent proofs. A proof of an implication P ⊃Q is
a function object that yields a proof of proposition Q when applied
to a proof of proposition P . A proof of a conjunction P ∧ Q is a
pair (e1, e2) such that e1 is a proof of P and e2 is a proof of Q. A
proof of disjunction P ∨Q is a pair (b, e)—a tagged union—where
b is either 0 or 1 and if b=0, then e is a proof of P ; if b=1 then e
is a proof of Q. There is no proof for the false proposition. A proof
of a universally quantified proposition ∀x∈B.P (x) is a function
that maps every element b of the domain B into a proof of P (b)
where P is a unary predicate on elements of B. Finally, a proof of
an existentially quantified proposition ∃x∈B.P (x) is a pair (b, e)
where b is an element of B and e is a proof of P (b).

Proof-checking in the logic now becomes typechecking in the
corresponding typed λ-calculus. There has been a large body of
work done along this line in the last 30 years; most type-based
proof assistants are based on this fundamental principle. Baren-
dregt et al. [5, 4] give a good survey on previous work in this area.

2.2 Representing certified binaries

Under the type-theoretic setting, a certified binary S is just a pair
(v, e) that consists of:

• a value v of type τ where v could be a function, a data struc-
ture, or any combination of both;

• and a proof e of P (v) where P is a unary predicate on ele-
ments of type τ .

Here e is just an expression with type P (v). The predicate P is a
dependent type constructor with kind τ →Ω. The entire package S
has a dependent strong-sum type Σx :τ.P (x).

For example, suppose Nat is the domain for natural numbers
and Prime is a unary predicate that asserts an element of Nat as
a prime number, we introduce a type nat representing Nat , and a
type constructor prime (of kind nat→Ω) representing Prime . We
can build a certified prime-number package by pairing a value v
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(a natural number) with a proof for the proposition prime(v); the
resulting certified binary has type Σx :nat. prime(x).

Function values can be certified in the same way. Given a func-
tion f that takes a natural number and returns another one as the
result (i.e., f has type nat → nat), in order to show that f always
maps a prime to another prime, we need a proof for the following
proposition:

∀x∈Nat. Prime(x) ⊃ Prime(f(x))

In a typed setting, this universally quantified proposition is repre-
sented as a dependent product type:

Πx :nat. prime(x) → prime(f(x))

The resulting certified binary has type

Σf :nat → nat. Πx :nat. prime(x) → prime(f(x))

Here the type is not only dependent on values but also on function
applications such as f(x), so verifying a certified binary involves
typechecking the proof which in turn requires evaluating the under-
lying function application.

2.3 The problems with dependent types

The above scheme unfortunately fails to work in the context of
typed intermediate (or assembly) languages. There are at least four
problems with dependent types; the third and fourth are present
even in the general context.

First, real programs often involve effects such as assignment,
I/O, or non-termination. Effects interact badly with dependent
types. In our previous example, suppose the function f does not ter-
minate on certain inputs; then clearly, typechecking—which could
involve applying f—would become undecidable. It is possible to
use the effect discipline [38] to force types to be dependent on pure
computation only, but this does not work in some typed λ-calculi;
for example, a “pure” term in Girard’s λU [18] could still diverge.

Even if applying f does not involve any effects, we still have
more serious problems. In a type-preserving compiler, the body
of the function f has to be compiled down to typed low-level lan-
guages. A few compilers perform typed CPS conversion [28], but
in the presence of dependent types, this is a very difficult prob-
lem [6]. Also, typechecking in low-level languages would now re-
quire performing the equivalent of β-reductions on the low-level
(assembly) code; this is awkward and difficult to support cleanly.

Third, it is important to maintain a phase distinction between
compile-time typechecking and run-time evaluation. Having de-
pendent strong-sum and dependent product types makes it harder
to preserve this property. It is also difficult to support first-class
certified binaries.

Finally, it would be nice to support a notion of subset types [10,
33]. A certified binary of type Σx :nat. prime(x) contains a natural
number v and a proof that v is a prime. However, in some cases, we
just want v to belong to a subset type {x :nat | prime(x)}, i.e., v is
a prime number but the proof of this is not together with v; instead,
it can be constructed from the current context.

2.4 Separating the type and computation languages

We solve these problems by making sure that our type language is
never dependent on the computation language. Because the actual
program (i.e., the computation term) would have to be compiled
down to assembly code in any case, it is a bad idea to treat it as
part of types. This strong separation immediately gives us back the
phase-distinction property.

To represent propositions and proofs, we lift everything one
level up: we use kinds to represent propositions, and type terms
to represent proofs. The domain Nat is now represented by a kind
Nat; the predicate Prime is represented by a dependent kind term
Prime which maps a type term of kind Nat into a proposition. A
proof for proposition Prime(n) certifies that the type term n is a
prime number.

To maintain decidable typechecking, we insist that the type lan-
guage is strongly normalizing and free of side effects. This is pos-
sible because the type language no longer depends on any runtime
computation. Given a type-level function g of kind Nat→Nat, we
can certify that it always maps a prime to another prime by build-
ing a proof τp for the following proposition, now represented as a
dependent product kind:

Πt :Nat.Prime(t)→Prime(g(t)).

Essentially, we circumvent the problems with dependent types by
replacing them with dependent kinds and by lifting everything (in
the proof language) one level up.

To reason about actual programs, we still have to connect terms
in the type language with those in the computation language. We
follow Xi and Pfenning [44] and use singleton types [23] to relate
computation values to type terms. In the previous example, we in-
troduce a singleton type constructor snat of kind Nat→Ω. Given a
type term n of kind Nat, if a computation value v has type snat(n),
then v denotes the natural number represented by n.

A certified binary for a prime number now contains three parts:
a type term n of kind Nat, a proof for the proposition Prime(n),
and a computation value of type snat(n). We can pack it up into
an existential package and make it a first-class value with type:

∃n :Nat.∃t :Prime(n).snat(n).

Here we use ∃ rather than Σ to emphasize that types and kinds
are no longer dependent on computation terms. Under the erasure
semantics [16], this certified binary is just an integer value of type
snat(n) at run time.

A value v of the subset type (for prime numbers) would simply
have type snat(n) as long as we can construct a proof for Prime(n)
based on the information from the context.

We can also build certified binaries for programs that involve
effects. Returning to our example, assume again that f is a func-
tion in the computation language which may not terminate on some
inputs. Suppose we want to certify that if the input to f is a prime,
and the call to f does return, then the result is also a prime. We can
achieve this in two steps. First, we construct a type-level function
g of kind Nat → Nat to simulate the behavior of f (on all inputs
where f does terminate) and show that f has the following type:

∀n :Nat. snat(n) → snat(g(n))

Here following Figure 1, we use ∀ and → to denote the polymor-
phic and function types for the computation language. The type for
f says that if it takes an integer of type snat(n) as input and does
not loop forever, then it will return an integer of type snat(g(n)).
Second, we construct a proof τp showing that g always maps a
prime to another prime. The certified binary for f now also con-
tains three parts: the type-level function g, the proof τp, and the
computation function f itself. We can pack it into an existential
package with type:

∃g :Nat→Nat. ∃p : (Πt :Nat.Prime(t)→Prime(g(t))).
∀n :Nat. snat(n) → snat(g(n))

Notice this type also contains function applications such as g(n),
but g is a type-level function which is always strongly normalizing,
so typechecking is still decidable.
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We can also restrict f so that it can only be applied to prime
numbers; all we need is to add an additional proof argument, so f
has type:

∀n :Nat.∀t :Prime(n). snat(n) → snat(g(n)).

Here, the parameter t serves as a static capability; a proof for
Prime(n) exists only if n is indeed a prime.

2.5 Designing the type language

We can incorporate propositions and proofs into typed intermedi-
ate languages, but designing the actual type language is still a chal-
lenge. For decidable typechecking, the type language should not
depend on the computation language and it must satisfy the usual
meta-theoretical properties (e.g. strong normalization).

But the type language also has to fulfill its usual responsibil-
ities. First, it must provide a set of types (of kind Ω) to classify
the computation terms. A typical compiler intermediate language
supports a large number of basic type constructors (e.g., integer, ar-
ray, record, tagged union, and function). These types may change
their forms during compilation, so different intermediate languages
may have different definitions of Ω; for example, a computation
function at the source level may be turned into CPS-style, or later,
to one whose arguments are machine registers [28]. We also want
to support intensional type analysis [22] which is crucial for type-
checking runtime services [27].

Our solution is to provide a general mechanism of inductive
definitions in our type language and to define each such Ω as an
inductive kind. This was made possible only recently [39] and it
relies on the use of polymorphic kinds. Taking the type language in
Figure 1 as an example, we add kind variables k and polymorphic
kinds Πk :u. κ, and replace Ω and its associated type constructors
with inductive definitions (not shown):

(kscm) u ::= Kind | . . .
(kind) κ ::= κ1→κ2 | k | Πk :u. κ | . . .
(type) τ ::= t | λt :κ. τ | τ1 τ2 | λk :u. τ | τ [κ] | . . .

At the type level, we add kind abstraction λk :u. τ and kind appli-
cation τ [κ]. The kind Ω is now inductively defined as follows (see
Sections 3–4 for more details):

Inductive Ω : Kind := →→ : Ω→Ω→Ω
| ∀∀ : Πk :Kind. (k→Ω)→Ω
...

Here →→ and ∀∀ are two of the constructors (of Ω). The polymorphic
type ∀t : κ. τ is now written as ∀∀[κ] (λt : κ. τ ); the function type
τ1→τ2 is just →→τ1τ2.

Inductive definitions also greatly increase the programming
power of our type language. We can introduce new data objects
(e.g., integers, lists) and define primitive recursive functions, all at
the type level; these in turn are used to help model the behaviors of
the computation terms.

To have the type language double up as a proof language
for higher-order predicate logic, we add dependent product kind
Πt :κ1. κ2, which subsumes the arrow kind κ1 →κ2; we also add
kind-level functions to represent predicates. Thus the type language
naturally becomes the calculus of inductive constructions [35].

Notice standard formulation of Church’s higher-order logic
puts propositions at the same level as terms (which are type terms
in our setup); proofs are then represented at a level below (parallel
to our computation language). This does not work because we al-
ready require polymorphic kinds for the inductive definition of Ω;

with impredicative polymorphism on both the kind and type levels,
the proof language becomes Girard’s λU [18] which is known to
be inconsistent.

2.6 Proof-preserving compilation

Even with a proof system integrated into our intermediate lan-
guages, we still have to make sure that they can be CPS- and
closure-converted down to low-level languages. These transforma-
tions should preserve proofs represented in the type system; in fact,
they should not traverse the proofs at all since doing so is impracti-
cal with large proof libraries.

These challenges are non-trivial but the way we set up our type
system makes it easier to solve them. First, because our type lan-
guage does not depend on the computation language, we do not
have the difficulties involved in CPS-converting dependently typed
λ-calculi [6]. Second, all our intermediate languages share the
same type language thus also the same proof library; this is possible
because the Ω kind (and the associated types) for each intermediate
language is just a regular inductive definition.

Finally, a type-preserving program transformation often re-
quires translating the source types (of the source Ω kind) into the
target types (of the target Ω kind). Existing CPS- and closure-
conversion algorithms [28, 21, 26] all perform such translation at
the meta-level; they have to go through every type term (thus every
proof term in our setting) during the translation, because any type
term may contain a sub-term which has the source Ω kind. In our
framework, the fact that each Ω kind is inductively defined means
that we can internalize and write the type-translation function in-
side our type language itself. This leads to elegant algorithms that
do not traverse any proof terms but still preserve typing and proofs
(see Sections 5–6 for details).

2.7 Putting it all together

A certifying compiler in our framework will have a series of in-
termediate languages, each corresponding to a particular stage in
the compilation process; all will share the same type language. An
intermediate language is now just the type language plus the cor-
responding computation terms, along with the inductive definition
for the corresponding Ω kind. In the rest of this paper, we first give
a formal definition of our type language (which will be named as
TL from now on) in Section 3; we then present a sample computa-
tion language λH in Section 4; we show how λH can be CPS- and
closure-converted into low-level languages in Sections 5–6; finally,
we discuss related work and then conclude.

3 The Type Language TL

Our type language TL resembles the calculus of inductive construc-
tions (CIC) implemented in the Coq proof assistant [25]. This is a
great advantage because Coq is a very mature system and it has
a large set of proof libraries which we can potentially reuse. For
this paper, we decided not to directly use CIC as our type language
for three reasons. First, CIC contains some features designed for
program extraction [34] which are not required in our case (where
proofs are only used as specifications for the computation terms).
Second, as far as we know, there are still no formal studies covering
the entire CIC language. Third, for theoretical purposes, we want
to understand what are the most essential features for modeling cer-
tified binaries.

Motivations Following the discussion in Section 2.5, we orga-
nize TL into the following three levels:
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(kscm) u ::= z | Πt :κ. u | Πk :u1. u2 | Kind

(kind) κ ::= k | λt :κ1. κ2 | κ[τ ] | λk :u. κ | κ1 κ2

| Πt :κ1. κ2 | Πk :u. κ | Πz :Kscm. κ

| Ind(k :Kind){�κ} | Elim[κ′, u](τ ){�κ}
(type) τ ::= t | λt :κ. τ | τ1 τ2 | λk :u. τ | τ [κ]

| λz :Kscm. τ | τ [u] | Ctor (i, κ)

| Elim[κ′, κ](τ ′){�τ}
Here kind schemas (kscm) classify kind terms while kinds classify
type terms. There are variables at all three levels: kind-schema
variables z, kind variables k, and type variables t. We have an ex-
ternal constant Kscm classifying all the kind schemas; essentially,
TL has an additional level above kscm, of which Kscm is the sole
member.

A good way to comprehend TL is to look at its five Π con-
structs: there are three at the kind level and two at the kind-schema
level. We use a few examples to explain why each of them is neces-
sary. Following the tradition, we use arrow terms (e.g., κ1→κ2) as
a syntactic sugar for the non-dependent Π terms (e.g., Πt :κ1. κ2 is
non-dependent if t does not occur free in κ2).

• Kinds Πt : κ1. κ2 and κ1 → κ2 are used to typecheck the
type-level function λt : κ. τ and its application form τ1 τ2.
Assuming Ω and Nat are inductive kinds (defined later) and
Prime is a predicate with kind schema Nat → Kind, we
can write a type term such as λt : Ω. t which has kind
Ω → Ω, a type-level arithmetic function such as plus which
has kind Nat → Nat → Nat, or the universally quantified
proposition in Section 2.2 which is represented as a kind
Πt :Nat.Prime(t)→Prime(g(t)).

• Kinds Πk : u. κ and u → κ are used to typecheck the type-
level kind abstraction λk :u. τ and its application form τ [κ].
As mentioned in Section 2.5, this is needed to support inten-
sional analysis of quantified types [39]. It can also be used to
define logic connectives and constants, e.g.

True : Kind = Πk :Kind. k→k
False : Kind = Πk :Kind. k

True has the polymorphic identity as a proof:

id : True = λk :Kind. λt :k. t

but False is not inhabited (this is essentially the consistency
property of TL which we will show later).

• Kind Πz : Kscm. κ is used to typecheck the type-level kind-
schema abstraction λz : Kscm. τ and its application form
τ [u]. This is not in the core calculus of constructions [11].
We use it in the inductive definition of Ω (see Section 4)
where both the ∀∀Kscm and ∃∃Kscm constructors have kind Πz :
Kscm. (z→Ω)→Ω. These two constructors in turn allow
us to typecheck predicate-polymorphic computation terms,
which occur fairly often since the closure-conversion phase
turns all functions with free predicate variables (e.g, Prime)
into predicate-polymorphic ones.

• Kind schemas Πt : κ. u and κ→u are used to typecheck the
kind-level type abstraction λt :κ1. κ2 and its application form
κ[τ ]. The predicate Prime has kind schema Nat → Kind.
A predicate with kind schema Πt : Nat. Prime(t)→Kind is
only applicable to prime numbers. We can also define e.g. a
binary relation:

LT : Nat→Nat→Kind

so that LT t1 t2 is a proposition asserting that the natural
number represented by t1 is less than that of t2.

Inductive Bool : Kind := true : Bool
| false : Bool

Inductive Nat : Kind := zero : Nat
| succ : Nat→Nat

plus : Nat→Nat→Nat

plus(zero) = λt :Nat. t
plus(succ t) = λt′ :Nat. succ ((plus t) t′)

ifez : Nat→ (Πk :Kind. k→ (Nat→k)→k)

ifez(zero) = λk :Kind. λt1 :k. λt2 :Nat→k. t1
ifez(succ t) = λk :Kind. λt1 :k. λt2 :Nat→k. t2 t

le : Nat→Nat→Bool

le(zero) = λt :Nat. true
le(succ t) = λt′ :Nat. ifez t′ Bool false (le t)

lt : Nat→Nat→Bool

lt = λt :Nat. le (succ t)

Cond : Bool→Kind→Kind→Kind

Cond(true) = λk1 :Kind. λk2 :Kind. k1

Cond(false) = λk1 :Kind. λk2 :Kind. k2

Figure 2: Examples of inductive definitions

• Kind schemas Πk : u1. u2 and u1 → u2 are used to type-
check the kind-level function λk : u. κ and its application
form κ1 κ2. We use it to write higher-order predicates and
logic connectives. For example, the logical negation operator
can be written as follows:

Not : Kind → Kind = λk :Kind. (k→False)

The consistency of TL implies that a proposition and its nega-
tion cannot be both inhabited—otherwise applying the proof
of the second to that of the first would yield a proof of False.

TL also provides a general mechanism of inductive defini-
tions [35]. The term Ind(k : Kind){�κ} introduces an inductive
kind k containing a list of constructors whose kinds are speci-
fied by �κ. Here k must only occur “positively” inside each κi

(see Appendix D for the formal definition of positivity). The term
Ctor (i, κ) refers to the i-th constructor in an inductive kind κ. For
presentation, we will use a more friendly syntax in the rest of this
paper. An inductive kind I = Ind(k :Kind){�κ} will be written as:

Inductive I : Kind := c1 : [I/k]κ1

| c2 : [I/k]κ2
...
| cn : [I/k]κn

We give an explicit name ci to each constructor, so ci is just an
abbreviation of Ctor (i, I). For simplicity, the current version of
TL does not include parameterized inductive kinds, but supporting
them is quite straightforward [41, 35].

TL provides two iterators to support primitive recursion on in-
ductive kinds. The small elimination Elim[κ′, κ](τ ′){�τ} takes a
type term τ ′ of inductive kind κ′, performs the iterative operation
specified by �τ (which contains a branch for each constructor of κ′),
and returns a type term of kind κ[τ ′] as the result. The large elimi-
nation Elim[κ′, u](τ ){�κ} takes a type term τ of inductive kind κ′,
performs the iterative operation specified by �κ, and returns a kind
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(sort) s ::= Kind | Kscm | Ext

(var) X ::= z | k | t
(ptm) A, B ::= s | X | λX :A.B | A B | ΠX :A.B

| Ind(X :Kind){ �A} | Ctor (i, A)

| Elim[A′, B′](A){ �B}
Figure 3: Syntax of the type language TL

term of kind schema u as the result. These iterators generalize the
Typerec operator used in intensional type analysis [22, 14, 39].

Figure 2 gives a few examples of inductive definitions including
the inductive kinds Bool and Nat and several type-level functions
which we will use in Section 4. The small elimination for Nat
takes the following form Elim[Nat, κ](τ ′){τ1; τ2}. Here, κ is a
dependent kind with kind schema Nat→Kind; τ′ is the argument
which has kind Nat. The term in the zero branch, τ1, has kind
κ[τ ′]. The term in the succ branch, τ2, has kind Nat → κ[τ ′] →
κ[τ ′]. TL uses the ι-reduction to perform the iterator operation.
For example, the two ι-reduction rules for Nat work as follows:

Elim[Nat, κ](zero){τ1; τ2}�ι τ1

Elim[Nat, κ](succ τ ){τ1; τ2}�ι τ2 τ (Elim[Nat, κ](τ ){τ1; τ2})
The general ι-reduction rule is defined formally in Appendix D.
In our examples, we take the liberty of using the pattern-matching
syntax (as in ML) to express the iterator operations, but they can be
easily converted back to the Elim form.

In Figure 2, plus is a function which calculates the sum of two
natural numbers. The function ifez behaves like a switch statement:
if its argument is zero, it returns a function that selects the first
branch; otherwise, the result takes the second branch and applies
it to the predecessor of the argument. The function le evaluates to
true if its first argument is less than or equal to the second. The
function lt performs the less-than comparison.

The definition of function Cond, which implements a condi-
tional with result at the kind level, uses large elimination on Bool.
It has the form Elim[Bool, u](τ ){κ1; κ2}, where τ is of kind Bool;
both the true and false branches (κ1 and κ2) have kind schema u.

Formalization We want to give a formal semantics to TL and
then reason about its meta-theoretical properties. But the five Π
constructs have many redundancies, so in the rest of this paper, we
will model TL as a pure type system (PTS) [4] extended with in-
ductive definitions. Intuitively, instead of having a separate syntac-
tical category for each level, we collapse all kind schemas u, kind
terms κ, type terms τ , and the external constant Kscm into a single
set of pseudoterms (ptm), denoted as A or B. Similar constructs
can now share typing rules and reduction relations.

Figure 3 gives the syntax of TL, written in PTS style. There is
now only one Π construct (ΠX : A. B), one λ-abstraction (λX :
A. B), and one application form (A B); two iterators for inductive
definitions are also merged into one (Elim[A′, B′](A){ �B}). We
use X and Y to represent generic variables, but we will still use t,
k, and z if the class of a variable is clear from the context.

TL has the following PTS specification which we will use to
derive its typing rules:

S = Kind, Kscm, Ext
A = Kind :Kscm, Kscm :Ext
R = (Kind, Kind), (Kscm, Kind), (Ext, Kind)

(Kind, Kscm), (Kscm, Kscm)

Here S contains the set of sorts used to denote universes. We have
to add the constant Ext to support quantification over Kscm. Our

names for the sorts reflect the fact we lifted everything one level
up; they are related to other systems via the following table:

Systems Notations

TL Kind Kscm Ext
Werner [41] Set Type Ext

Coq/CIC [25] Set,Prop Type(0) Type(1)
Barendregt [4] ∗ � 	

The axioms in the set A denote the relationship between different
sorts; an axiom “s1 : s2” means that s2 classifies s1. The rules in
the set R are used to define well-formed Π constructs, from which
we can deduce the set of well-formed λ-definitions and applica-
tions. For example, the five rules for TL can be related to the five
Π constructs through the following table:

PTS rules\ptm ΠX :A. B λX :A.B A B

(Kind, Kind) Πt :κ1. κ2 λt :κ. τ τ1 τ2

(Kscm, Kind) Πk :u. κ λk :u. τ τ [κ]
(Ext, Kind) Πz :Kscm. κ λz :Kscm. τ τ [u]

(Kind, Kscm) Πt :κ. u λt :κ1. κ2 κ[τ ]

(Kscm, Kscm) Πk :u1. u2 λk :u. κ κ κ′

We define a context ∆ as a list of bindings from variables to pseu-
doterms:

(ctxt) ∆ ::= · | ∆, X :A

The typing judgment for the PTS-style TL now takes the form ∆ 

A : A′ meaning that within context ∆, the pseudoterm A is well-
formed and has A′ as its classifier. We can now write a single
typing rule for all the Π constructs:

∆ 
 A : s1 ∆, X :A 
 B : s2 (s1, s2) ∈ R
∆ 
 ΠX :A. B : s2

(PROD)

Take the rule (Kind, Kscm) as an example. To build a well-formed
term ΠX : A. B, which will be a kind schema (because s2 is
Kscm), we need to show that A is a well-formed kind and B is
a well-formed kind schema assuming X has kind A. We can also
share the typing rules for all the λ-definitions and applications:

∆, X :A 
 B : B′ ∆ 
 ΠX :A. B′ : s

∆ 
 λX :A. B : ΠX :A. B′ (FUN)

∆ 
 A : ΠX :B′. A′ ∆ 
 B : B′

∆ 
 A B : [B/X]A′ (APP)

The reduction relations can also be shared. TL supports the stan-
dard β- and η-reductions (denoted as �β and �η) plus the previ-
ously mentioned ι-reduction (denoted as �ι) on inductive objects
(see Appendix D). We use �β , �η , and �ι to denote the relations
that correspond to the rewriting of subterms using the relations �β ,
�η , and �ι respectively. We use � and � for the unions of the
above relations. We also write =βηι for the reflexive-symmetric-
transitive closure of �.

The complete typing rules for TL and the definitions of all
the reduction relations are given in Appendix D. Following
Werner [41] and Geuvers [17], we have shown that TL satisfies
all the key meta-theoretic properties including subject reduction,
strong normalization, Church-Rosser (and confluence), and consis-
tency of the underlying logic. The detailed proofs for these proper-
ties are given in Appendix D.

4 The Computation Language λH

The language of computations λH for our high-level certified in-
termediate format uses proofs, constructed in the type language, to
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(exp) e ::= x | n | tt | ff | f | fix x :A. f | e e′ | e[A]

| 〈X =A, e :A′〉 | open e as 〈X, x〉 in e′

| 〈e0, . . . en−1〉 | sel[A](e, e′) | e aop e′

| e cop e′ | if[A, A′](e, X1. e1, X2. e2)

where n ∈ N

(fun) f ::= λx :A. e | ΛX :A. f

(arith) aop ::= + | . . .
(cmp) cop ::= < | . . .

Figure 4: Syntax of the computation language λH .

verify propositions which ensure the runtime safety of the program.
Furthermore, in comparison with other higher-order typed calculi,
the types assigned to programs can be more refined, since program
invariants expressible in higher-order predicate logic can be rep-
resented in our type language. These more precise types serve as
more complete specifications of the behavior of program compo-
nents, and thus allow the static verification of more programs.

One approach to presenting a language of computations is to
encode its syntax and semantics in a proof system, with the benefit
of obtaining machine-checkable proofs of its properties, e.g. type
safety. This appears to be even more promising for a system with
a type language like CIC, which is more expressive than higher-
order predicate logic: The CIC proofs of some program properties,
embedded as type terms in the program, may not be easily repre-
sentable in meta-logical terms, thus it may be simpler to perform
all the reasoning in CIC. However our exposition of the language
TL is focused on its use as a type language, and consequently it
does not include all features of CIC. We therefore leave this possi-
bility for future work, and give a standard meta-logical presentation
instead; we address some of the issues related to adequacy in our
discussion of type safety.

In this section we often use the unqualified “term” to refer to a
computation term (expression) e, with syntax defined in Figure 4.
Most of the constructs are borrowed from standard higher-order
typed calculi. To simplify the exposition we only consider con-
stants representing natural numbers (n is the value representing
n ∈ N) and boolean values (tt and ff). The term-level abstraction
and application are standard; type abstractions and fixed points are
restricted to function values, with the call-by-value semantics in
mind and to simplify the CPS and closure conversions. The type
variable bound by a type abstraction, as well as the one bound by
the open construct for packages of existential type, can have either
a kind or a kind schema. Dually, the type argument in a type ap-
plication, and the witness type term A in the package construction
〈X =A, e :A′〉 can be either a type term or a kind term.

The constructs implementing tuple operations, arithmetic, and
comparisons have nonstandard static semantics, on which we focus
in section 4.1, but their runtime behavior is standard. The branch-
ing construct is parameterized at the type level with a proposition
(which is dependent on the value of the test term) and its proof; the
proof is passed to the executed branch.

Dynamic semantics We present a small step call-by-value op-
erational semantics for λH in the style of Wright and Felleisen [42].
The values are defined as

v ::= n | tt | ff | f | fix x :A.f | 〈X =A, v :A′〉 | 〈v0, . . . vn−1〉
The reduction relation ↪→ is specified by the rules

(λx :A.e) v ↪→ [v/x]e (R-β)

(ΛX :B. f)[A] ↪→ [A/X]f (R-TY-β)

sel[A](〈v0, . . . vn−1〉, m) ↪→ vm (m < n) (R-SEL)

open 〈X ′ =A, v :A′〉 as 〈X, x〉 in e
↪→ [v/x][A/X]e

(R-OPEN)

(fix x :A. f) v ↪→ ([fix x :A. f/x]f) v (R-FIX)

(fix x :A. f)[A′] ↪→ ([fix x :A. f/x]f)[A′] (R-TYFIX)

m +n ↪→ m + n (R-ADD)

m <n ↪→ tt (m < n) (R-LT-T)

m <n ↪→ ff (m ≥ n) (R-LT-F)

if[B, A](tt, X1. e1, X2. e2) ↪→ [A/X1]e1 (R-IF-T)

if[B, A](ff, X1. e1, X2. e2) ↪→ [A/X2]e2 (R-IF-F)

An evaluation context E encodes the call-by-value discipline:

E ::= • | E e | v E | E[A] | 〈X =A, E :A′〉
| open E as 〈X, x〉 in e | open v as 〈X, x〉 in E

| 〈v0, . . . vi, E, ei+2, . . . , en−1〉 | sel[A](E, e)

| sel[A](v, E) | E aop e | v aop E | E cop e

| v cop E | if[A, A′](E, X1. e1, X2. e2)

The notation E{e} stands for the term obtained by replacing the
hole • in E by e. The single step computation �→ relates E{e} to
E{e′} when e ↪→ e′, and �→∗ is its reflexive transitive closure.

As shown the semantics is standard except for some additional
passing of type terms in R-SEL and R-IF-T/F. However an inspec-
tion of the rules shows that types are irrelevant for the evaluation,
hence a type-erasure semantics, in which all type-related operations
and parameters are erased, would be entirely standard.

4.1 Static semantics

The static semantics of λH shows the benefits of using a type lan-
guage as expressive as TL. We can now define the type construc-
tors of λH as constructors of an inductive kind Ω, instead of having
them built into λH . As we will show in Section 5, this property is
crucial for the conversion to CPS, since it makes possible trans-
forming direct-style types to CPS types within the type language.

Inductive Ω : Kind := snat : Nat→Ω
| sbool : Bool→Ω
| →→ : Ω→Ω→Ω
| tup : Nat→ (Nat→Ω)→Ω
| ∀∀Kind : Πk :Kind. (k→Ω)→Ω
| ∃∃Kind : Πk :Kind. (k→Ω)→Ω
| ∀∀Kscm : Πz :Kscm. (z→Ω)→Ω
| ∃∃Kscm : Πz :Kscm. (z→Ω)→Ω

Informally, all well-formed computations have types of kind Ω, in-
cluding singleton types of natural numbers snat A and boolean val-
ues sbool B, as well as function, tuple, polymorphic and existential
types. To improve readability we also define the syntactic sugar

A → B ≡ →→ A B
∀sX :A. B
∃sX :A. B

≡
≡

∀∀s A (λX :A.B)
∃∃s A (λX :A.B)

}
where s ∈ {Kind, Kscm}

and often drop the sort s when s = Kind; e.g. the type void, con-
taining no values, is defined as ∀t :Ω. t ≡ ∀∀Kind Ω (λt :Ω. t).

Using this syntactic sugar we can give a familiar look to many
of the formation rules for λH expressions and functional values.
Figure 5 contains the inference rules for deriving judgments of the
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form ∆; Γ 
 e : A, which assign type A to the expression e in a
context ∆ and a type environment Γ defined by

(type env) Γ ::= · | Γ, x :A

We introduce some of the notation used in these rules in the course
of the discussion.

Rules E-NAT, E-TRUE, and E-FALSE assign singleton types to
numeric and boolean constants. For instance the constant 1 has type
succ zero in any valid environment. In rule E-NAT we use the meta-
function ·̂ to map natural numbers n ∈ N to their representations
as type terms. It is defined inductively by 0̂ = zero and n̂+1 =
succ n̂, so ∆ 
 n̂ : Nat holds for all valid ∆ and n ∈ N.

Singleton types play a central role in reflecting properties of
values in the type language, where we can reason about them con-
structively. For instance rules E-ADD and E-LT use respectively the
type terms plus and lt (defined in Section 3) to reflect the semantics
of the term operations into the type level via singleton types.

However, if we could only assign singleton types to computa-
tion terms, in a decidable type system we would only be able to
typecheck terminating programs. We regain expressiveness of the
computation language using existential types to hide some of the
too detailed type information. Thus for example one can define the
usual types of all natural numbers and boolean values as

nat : Ω = ∃t :Nat. snat t
bool : Ω = ∃t :Bool. sbool t

For any term e with singleton type snat A the package 〈t= A, e :
snat t〉 has type nat. Since in a type-erasure semantics of λH

all types and operations on them are erased, there is no runtime
overhead for the packaging. For each n ∈ N there is a value
of this type denoted by n̂ ≡ 〈t = n̂, n : snat t〉. Operations on
terms of type nat are derived from operations on terms of singleton
types of the form snat A; for example an addition function of type
nat → nat → nat is defined as the expression

add = λx1 :nat. λx2 :nat.
open x1 as 〈t1, x′1〉 in open x2 as 〈t2, x′2〉 in
〈t=plus t1 t2, x′1 + x′2 :snat t〉

Rule E-TUP assigns to a tuple a type of the form tup A B, in
which the tup constructor is applied to a type A representing the
tuple size, and a function B mapping offsets to the types of the
tuple components. This function is defined in terms of operations
on lists of types:

Inductive List : Kind := nil : List
| cons : Ω→List→List

nth : List→Nat→Ω
nth nil = λt :Nat. void
nth (cons t1 t2) = λt :Nat. ifez t Ω t1 (nth t2)

Thus nth L n̂ reduces to the n-th element of the list L when n is
less than the length of L, and to void otherwise. We also use the
infix form A::A′ ≡ cons A A′. The type of pairs is derived: A ×
A′ ≡ tup 2̂ (nth (A::A′::nil)). Thus for instance ·;· 
 〈42, 7〉 :

snat 4̂2 × snat 7̂ is a valid judgment.
The rules for selection and testing for the less-than relation (the

only comparison we discuss for brevity) refer to the kind term LT
with kind schema Nat→Nat→Kind. Intuitively, LT represents a
binary relation on kind Nat, so LT m̂ n̂ is the kind of type terms
representing proofs of m < n. LT can be thought of as the param-
eterized inductive kind of proofs constructed from instances of the
axioms ∀n ∈ N. 0 < n+1 and ∀m, n ∈ N. m < n ⊃ m+1 < n+1:

Inductive LT : Nat→Nat→Kind
:= ltzs : Πt :Nat. LT zero (succ t)
| ltss : Πt :Nat. Πt′ :Nat. LT t t′→LT (succ t) (succ t′)

To simplify the presentation of our type language, we allowed in-
ductive kinds of kind scheme Kind only. Thus to stay within the
scope of this paper we actually use a Church encoding of LT (de-
fined later); this is sufficient since proof objects are never analyzed
in λH , so the full power of elimination is not necessary for LT.

In the component selection construct sel[A](e, e′) the type A
represents a proof that the value of the subscript e′ is less than the
size of the tuple e. In rule E-SEL this condition is expressed as
an application of the type term LT. Due to the consistency of the
logic represented in the type language, only the existence and not
the structure of the proof object A is important. Since its existence
is ensured statically in a well-formed expression, A would be elim-
inated in a type-erasure semantics.

The branching construct if[B, A](e, X1. e1, X2. e2) takes a
type term A representing a proof of the proposition encoded as ei-
ther B true or B false, depending on the value of e. The proof is
passed to the appropriate branch in its bound type variable (X1 or
X2). The correspondence between the value of e and the kind of
A is again established through a singleton type. Note that unlike
Xi and Harper [43] we allow imprecise information flow into the
branches by not restricting B false to be the negation of B true. In
particular this makes possible the encoding of the usual oblivious
(in proof-passing sense) if using B = λt :Bool. True.

4.2 Example: bound check elimination

A simple example of the generation, propagation, and use of proofs
in λH is a function which computes the sum of the components of
any vector of naturals. Let us first introduce some auxiliary types
and functions. The type assigned to a homogeneous tuple (vector)
of n terms of type A is βηι-convertible to the form vec n̂ A for

vec : Nat→Ω→Ω

vec = λt :Nat. λt′ :Ω. tup t (nth (repeat t t′))

where

repeat : Nat→Ω→List

repeat zero = λt′ :Ω. nil
repeat (succ t) = λt′ :Ω. t′::(repeat t) t′

Then we can define a term which sums the elements of a vector
with a given length as follows:

sumVec : ∀t :Nat. snat t → vec t nat → nat
≡ Λt :Nat. λn :snat t. λv :vec t nat.

(fix loop :nat → nat → nat.
λi :nat. λsum :nat.

open i as 〈t′, i′〉 in
if[LTOrTrue t′ t, ltPrf t′ t]

(i′ < n,

t1. loop (add i 1̂)
(add sum (sel[t1](v, i

′))),
t2 . sum)) 0̂ 0̂

where

LTOrTrue : Nat→Nat→Bool→Kind
LTOrTrue = λt1 :Nat. λt2 :Nat. λt :Bool. Cond t (LT t1 t2)True

and ltPrf of kind Πt′ : Nat. Πt : Nat. LTOrTrue t′ t (lt t′ t) is a
type term defined later.

The comparison i′ < n, used in this example as a loop termina-
tion test, checks whether the index i′ is smaller than the vector size
n. If it is, the adequacy of the type term lt with respect to the less-
than relation ensures that the type term ltPrf t′ t represents a proof
of the corresponding proposition at the type level, namely LT t′ t.
This proof is then bound to t1 in the first branch of the if, and the
sel construct uses it to verify that the i′-th element of v exists, thus
avoiding a second test. The type safety of λH (Theorem 1) guaran-
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∆ 
 Kind : Kscm
∆ 
 · ok

(TE-MT)

∆ 
 Γ ok ∆ 
 A : Ω

∆ 
 Γ, x :A ok
(TE-EXT)

∆ 
 Γ ok

∆; Γ 
 x : Γ(x)
(E-VAR)

∆ 
 Γ ok

∆; Γ 
 n : snat n̂
(E-NAT)

∆ 
 Γ ok

∆; Γ 
 tt : sbool true
(E-TRUE)

∆ 
 Γ ok

∆; Γ 
 ff : sbool false
(E-FALSE)

∆ 
 A : Ω ∆; Γ, x :A 
 f : A

∆; Γ 
 fix x :A.f : A
(E-FIX)

∆ 
 A : Ω ∆; Γ, x :A 
 e : A′

∆; Γ 
 λx :A. e : A → A′ (E-FUN)

∆; Γ 
 e1 : A → A′ ∆; Γ 
 e2 : A

∆; Γ 
 e1 e2 : A′ (E-APP)

∆ 
 B : s ∆, X :B; Γ 
 f : A

∆; Γ 
 ΛX :B. f : ∀sX :B.A

(
X /∈ ∆
s �= Ext

)
(E-TFUN)

∆; Γ 
 e : ∀sX :B. A′ ∆ 
 A : B

∆; Γ 
 e[A] : [A/X]A′ (s �= Ext) (E-TAPP)

∆ 
 A : B ∆ 
 B : s
∆; Γ 
 e : [A/X]A′

∆; Γ 
 〈X =A, e :A′〉 : ∃sX :B.A′ (s �= Ext)
(E-PACK)

∆; Γ 
 e : ∃sX
′ :B. A ∆ 
 A′ : Ω

∆, X :B; Γ, x : [X/X ′]A 
 e′ : A′

∆; Γ 
 open e as 〈X, x〉 in e′ : A′

(
X /∈ ∆
s �= Ext

)
(E-OPEN)

∆; Γ 
 e : snat A ∆; Γ 
 e′ : snat A′

∆; Γ 
 e + e′ : snat (plus A A′)
(E-ADD)

∆; Γ 
 e : snat A ∆; Γ 
 e′ : snat A′

∆; Γ 
 e < e′ : sbool (lt A A′)
(E-LT)

for all i < n ∆; Γ 
 ei : Ai

∆; Γ 
 〈e0, . . . en−1〉
: tup n̂ (nth (A0:: . . . ::An−1::nil))

(E-TUP)

∆; Γ 
 e : tup A′′ B ∆; Γ 
 e′ : snat A′

∆ 
 A : LT A′ A′′

∆; Γ 
 sel[A](e, e′) : B A′
(E-SEL)

∆ 
 B : Bool→Kind ∆; Γ 
 e : sbool A′′

∆ 
 A : B A′′ ∆, X1 :B true; Γ 
 e1 : A′

∆ 
 A′ : Ω ∆, X2 :B false; Γ 
 e2 : A′

∆; Γ 
 if[B, A](e, X1. e1, X2. e2) : A′

(E-IF)

∆; Γ 
 e : A A =βηι A′ ∆ 
 A′ : Ω

∆; Γ 
 e : A′ (E-CONV)

Figure 5: Static semantics of the computation language λH .

tees that implementations of sel need not check the subscript at run-
time. Since the proof t2 is ignored in the “else” branch, ltPrf t′ t
is defined to reduce to the trivial proof of True when the value of i′

is not less than that of n.
The usual vector type, which keeps the length packaged with

the content, is

vector : Ω→Ω = λt :Ω.∃t′ :Nat. snat t′ × vec t′ t.

Now we can write a wrapper function for sumVec with the standard
type vector nat → nat; we leave the details to the reader.

4.3 Type safety

The type safety of λH is a corollary of its properties of progress
and subject reduction. A pivoting element in proving progress
(Lemma 4 in Appendix A) is the connection between the existence
of a proof (type) term of kind LT m̂ n̂, provided by rule E-SEL, and
the existence of a (meta-logical) proof of the side condition m<n,
required by rule R-SEL. Similarly, subject reduction (Lemma 5 in
Appendix A) in the cases of R-ADD and R-LT-T/F relies on the
adequate representation of addition and comparison by plus and lt.

Lemma 1 (Adequacy of the TL representation of arithmetic)

1. For all m, n ∈ N, plus m̂ n̂ =βηι m̂+n.

2. For all m, n ∈ N, lt m̂ n̂ =βηι true if and only if m < n.

3. For all m, n ∈ N, m < n if and only if there exists a type A
such that · 
 A : LT m̂ n̂.

Proof sketch (3) For the forward direction it suffices to observe
that the structure of the meta-logical proof of m < n (in terms
of the above axioms of ordering) can be directly reflected in a type
term of kind LT m̂ n̂. The inverse direction is shown by examining
the structure of closed type terms of this kind in normal form. �

Theorem 1 (Safety of λH) If ·;·
 e : A, then either e �→∗ v and
·;·
 v : A, or e diverges (i.e., for each e′, if e �→∗ e′, then there
exists e′′ such that e′ �→ e′′).
Proof sketch Follows from Lemmas 4 and 5 (Appendix A). �

Since CIC and TL are more expressive than higher-order predi-
cate logic, adequacy of the representations of meta-proofs does not
hold in general; in particular, the ability to eliminate inductive kinds
in TL allows analysis of proof derivations to be used in proof con-
struction, a technique not employed in standard meta-reasoning.
This issue does not arise for first-order proof representations like
LT (where no constructors have parameters of a function kind), and
we do not expect it to be a concern in practice. In cases when it does
arise, it could be resolved by using the underlying consistent logic
of CIC instead of the meta-logic; for instance in our presentation
the question of adequacy is raised because the operational seman-
tics of λH is defined in meta-logical terms, but this question would
be moot if λH and its semantics were defined as CIC terms. To
eliminate the interaction with the meta-logic, this approach should
be applied all the way down to the hardware specification (as done
in some PCC system [3]); we plan to pursue this in the future.
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4.4 An example of proof generation

Here we show the type term ltPrf which generates the proof of the
proposition LTOrTrue t′ t (lt t′ t), needed in the sumVec exam-
ple. We first present a Church encoding of the kind term LT and its
“constructors” ltzs and ltss.

LT : Nat→Nat→Kind
LT = λt :Nat. λt′ :Nat.

ΠR :Nat→Nat→Kind.
(Πt :Nat. R zero (succ t))→
(Πt :Nat. Πt′ :Nat. R t t′→R (succ t) (succ t′))→
R t t′

ltzs : Πt :Nat. LT zero (succ t)
ltzs = λt :Nat. λR :Nat→Nat→Kind.

λz : (Πt :Nat. R zero (succ t)).
λs : (Πt :Nat. Πt′ :Nat. R t t′→R (succ t) (succ t′)).
z t

ltss : Πt :Nat. Πt′ :Nat. LT t t′→LT (succ t) (succ t′)
ltss = λt :Nat. λt′ :Nat. λp :LT t t′. λR :Nat→Nat→Kind.

λz : (Πt :Nat. R zero (succ t)).
λs : (Πt :Nat. Πt′ :Nat. R t t′→R (succ t) (succ t′)).
s t t′ (p R z s)

Next we define dependent conditionals on kinds Nat and Bool.

dep ifez : Πt :Nat. Πk :Nat→Kind.
k zero→ (Πt′ :Nat. k (succ t′))→k t

dep ifez zero = λk :Nat→Kind. λt1 :k zero.
λt2 : (Πt′ :Nat. k (succ t′)). t1

dep ifez (succ t) = λk :Nat→Kind. λt1 :k zero.
λt2 : (Πt′ :Nat. k (succ t′)). t2 t

dep if : Πt :Bool. Πk :Bool→Kind. k true→k false→k t
dep if true = λk :Bool→Kind. λt1 :k true. λt2 :k false. t1
dep if false = λk :Bool→Kind. λt1 :k true. λt2 :k false. t2

Finally, some abbreviations, and then the proof generator itself.

LTcond : Nat→Nat→Kind

LTcond = λt′ :Nat. λt :Nat. LTOrTrue t′ t (lt t′ t)

LTimp : Nat→Nat→Bool→Kind
LTimp = λt′ :Nat. λt :Nat. λt′′ :Bool.

LTOrTrue t′ t t′′→LTOrTrue (succ t′) (succ t) t′′

ltPrf : Πt′ :Nat. Πt :Nat. LTcond t′ t

ltPrf = λt′ :Nat.
Elim[Nat, λt′1 :Nat. Πt1 :Nat. LTcond t′1 t1](t

′){
λt1 :Nat. dep ifez t1 (LTcond zero) id ltzs;
λt′1 :Nat. λtP : (Πt1 :Nat. LTcond t′1 t1). λt1 :Nat.

dep ifez t1
(LTcond (succ t′1))
id
(λt1 :Nat. dep if (lt t′1 t1)

(LTimp t′1 t1)
(ltss t′1 t1)
(id True)
(tP t1))}

5 CPS Conversion

In this section we show how to perform CPS conversion on λH

while still preserving proofs represented in the type system. This
stage transforms all unconditional control transfers, including func-
tion invocation and return, to function calls and gives explicit

names to all intermediate computations. The basics of our ap-
proach, i.e. the target language and the transformation of types, are
shown in this section. The static semantics of the target language
and the transformation of terms are given in Appendix B.

We call the target calculus for this phase λK , with syntax:

(val) v ::= x | n | tt | ff | 〈X =A, v :A′〉 | 〈v0, . . . vn−1〉
| fix x′[X1 :A1, . . . Xn :An](x :A). e

(exp) e ::= v[A1, . . . An](v′) | let x = v in e

| let 〈X, x〉 = open v in e | let x = sel[A](v, v′) in e

| let x = v aop v′ in e | let x = v cop v′ in e

| if[A, A′](v, X1. e1, X2. e2)

Expressions in λK consist of a series of let bindings followed by a
function application or a conditional branch. There is only one ab-
straction mechanism, fix, which combines type and value abstrac-
tion. Multiple arguments may be passed by packing them in a tuple.

λK shares the TL type language with λH . The types for λK

all have kind ΩK which, as in λH , is an inductive kind defined
in TL. The ΩK kind has all the constructors of Ω plus one more
(func). Since functions in CPS do not return values, the function
type constructor of ΩK has a different kind:

→→ : ΩK →ΩK

We use the more conventional syntax A→⊥ for →→ A. The new
constructor func forms the types of function values:

func : ΩK →ΩK

Every function value is implicitly associated with a closure envi-
ronment (for all the free variables), so the func constructor is useful
in the closure-conversion phase (see Section 6).

Typed CPS conversion involves translating both types and com-
putation terms. Existing algorithms [21, 28] require traversing and
transforming every term in the type language (which would include
all the proofs in our setting). This is impractical because proofs are
large in size, and transforming them can alter their meanings and
break the sharing among different intermediate languages.

To see the actual problem, let us convert the λH expression
〈X = A, e : B〉 to CPS, assuming that it has type ∃X : A′. B. We
use Ktyp to denote the meta-level translation function for the type
language and Kexp for the computation language. Under existing
algorithms, the translation also transforms the witness A:

Kexp[[〈X =A, e :B〉 ]] =
λk :Ktyp[[∃X :A′. B ]].

Kexp[[e ]] (λx :Ktyp[[ [A/X]B ]].
k 〈X =Ktyp[[A ]], x :Ktyp[[B ]]〉)

Here we CPS-convert e and apply it to a continuation, which puts
the result of its evaluation in a package and hands it to the return
continuation k. With proper definition of Ktyp and assuming that
Ktyp[[X ]] = X on all variables X, we can show that the two types
Ktyp[[ [A/X]B ]] and [Ktyp[[A ]]/X](Ktyp [[B ]]) are equivalent (under
=βηι). Thus the translation preserves typing.

But we do not want to touch the witness A, so the translation
function should be defined as follows:

Kexp[[〈X =A, e :B〉 ]] =
λk :Ktyp[[∃X :A′. B ]].

Kexp[[e ]] (λx :Ktyp[[ [A/X]B ]].
k 〈X =A, x :Ktyp[[B ]]〉)

To preserve typing, we have to make sure that the two types
Ktyp[[ [A/X]B ]] and [A/X](Ktyp[[B ]]) are equivalent. This seems
impossible to achieve if Ktyp is defined at the meta level.
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Our solution is to internalize the definition of Ktyp in our type
language. We replace Ktyp by a type function K of kind Ω→ΩK .
For readability, we use the pattern-matching syntax, but it can be
easily coded using the Elim construct.

K (snat t) = snat t
K (sbool t) = sbool t
K (t1 → t2) = func ((K(t1) × Kc(t2))→⊥)
K (tup t1 t2) = tup t1 (λt :Nat. K(t2 t))
K (∀∀Kind k t) = func (∀∀Kind k (λt1 :k. Kc(t t1)→⊥))
K (∃∃Kind k t) = ∃∃Kind k (λt1 :k. K(t t1))
K (∀∀Kscm z t) = func (∀∀Kscm z (λk :z.Kc(t k)→⊥))
K (∃∃Kscm z t) = ∃∃Kscm z (λk :z.K(t k))

Kc ≡ λt :Ω. func (K(t)→⊥)

The definition of K is in the spirit of the interp function of Crary
and Weirich [14]. However interp cannot be used in defining a sim-
ilar CPS conversion, because its domain does not cover (nor is there
an injection to it from) all types appearing in type annotations. In
λH these types are in the inductive kind Ω and can be analyzed by
K. We can now prove K ([A/X]B) =βηι [A/X](K (B)) by first
reducing B to the normal form B′. Clearly, K ([A/X]B) =βηι

K ([A/X]B′) and [A/X](K (B′)) =βηι [A/X](K (B)). We
then prove K ([A/X]B′) =βηι [A/X](K (B′)) by induction over
the structure of the normal form B′. The complete CPS-conversion
algorithm is given in Appendix B.

6 Closure Conversion

In this section we address the issue of how to make closures explicit
for all the CPS terms in λK . This stage rewrites all functions so that
they contain no free variables. Any variables that appear free in a
function value are packaged in an environment, which together with
the closed code of the function form a closure. When a function is
applied, the closed code and the environment are extracted from
the closure and then the closed code is called with the environment
as an additional parameter. Again, the basics of our approach are
shown in this section and more details are given in Appendix C.

Our approach to closure conversion is based on Morrisett et
al. [28], who adopt a type-erasure interpretation of polymorphism.
We use the same idea for existential types. The language that we
use for this phase is called λC with syntax:

(val) v ::= x | n | tt | ff | fix x′[X1 :A1, . . . Xn :An](x :A). e

| v[A] | 〈v0, . . . vn−1〉 | 〈X =A, v :A′〉
(exp) e ::= v v′ | let x = v in e | let x = sel[A](v, v′) in e

| let 〈X, x〉 = open v in e | let x = v aop v′ in e

| let x = v cop v′ in e | if[B, A](v, X1. e1, X2. e2)

λC is similar to λK , the main difference being that type applica-
tion and value application are again separate. Type applications
are values in λC reflecting the fact that they have no runtime ef-
fect in a type-erasure interpretation. We use the same kind of types
ΩK as in λK . We define the transformation of types as a function
Cl :ΩK →ΩK →ΩK , the second argument of which represents the
type of the environment. As in CPS conversion, we write Cl as a
TL function so that the closure-conversion algorithm does not have

to traverse proofs represented in the type system.

Cl (snat t) = λt′ :ΩK . snat t
Cl (sbool t) = λt′ :ΩK . sbool t
Cl (t→⊥) = λt′ :ΩK . (t′ × Cl (t) ⊥)→⊥
Cl (func t) = λt′ :ΩK .∃t1 :ΩK . (Cl (t) t1 × t1)
Cl (tup t1 t2) = λt′ :ΩK . tup t1 (λt′′ :Nat. Cl (t2 t′′) t′)
Cl (∀∀Kind k t) = λt′ :ΩK .∀∀Kind k (λt1 :k. Cl (t t1) t′)
Cl (∃∃Kind k t) = λt′ :ΩK .∃∃Kind k (λt1 :k. Cl (t t1) t′)
Cl (∀∀Kscm z t) = λt′ :ΩK .∀∀Kind z (λk :z. Cl (t k) t′)
Cl (∃∃Kscm z t) = λt′ :ΩK .∃∃Kscm z (λk :z.Cl (t k) t′)

7 Related Work

Our type language is a variant of the calculus of constructions [11]
extended with inductive definitions (with both small and large elim-
ination) [35, 41]. We omitted parameterized inductive kinds and
dependent large elimination to simplify our presentation, however,
all our meta-theoretic proofs carry over to a language that includes
them. We support η-reduction in our language while the official
Coq system does not. The proofs for the properties of TL are
adapted from Geuvers [17] and Werner [41] (which in turn bor-
rows ideas from Altenkirch [1]); the main difference is that our
language has kind-schema variables and a new product formation
rule (Ext, Kind) which are not in Werner’s system.

The Coq proof assistant provides support for extracting pro-
grams from proofs [35]. It separates propositions and sets into
two distinct universes Prop and Set. We do not distinguish be-
tween them because we are not aiming to extract programs from
our proofs, instead, we are using proofs as specifications for our
computation terms.

Burstall and McKinna [7] proposed the notion of deliverables,
which is essentially the same as our notion of certified binaries.
They use dependent strong sums to model each deliverable and give
its categorical semantics. Their work does not support programs
with effects and has all the problems mentioned in Section 2.3.

Xi and Pfenning’s DML [44] is the first language that nicely
combines dependent types with programs that may involve effects.
Our ideas of using singleton types and lifting the level of the proof
language are directly inspired by their work. Xi’s system, however,
does not support arbitrary propositions and explicit proofs. It also
does not define the Ω kind as an inductive definition so it is un-
clear how it interacts with intensional type analysis [39] and how it
preserves proofs during compilation.

We have discussed the relationship between our work and those
on PCC, typed assembly languages, and intensional type analysis
in Section 1. Inductive definitions subsume and generalize earlier
systems on intensional type analysis [22, 14, 39]; the type-analysis
construct in the computation language can be eliminated using the
technique proposed by Crary et al. [16].

Concurrently with our work, Crary and Vanderwaart [12] re-
cently proposed a system called LTT which also aims at adding
explicit proofs to typed intermediate languages. LTT uses Linear
LF [8] as its proof language. It shares some similarities with our
system in that both are using singleton types [44] to circumvent the
problems of dependent types. However, since LF does not have
inductive definitions and the Elim construct, it is unclear how LTT
can support intensional type analysis and type-level primitive recur-
sive functions [15]. In fact, to define Ω as an inductive kind [39],
LTT would have to add proof-kind variables and proof-kind poly-
morphism, which could significantly complicate the meta-theory
of its proof language. LTT requires different type languages for
different intermediate languages; it is unclear whether it can pre-
serve proofs during CPS and closure conversion. The power of
linear reasoning in LTT is desirable for tracking ephemeral prop-
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erties that hold only for certain program states; we are working on
adding such support into our framework.

8 Conclusions

We presented a general framework for explicitly representing
propositions and proofs in typed intermediate or assembly lan-
guages. We showed how to integrate an entire proof system into
our type language and how to perform CPS and closure conversion
while still preserving proofs represented in the type system. Our
work is a first step toward the goal of building realistic infrastruc-
ture for certified programming and certifying compilation.

Our type system is fairly concise and simple with respect to the
number of syntactic constructs, yet it is powerful enough to express
all the propositions and proofs in the higher-order predicate logic
(extended with induction principles). In the future, we would like
to use our type system to express advanced program invariants such
as those involved in low-level mutable recursive data structures.

Our type language is not designed around any particular pro-
gramming language. We can use it to typecheck as many different
computation languages as we like; all we need is to define the cor-
responding Ω kind as an inductive definition. We hope to evolve
our framework into a realistic typed common intermediate format.
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[41] B. Werner. Une Théorie des Constructions Inductives. PhD thesis, A
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A Properties of λH

The proof of the following lemma is by induction on the structure
of typing derivations.

Lemma 2 If ∆, X :B; Γ 
 e : A′ and ∆ 
 A : B, then
∆; Γ 
 [A/X]e : [A/X]A′.

We also need a proposition guaranteeing that equivalence of con-
structor applications implies equivalence of their arguments; it is a
corollary of the confluence of TL (Theorem 76).

Lemma 3 If Ctor (i, I) �A =βηι Ctor (i′, I ′) �A′, then i = i′ and
I =βηι I ′ and �A =βηι

�A′.

Lemma 4 (Progress) If ·;·
 e : A, then either e is a value, or
there exists e′ such that e �→ e′.

Proof sketch By standard techniques [42] using induction on
computation terms. Due to the transitivity of =βηι any derivation of
∆; Γ 
 e : A can be converted to a standard form in which there
is an application of rule E-CONV at its root, whose first premise
ends with an instance of a rule other than E-CONV, all of whose
term derivation premises are in standard form.

We omit the proofs for the cases of standard constructs and the
induction on the structure of evaluation contexts. The interesting
case is that of the dependently typed sel.

If e = sel[A′](v, v′), by inspection of the typing rules the
derivation of ·;·
 e : A in standard form must have an instance of
rule E-SEL in the premise of its root. Hence the subderivation for v
must assign to it a tuple type, and the whole derivation has the form

D
·;·
 v : tup A2 A′′

D′

·;·
 v′ : snat A1

E
· 
 A′ : LT A1 A2

·;·
 sel[A′](v, v′) : A′′ A1

·;·
 sel[A′](v, v′) : A

where A =βηι A′′ A1. By inspection of the typing rules, rules
other than E-CONV assign to all values types which are applications
of constructors of Ω. Since the derivation D is in standard form, it
ends with an E-CONV, in the premise of which another rule assigns
v a type βηι-equivalent to tup A2 A′′. Then by Lemma 3 this type
must be an application of tup, and again by inspection the only
rule which applies is E-TUP, which implies v = 〈v0, . . . vn−1〉,
and the derivation D must have the form

∀i < n
Di

·;·
 vi : A′′
1 î

·;·
 〈v0, . . . vn−1〉 : tup n̂ A′′
1

Also by Lemma 3 A2 =βηι n̂. Similarly the only rule assigning
to a value a type convertible to that in the conclusion of D′ is E-
NAT, hence A1 =βηι m̂ for some m ∈ N, and v′ = m. Then,
by adequacy of LT (Lemma 1(3)), the conclusion of E implies that
m < n. Hence by rule R-SEL e �→ vm. �

Lemma 5 (Subject Reduction) If ·;·
 e : A and e �→ e′, then
·;·
 e′ : A.

Proof sketch Since evaluation contexts bind no variables, it suf-
fices to prove subject reduction for ↪→ and a standard term substi-
tution lemma. We show only some cases of redexes involving sel
and if.

• The derivation for e = sel[A′](〈v0, . . . vn−1〉, m) in stan-
dard form has the shape

∀i < n
Di

·;·
 vi : A′′
1 î

·;·
 〈�v〉 : tup n̂ A′′
1

·;·
 〈�v〉 : tup A2 A′′

D′

·;·
 m : snat m̂

·;·
 m : snat A1

E
· 
 A′ : LT A1 A2

·;·
 sel[A′](〈v0, . . . vn−1〉, m) : A′′ A1

·;·
 sel[A′](〈v0, . . . vn−1〉, m) : A

where A =βηι A′′ A1, A′′
1 =βηι A′′, and A1 =βηι m̂. Since

e �→ e′ only by rule R-SEL, we have m < n and e′ = vm, so
from Dm and A′′

1 m̂ =βηι A′′ m̂ =βηι A′′ A1 =βηι A we
obtain a derivation of ·;·
 e′ : A.

• In the case of if the standard derivation D of

·;·
 if[B, A′](tt, X1. e1, X2. e2) : A

ends with an instance of E-CONV, preceded by an instance of
E-IF. Using the notation from Figure 5, from the premises
of this rule it follows that we have a derivation E of · 

A′ : B A′′, and A′′ =βηι true (since rule E-TRUE assigns
sbool true to tt), hence we have · 
 A′ : B true by CONV.
By Lemma 2 from E and the derivation of X1 : B true; · 

e1 : A (provided as another premise), since X1 is not free in
A (ensured by the premise · 
 A : Ω) we obtain a derivation
of ·;·
 [A′/X1]e1 : A. �

B CPS Conversion (Details)

We start by defining a version of λH using type-annotated terms.
By f̄ and ē we denote the terms without annotations. Type annota-
tions allow us to present the CPS transformation based on syntactic
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instead of typing derivations.

(exp) e ::= ēA

ē ::= x | n | tt | ff | f | fix x :A.f | e e′ | e[A]

| 〈X =A, e :A′〉 | open e as 〈X, x〉 in e′

| 〈e0, . . . en−1〉 | sel[A](e, e′) | e aop e′

| e cop e′ | if[A, A′](e, X1. e1, X2. e2)

(fun) f ::= f̄A

f̄ ::= λx :A.e | ΛX :A. f

The target language λK of the CPS conversion stage has been de-
fined in Section 5. We use the following syntactic sugar to de-
note non-recursive function definitions and value applications in
λK (here x′ is a fresh variable):

λx :A.e≡fix x′[](x :A). e
v v′ ≡ v[](v′)

ΛX1 :A1. . . . ΛXn :An. λx :A.e
≡fix x′[X1 :A1, . . . Xn :An](x :A). e

In the static semantics of λK we use two forms of judgments.
As in λH , the judgment ∆; Γ 
K v : A indicates that the value v
is well formed and of type A in the type and value contexts ∆ and Γ
respectively. Moreover, ∆; Γ 
K e indicates that the expression
e is well formed in ∆ and Γ. In both forms of judgments, we omit
the subscript from 
K when it can be deduced from the context.

The static semantics of λK is specified by the following forma-
tion rules (we omit the rules for environment formation, variables,
constants, tuples, packages, and type conversion on values, which
are the same as in λH ):

for all i ∈ {1 . . . n} ∆ 
 Ai : si

∆, X1 :A1 . . . , Xn :An 
 A : Ω
∆, X1 :A1 . . . , Xn :An; Γ, x′ :A′, x :A 
 e

∆; Γ 
 fix x′[X1 :A1, . . . Xn :An](x :A). e : A′

where
A′ = func (∀s1X1 :A1. . . . ∀snXn :An. A→⊥)

(K-FIX)

for all i ∈ {1 . . . n} ∆ 
 Ai : Bi

∆; Γ 
 v′ : func (∀s1X1 :B1. . . . ∀snXn :Bn. A→⊥)
∆; Γ 
 v : [A1/X1] . . . [An/Xn]A

∆; Γ 
 v′[A1, . . . An](v)

(K-APP)

∆; Γ 
 v : A ∆; Γ, x :A 
 e

∆; Γ 
 let x = v in e
(K-VAL)

∆; Γ 
 v : tup A′′ B ∆; Γ 
 v′ : snat A′

∆ 
 A : LT A′ A′′ ∆; Γ, x :B A′ 
 e

∆; Γ 
 let x = sel[A](v, v′) in e

(K-SEL)

∆; Γ 
 v : ∃sY :B. A
∆, X :B; Γ, x : [X/Y ]A 
 e

∆; Γ 
 let 〈X, x〉 = open v in e

(
X /∈ ∆
s �= Ext

)
(K-OPEN)

∆; Γ 
 v : snat A ∆; Γ 
 v′ : snat A′

∆; Γ, x :snat (plus A A′) 
 e

∆; Γ 
 let x = v + v′ in e

(K-ADD)

∆; Γ 
 v : snat A ∆; Γ 
 v′ : snat A′

∆; Γ, x :sbool (lt A A′) 
 e

∆; Γ 
 let x = v < v′ in e

(K-LT)

∆ 
 B : Bool→Kind ∆ 
 A : B A′

∆; Γ 
 v : sbool A′

∆, X1 :B true; Γ 
 e1 ∆, X2 :B false; Γ 
 e2

∆; Γ 
 if[B, A](v, X1. e1, X2. e2)

(K-IF)

Except for the rules K-FIX and K-APP, which must take into ac-
count the presence of func, the static semantics for λK is a natural
consequence of the static semantics for λH .

The definition of the CPS transformation for computation terms
of λH to computation terms of λK is given in Figure 6, where we
use the abbreviations introduced in Section 5.

Proposition 2 (Type Correctness of CPS Conversion)
If ·;·
H e : A, then ·;·
K Kexp[[ ē

A ]] : func (Kc(A)→⊥).

C Closure Conversion (Details)

The main difference in the static semantics between λK and λC is
that in the latter the body of a function must not contain free type
or term variables. This is formalized in the rule C-FIX below. The
rules C-TAPP and C-APP corresponding to the separate type and
value application in λC are standard.

for all i < n · 
 Ai : si

·, X1 :A1 . . . , Xn :An 
 A : Ω
·, X1 :A1 . . . , Xn :An; ·, x′ :B, x :A 
 e

∆; Γ 
 fix x′[X1 :A1, . . . Xn :An](x :A). e : B
where B = ∀s1X1 :A1. . . . ∀snXn :An. A→⊥

(C-FIX)

∆; Γ 
 v : ∀sX :A′. B ∆ 
 A : A′

∆; Γ 
 v[A] : [A/X]B
(C-TAPP)

∆; Γ 
 v1 : A→⊥ ∆; Γ 
 v2 : A

∆; Γ 
 v1 v2
(C-APP)

The definition of the closure transformation for the computation
terms of λK is given in Figure 7.

Proposition 3 (Type Correctness of Closure Conversion)
If ·;·
K v : A, then ·;·
C Cval[[v ]] : Cl (A) ⊥.

D Formalization of TL (Details)

In this appendix we prove the meta-theoretic properties of our type
language TL. The proofs are based on the methods in Werner [41].
We formalize the language in Section D.1. In Section D.2 we prove
subject reduction, in Section D.3 we prove the strong normaliza-
tion, in Section D.4 we prove the Church-Rosser property, in Sec-
tion D.5 we prove the consistency of the underlying logic.

D.1 Syntax and semantics

The syntax for the pseudoterms is:

(ctxt) ∆ ::= · | ∆, X :A

(sort) s ::= Kind | Kscm | Ext

(var) X ::= z | k | t
(ptm) A,B ::= s | X | λX :A. B | A B | ΠX :A. B

| Ind(X :Kind){ �A} | Ctor (i, A)

| Elim[A′, B′](A){ �B}
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Kfval[[(λx :A. eB)A→B ]] = λxarg :K(A) × Kc(B).

let x = sel[ltPrf 0̂ 2̂](xarg, 0) in

let k = sel[ltPrf 1̂ 2̂](xarg, 1) in
Kexp[[e

B ]] k
Kfval[[(ΛX :A. fB)∀sX:A. B ]] =

ΛX :A. λk :Kc(B). k (Kfval[[f
B ]])

Kexp[[ ē
A ]] = λk :Kc(A). k (ē)

for ēA one of xA, nsnat n̂, ttsbool true, ffsbool false

Kexp[[f
A ]] = λk :Kc(A). k (Kfval[[f

A)]]

Kexp[[(fix x :A. fA)A ]] =

λk :Kc(A). k (fix x[](k :Kc(A)). k (Kfval[[f
A ]]))

Kexp[[(e1
A→B e2

A)B ]] = λk :Kc(B).

Kexp[[e1
A→B ]] (λx1 :K(A → B).

Kexp[[e2
A ]] (λx2 :K(A).

x1 〈x2, k〉))
Kexp[[(e

∀∀s A′ B [A])B A ]] = λk :Kc(B A).

Kexp[[e
∀∀s A′ B ]] (λx :K(∀∀s A′ B).

x[A](k))

Kexp[[〈eA0
0 , . . . e

An−1
n−1 〉A ]] = λk :Kc(A).

Kexp[[e
A0
0 ]] (λx0 :K(A0).

...
Kexp[[e

An−1
n−1 ]] (λxn−1 :K(An−1).

k 〈x0, . . . xn−1〉) . . . )

Kexp[[sel[A](e1
tup A′′ B, e2

snat A′
)B A′

]] =

λk :Kc(B A′).Kexp[[e1
tup A′′ B ]] (λx1 :K(tup A′′ B).

Kexp[[e2
snat A′

]] (λx2 :K(snat A′).
let x′ = sel[A](x1, x2) in k x′))

Kexp[[〈X =A, e[A/X]B :B〉A′
]] =

λk :Kc(A
′).Kexp[[e

[A/X]B ]] (λx :K([A/X]B).
k 〈X =A, x :K(B)〉)

Kexp[[(open e1
∃sY:A′. B as 〈X, x〉 in e2

A)A ]] =

λk :Kc(A).Kexp[[e1
∃sY:A′. B ]] (λx1 :K(∃sY :A′. B).

let 〈X, x〉 = open x1 in Kexp[[e2
A ]] k)

Kexp[[(e1
snat A + e2

snat A′
)snat (plus A A′) ]] =

λk :Kc(snat (plus A A′)).Kexp[[e1
snat A ]] (λx1 :K(snat A).

Kexp[[e2
snat A′

]] (λx2 :K(snat A′).
let x′ =x1 +x2 in k x′))

Kexp[[(e1
snat A < e2

snat A′
)sbool (lt A A′) ]] =

λk :Kc(sbool (lt A A′)).Kexp[[e1
snat A ]] (λx1 :K(snat A).

Kexp[[e2
snat A′

]] (λx2 :K(snat A′).
let x′ =x1 <x2 in k x′))

Kexp[[(if[B, A](esbool A′′
, X1. e1

A′
, X2. e2

A′
))A′

]] =

λk :Kc(A
′).Kexp[[e

sbool A′′
]] (λx :K(sbool A′′).

if[B, A](x, X1.Kexp[[e1
A′

]] k, X2.Kexp[[e2
A′

]] k))

Figure 6: CPS conversion: from λH to λK .

In addition to the symbols defined in the syntax, we will also
use C to denote general terms, Y and Z for variables, and I for
inductive definitions. We use �A to denote a sequence of terms
A1,. . ., An. Also, we distinguish between A and �A since every
element in �A would be referred as Ai anyway.

TL has the following PTS specification which will be used to

Cval[[v ]] = v, for v one of x, n, tt, ff

Cval[[〈v0, . . . vn−1〉 ]] = 〈Cval[[v0 ]], . . . Cval[[vn−1 ]]〉
Cval[[〈X =A, v :B〉 ]] = 〈X =A, Cval[[v ]] :Cl (B) ⊥〉
Cval[[fix x′[X1 :A1, . . . Xn :An](x :A). e ]] =

〈X =Aenv, 〈vcode[Y1] . . . [Ym], venv〉 :AX〉
where
AX = A′

X × X
A′

X = ∀s1X1 :A1. . . . ∀snXn :An. (X × Cl (A) ⊥)→⊥
{xA′

0
0 , . . . x

A′
k−1

k−1 } = FV (e) − {x, x′}
{Y B′

1
1 , . . . Y B′

m
m } =

FTV (fix x′[X1 :A1, . . . Xn :An](x :A). e)

Aenv = Cl (tup k̂ (nth (A′
0:: . . . A

′
k−1::nil))) ⊥

venv = 〈x0 . . . xk−1〉
vcode = fix vfix[Y1 :B′

1, . . . Ym :B′
m, X1 :A1, . . . Xn :An]

(xarg :Aenv × Cl (A) ⊥).

let xenv = sel[ltPrf 0̂ 2̂](xarg, 0) in

let x = sel[ltPrf 1̂ 2̂](xarg, 1) in
let x′ = 〈X =Aenv,

〈vfix[Y1] . . . [Ym], xenv〉 :AX〉 in

let x0 = sel[ltPrf 0̂ k̂](xenv, 0) in . . .

let xk−1 = sel[ltPrf k̂ − 1 k̂](xenv, k − 1) in Cexp[[e ]]

Cexp[[v1[A1, . . . An](v2)]] = let 〈Xenv, xarg〉 = open Cval[[v1 ]] in

let xcode = sel[ltPrf 0̂ 2̂](xarg, 0) in

let xenv = sel[ltPrf 1̂ 2̂](xarg, 1) in
xcode[A1] . . . [An] 〈xenv, Cval[[v2 ]]〉

Cexp[[ let x = v in e ]] = let x = Cval[[v ]] in Cexp[[e ]]

Cexp[[ let x = sel[A](v, v′) in e ]] =
let x = sel[A](Cval[[v ]], Cval[[v

′ ]]) in Cexp[[e ]]

Cexp[[ let 〈X, x〉 = open v in e ]] =
let 〈X, x〉 = open Cval[[v ]] in Cexp[[e ]]

Cexp[[ let x = v1 + v2 in e ]] = let x = Cval[[v1 ]] + Cval[[v2 ]] in Cexp[[e ]]

Cexp[[ let x = v1 < v2 in e ]] = let x = Cval[[v1 ]] < Cval[[v2 ]] in Cexp[[e ]]

Cexp[[ if[B, A](v, X1. e1, X2. e2) ]] =
if[B, A](Cval[[v ]], X1. Cexp[[e1 ]], X2. Cexp[[e2 ]])

Figure 7: Closure conversion: from λK to λC .

derive its typing rules:

S = Kind, Kscm, Ext
A = Kind :Kscm, Kscm :Ext
R = (Kind, Kind), (Kscm, Kind), (Ext, Kind)

(Kind, Kscm), (Kscm, Kscm)

In order to ensure that the interpretation of inductive definitions
remains consistent, and they can be interpreted as terms closed un-
der their introduction rules, we impose positivity constraints on the
constructors of an inductive definition. The positivity constraints
are defined in Definition 4 and 5.

Definition 4 A term A is strictly positive in X if A is either X or
ΠY : B.A′, where A′ is strictly positive in X, X does not occur
free in B, and X �= Y .

Definition 5 A term C is a well-formed constructor kind for X
(written wfcX(C)) if it has one of the following forms:

1. X;
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2. ΠY : B. C′, where Y �= X, X is not free in B, and C′ is a
well-formed constructor kind for X; or

3. A → C′, where A is strictly positive in X and C′ is a well-
formed constructor kind for X.

Note that in the definition of wfcX(C), the second clause covers
the case where C is of the form A → C′, and X does not occur
free in A. Therefore, we only allow the occurrence of X in the
non-dependent case.

In the rest of this paper we often write the well-formed con-
structor kind for X as Π�Y : �B. X. We also denote terms that are
strictly positive in X by Π�Y : �B. X, where X is not free in �B.

Definition 6 Let C be a well-formed constructor kind for X. Then
C is of the form Π�Y : �A. X. If all the Y ’s are t’s, that is, C is of
the form Π�t : �A. X, then we say that C is a small constructor kind
(or just small constructor when there is no ambiguity) and denote it
as small(C).

Our inductive definitions reside in Kind, whereas a small construc-
tor does not make universal quantification over objects of type
Kind. Therefore, an inductive definition with small constructors
is a predicative definition. While dealing with impredicative induc-
tive definitions, we must forbid projections on universes equal to
or bigger than the one inhabited by the definition. In particular, we
restrict large elimination to inductive definitions with only small
constructors.

Next, we define the set of reductions on our terms. The defi-
nition of β- and η-reduction is standard. The ι-reduction defines
primitive recursion over inductive objects.

Definition 7 Let C be a well-formed constructor kind for X and
let A′, B′, and I be pseudoterms. We define ΦX,I,B′(C, A′) re-
cursively based on the structure of C:

ΦX,I,B′(X, A′) def
= A′

ΦX,I,B′(ΠY :B. C′, A′) def
= λY :B.ΦX,I,B′ (C′, A′ Y )

ΦX,I,B′((Π�Y : �B. X)→C′, A′) def
=

λZ : (Π�Y : �B. I). ΦX,I,B′(C′, A′ Z (λ�Y : �B. B′ (Z �Y )))

Definition 8 The reduction relations on our terms are defined as:

(λX :A. B) A′ �β [A′/X]B
λX :A. (B X) �η B, if X /∈ FV (B)

Elim[I,A′′](Ctor (i, I) �A){ �B} �ι (ΦX,I,B′(Ci, Bi)) �A

where
I = Ind(X :Kind){ �C}

B′ = λY :I. (Elim[I, A′′](Y ){ �B})

By �β , �η , and �ι we denote the relations that correspond to
the rewriting of subterms using the relations �β , �η , and �ι

respectively. We use � and � for the unions of the above re-
lations. We also write �∗ and �+ (respectively �∗

β etc.) for
the reflexive-transitive and transitive closures of � (respectively
�β etc.) and =βηι for the reflexive-symmetric-transitive closure
of �. We say that a sequence of terms A1,. . ., An, such that
A � A1 � A2 . . . � An, is a chain of reductions starting from A.

Let us examine the ι-reduction in detail. In Elim[I,A′′](A){ �B},
the term A of type I is being analyzed. The sequence �B contains
the set of branches for Elim, one for each constructor of I . In the
case when Ci = X, which implies that A is of the form Ctor (i, I),
the Elim just selects the Bi branch:

Elim[I, A′′](Ctor (i, I)){ �B} �ι Bi

In the case when Ci = Π�Y : �B. X where X does not occur free
in �B, then A must be in the form Ctor (i, I) �A with Ai of type Bi.
None of the arguments are recursive. Therefore, the Elim should
just select the Bi branch and pass the constructor arguments to it.
Accordingly, the reduction yields (by expanding the Φ macro):

Elim[I, A′′](Ctor (i, I) �A){ �B} �ι Bi
�A

The recursive case is the most interesting. For simplicity assume
that the i-th constructor has the form Π�Y : �B′. X → Π �Y ′ : �B′′. X.
Therefore, A is of the form Ctor (i, I) �A with A1 being the re-
cursive component of type Π�Y : �B′. X, and A2 . . . An being non-
recursive. The reduction rule then yields:

Elim[I, A′′](Ctor (i, I) �A){ �B}
�ι Bi A1 (λ�Y : �B′. Elim[I, A′′](A1

�Y ){ �B}) A2 . . . An

The Elim construct selects the Bi branch and passes the arguments
A1,. . ., An, and the result of recursively processing A1. In the
general case, it would process each recursive argument.

Definition 9 defines the Ψ macro which represents the type of
the large Elim branches. Definition 10 defines the ζ macro which
represents the type of the small elimination branches. The different
cases follow from the ι-reduction rule in Definition 8.

Definition 9 Let C be a well-formed constructor kind for X and
let A′ and I be two terms. We define ΨX,I(C,A′) recursively
based on the structure of C:

ΨX,I(X, A′) def
= A′

ΨX,I(ΠY :B. C′, A′) def
= ΠY :B. ΨX,I(C

′, A′)

ΨX,I(A→C′, A′) def
= [I/X]A→ [A′/X]A→ΨX,I(C

′, A′)

where X is not free in B and A is strictly positive in X.

Definition 10 Let C be a well-formed constructor kind for X and
let A′, I , and B′ be terms. We define ζX,I(C, A′, B′) recursively
based on the structure of C:

ζX,I(X, A′, B′) def
= A′ B′

ζX,I(ΠY :B. C′, A′, B′) def
= ΠY :B. ζX,I(C

′, A′, B′ Y )

ζX,I(Π�Y : �B. X → C′, A′, B′) def
=

ΠZ : (Π�Y : �B. I).Π�Y : �B. (A′ (Z �Y )) → ζX,I(C
′, A′, B′ Z)

where X is not free in B and �B.

Definition 11 We use ∆|t,k to denote that the environment does
not contain any z variables.

Here are the complete typing rules for TL. The three weakening
rules make sure that all variables are bound to the right classes of
terms in the context. There are no separate context-formation rules;
a context ∆ is well-formed if we can derive the judgment ∆ 

Kind : Kscm (notice we can only add new variables to the context
via the weakening rules).

· 
 Kind : Kscm (AX1)

· 
 Kscm : Ext (AX2)

∆ 
 C : Kind ∆ 
 A : B t /∈ Dom(∆)

∆, t :C 
 A : B
(WEAK1)
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∆ 
 C : Kscm ∆ 
 A : B k /∈ Dom(∆)

∆, k :C 
 A : B
(WEAK2)

∆ 
 C : Ext ∆ 
 A : B z /∈ Dom(∆)

∆, z :C 
 A : B
(WEAK3)

∆ 
 Kind : Kscm X ∈ Dom(∆)

∆ 
 X : ∆(X)
(VAR)

∆, X :A 
 B : B′ ∆ 
 ΠX :A. B′ : s

∆ 
 λX :A. B : ΠX :A. B′ (FUN)

∆ 
 A : ΠX :B′. A′ ∆ 
 B : B′

∆ 
 A B : [B/X]A′ (APP)

∆ 
 A : s1 ∆, X :A 
 B : s2 (s1, s2) ∈ R
∆ 
 ΠX :A. B : s2

(PROD)

for all i ∆, X :Kind 
 Ci : Kind wfcX(Ci)

∆ 
 Ind(X :Kind){ �C} : Kind
(IND)

∆ 
 I : Kind where I = Ind(X :Kind){�C}
∆ 
 Ctor (i, I) : [I/X]Ci

(CON)

∆ 
 A : I ∆ 
 A′ : I → Kind
for all i ∆ 
 Bi : ζX,I(Ci, A

′, Ctor (i, I))

∆ 
 Elim[I, A′](A){ �B} : A′ A
where I = Ind(X :Kind){�C}

(ELIM)

∆ 
 A : I ∆|t,k 
 A′ : Kscm

for all i small(Ci) ∆ 
 Bi : ΨX,I(Ci, A
′)

∆ 
 Elim[I, A′](A){ �B} : A′

where I = Ind(X :Kind){�C}

(L-ELIM)

∆ 
 A : B
∆ 
 B′ : s ∆ 
 B : s B =βηι B′

∆ 
 A : B′
(CONV)

D.2 Subject Reduction

The proof is structured as follows:

• We first define a calculus of unmarked terms. These are terms
with no annotations at lambda abstractions. We show that this
language is confluent.

• We then prove Geuvers’ lemma – a weak form of confluence.
It says that a term that is equal to one in head normal form
can be reduced to an η-expanded version of this head normal
form.

• From Geuvers’ lemma, we are able to prove the inversion
lemma which relates the structure of a term to its typing
derivation.

• We are then able to prove the uniqueness of types and subject
reduction for βι reduction.

• We are then able to prove that the system preserves sorts –
that is, if two terms are convertible and well sorted, then they
have the same sort.

• Finally, we prove the strengthening lemma and then subject
reduction for η reduction.

D.2.1 Unmarked terms

The PTS language is non-confluent. Nederpelt gave the fol-
lowing counterexample – let A be the term defined by λX :
A1. (λY :A2. Y )X. Then we have that A �β λX : A1. X and
A �η λY : A2. Y . For our proofs we want to operate in a lan-
guage that is confluent. We will therefore introduce the notion of
unmarked terms. As non-confluence is due to the presence of type
annotations in λ abstractions, the unmarked terms are obtained by
erasing the type annotations.

The set of unmarked terms ‖ A ‖ are defined below. We are
given a marked variable that can not be used elsewhere.

‖s‖= s
‖X ‖=X

‖A1 A2 ‖= ‖A1 ‖ ‖A2 ‖
‖λX :A1. A2 ‖=λX : . ‖A2 ‖
‖ΠX :A1. A2 ‖=ΠX :‖A1 ‖ . ‖A2 ‖

‖ Ind(X :Kind){ �A}‖= Ind(X :Kind){−−→‖A‖}
‖Ctor (i, A1)‖=Ctor (i, ‖A1 ‖)

‖Elim[I, A2](A1){ �A}‖=Elim[‖I ‖, ‖A2 ‖](‖A1 ‖){−−→‖A‖}

Lemma 6 For all terms A, B, A′, B′, and for all variables X and
Y , we have that [λY :A′. B/X]A =βηι [λY :B′. B/X]A.

Proof Consider A2 = [λZ : A′. (λY :B′. B) Z/X]A. Then
A2 �β [(λZ : A′. [Z/Y ]B)/X]A and A2 �η [λY : B′. B/X]A.
Alpha converting the first reduct leads to the required result. �

Lemma 7 For all terms A, we have A =βη‖A‖.

Proof Follows from lemma 6. �

Definition 12 (ι0 reduction) We say that A�ι0 ‖A′ ‖ iff A�ι A
′

and ‖A‖�=‖A′‖.

Proposition 13 For all terms A and A′, if A �β A′, then ‖ A ‖
�β ‖A′ ‖ or ‖A‖=‖A′ ‖. Similarly, if we have that A�ι A′, then
‖A‖ �ι0 ‖A′ ‖ or ‖A‖=‖A′ ‖. Moreover, if ‖A‖ �βι0 ‖A′ ‖,
then there exists a A′′ such that A �βι A′′ and ‖A′′ ‖=‖A′ ‖.

Lemma 8 (Confluence for unmarked terms) For all unmarked
terms ‖A‖, the βηι0 reduction is confluent.

The proof is based on the method of parallel reductions due to Tait
and Martin-Löf.

Definition 14 (Parallel reduction) Define →→ on unmarked terms
as below, in which we assume that A →→ A′, B →→ B′, etc:

A →→ A
A B →→ A′ B′

λX : . A →→ λX : . A′

ΠX :A. B →→ ΠX :A′. B′

Ind(X :Kind){ �A} →→ Ind(X :Kind){ �A′}
Ctor (i, I) →→ Ctor (i, I ′)

Elim[A, C](I){ �A} →→ Elim[A′, C′](I ′){ �A′}
(λX : . A) B →→ [B′/X]A′

λX : . A X →→ A′ if X /∈ FV (A)

Elim[I, C]((Ctor (i, I) �B)){ �A} →→ (ΦX,I′,B′(C′
i, A

′
i)) �B′

where I = Ind(X :Kind){�C}
B′ = λY : . (Elim[I ′, C′](Y ){ �A′})

The parallel reduction commutes with respect to substitution.
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Lemma 9 If A →→ A′ and B →→ B′, then
[B/X]A →→ [B′/X]A′.

Proof By induction over the fact that A →→ A′. �

The parallel reduction also has the following properties with
respect to terms such as products and inductive definitions. The
proof in each case is immediate and follows by induction over the
structure of the term.

Proposition 15 Suppose A = ΠX : �B. Y �C. If A can be reduced
to A′ through a reduction relation (→→, �β , etc.), then A′ = ΠX :
�B′. Y �C′ where all the �B and �C can be reduced to �B′ and �C′ by
the same reduction relation.

Proposition 16 Suppose A = ΠX : �B. Y �C and A′ = ΠX :
�B′. Y �C′ be two terms such that both can be reduced to A′′ through
a reduction relation (→→, �β , etc.). Then A′′ = ΠX : �B′′. Y �C′′

where �B and �B′ can be reduced to �B′′ by the same relation and �C

and �C′ can be reduced to �C′′ by the same relation.

The parallel reduction is important because it subsumes the sin-
gle step reduction; that is, if A � A′, then we have that A →→ A′

which also implies that A�∗A′. From here, to show the confluence
of �, it suffices to show the confluence of parallel reduction.

Lemma 10 For all unmarked terms D, D′, D′′, we have that if
D →→ D′ and D →→ D′′, then there exists a D′′′ such that
D′ →→ D′′′ and D′′ →→ D′′′.

Proof The proof is by induction over the structure of D. We will
only show one case here.

• Suppose D = Elim[I, C]((Ctor (i, I) �B)){ �A}.

– We can then have D′ = (ΦX,I′,B′(C′
i, A

′
i)) �B′ and

D′′ = (ΦX,I′′,B′(C′′
i , A′′

i )) �B′′. We have that I ′ =

Ind(X : Kind){ �C′} and I ′′ = Ind(X : Kind){ �C′′}.
This implies that Ci →→ C′

i and Ci →→ C′′
i . By ap-

plying the induction hypothesis to the subterms, we get
that I ′ →→ I ′′′ and I ′′ →→ I ′′′ and so on for the other
subterms. From here and proposition 16, it follows that
we can take D′′′ = (ΦX,I′′′,B′(C′′′

i , A′′′
i )) �B′′′.

– Suppose D′ = Elim[I ′, C′]((Ctor (i, I ′) �B′)){ �A′}
and D′′ = (ΦX,I′′,B′(C′′

i , A′′
i )) �B′′. As above we

can again define I′′′, C ′′′
i , etc. and take D′′′ =

(ΦX,I′′′,B′(C′′′
i , A′′′

i )) �B′′′.

– Also D′ = Elim[I ′, C′]((Ctor (i, I ′) �B′)){ �A′} and
D′′ = Elim[I ′′, C′′]((Ctor (i, I ′′) �B′′)){ �A′′}. In this
case, we can again take that
D′′′ = Elim[I ′′′, C′′′]((Ctor (i, I ′′′) �B′′′)){ �A′′′}.

�

As a corollary of the confluence of unmarked terms we get the
following:

Corollary 17 If A and B are two distinct sorts or two distinct vari-
ables or a variable and a sort, then we have that A �= B.

We will need another lemma – that of the delay of η reduction.
But before that, we have to define another variant of the ι reduc-
tion. This essentially says that a ι reduction that would appear only
after a series of eta reductions can be reduced straightaway with-
out going through the eta reductions. For well typed terms, this is

equivalent to ι reduction, but it also allows us to retain the property
of delay of η reduction for ill-typed terms.

Elim[I, A′′](λ �X : �A′. (Ctor (i, I) �A) �C′){ �B} �ι′

(ΦX,I,B′(Ci, Bi)) �A

where I = Ind(X :Kind){�C}
B′ = λY :I. (Elim[I, A′′](Y ){ �B})
Ci

′ �η Xi and Xi /∈ FV ( �A) ∪ FV (I)

Proposition 18 For all terms A1 and A2, we have that A1 =βηι

A2 if and only if A1 =βηι′ A2.

Lemma 11 If A �η A′ �βι′ A′′, then either A �∗
βι′ A′′, or there

exists a A′′′ such that A �βι′ A′′′ �∗
η A′′.

Proof The proof is by induction over the structure of A. We
will consider only the cases that do not follow directly from the
induction hypothesis.

• A = C D. There are two cases.

– If C �η C′, then it follows immediately from the in-
duction hypothesis.

– If D�η D′ and C = λX :B.B′ and A′′ = [D′/X]B′,
then take A′′′ = [D/X]B′ . The other cases follow
from the induction hypothesis.

• A = λX : C. B X. Suppose A′′ = B′ where B �βι′ B′.
But then we also have that A �βι′ λX :C. B′ X. Since the
reduction does not introduce new free variables, this term can
now η-reduce to B′.

�

Lemma 12 (Delay of η reduction) For all terms A and A′, if
A �∗ A′, then there exists a term A′′ such that A �∗

βι′ A′′ �∗
η A′.

Proof Follows from lemma 11. �

We will next prove Geuvers’ lemma which is essentially a weak
form of confluence. This is enough to prove the uniqueness of types
and subject reduction. But before that we need to define the coun-
terpart of the ι′ reduction for unmarked terms. We define it in the
obvious way

Definition 19 (ι′0 reduction) We say that A�ι′0 ‖A′ ‖ iff A�ι′ A
′

and ‖A‖�=‖A′‖.

As before it has the following property:

Proposition 20 Suppose A �ι′ A′. Then either ‖A‖=‖A′ ‖, or
‖A‖ �ι′0 ‖A′ ‖. Moreover, if ‖A‖ �ι′0 ‖A′ ‖, then A �ι′ A′.

Lemma 13 (Geuvers lemma)

• If A =βηι X �A, then

A �
∗
βι′ λ�Y : �A′. (X �B �C)

where for all i, Ai =βηι Bi and for all j, Cj �∗
η Yj .

• If A =βηι ΠX :A1. A2, then

A �
∗
βι′ λ�Y : �A′. ((ΠX :A3. A4) �B)

where A1 =βηι A3 and A2 =βηι A4 and for all i, Bi �∗
η Yi.
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• If A =βηι Ctor (i, I) �C , then

A �
∗
βι′ λ�Y : �A′. ((Ctor (i, I ′) �C′) �B)

where for all i, Ci =βηι C′
i and for all j, Bj �∗

η Yj , and
I =βηι I ′.

• If A =βηι Ind(X :Kind){ �A} �C , then

A �
∗
βι′ λ�Y : �A′. ((Ind(X :Kind){ �A′′}) �C′) �B

where for all i, Ai =βηι A′′
i and for all j, Cj =βηι C′

j , and
for all k, Bk �∗

η Yk.

• If A =βηι Elim[I, A2](A1){ �A′′} �C, then

A �
∗
βι′ λ�Y : �A′. (Elim[I ′, B′](B){ �B} �C′) �B′

where A1 =βηι B, and A2 =βηι B′, and I =βηι I ′, and for
all i, A′′

i =βηι Bi and for all j, Cj =βηι C′
j and for all k,

B′
k �∗

η Yk.

Proof The proof for each of the cases is similar and is by induc-
tion over the length of the equivalence relation. We will show only
one case here.

• Suppose A =βηι X �A. By the induction hypothesis, there
exists an A′′ such that

A′′
�

∗
βι′ λ�Y : �A′. (X �B �C)

and A �βι A′′ or A′′ �βι A.

– The case where A �βι A′′ is immediate.

– The case where A �η A′′ follows from the lemma of
delay of η-reduction.

– If A′′ �βι A, then the required result follows from the
confluence of βι′ reduction.

– Suppose A′′ �η A. Then from the confluence of
βηι′0 reduction on unmarked terms, we get that ‖ A ‖
�∗X �D where ‖Bi ‖ �βηι′0 Di. From the lemma of
delay of η-reduction, we get that

‖A‖ �
∗
βι′0λ�Y : . X �D′ �F �

∗
η X �D

From proposition 20 we can deduce the existence of
a term A1 such that A �∗

βι′ A1 and ‖ A1 ‖= λ�Y :

. X �D′ �F . The required result follows from here.

�

D.2.2 Classification of terms

Definition 21 We partition the set of terms into four classes: the
set of types Ty, the set of kinds Ki, the set of kind schemas Sc, and
Ex. The class of a term is defined as follows:

Cls(Kind) =Sc
Cls(Kscm) =Ex

Cls(t) =Ty
Cls(k) =Ki
Cls(z) =Sc

Cls(A1 A2) =Cls(A1)
Cls(λX :A1. A2) =Cls(A2)
Cls(ΠX :A1. A2) =Cls(A2)

Cls(Ind(X :Kind){ �A}) =Ki
Cls(Ctor (i, A1)) =Ty

Cls(Elim[I, A2](A1){ �A}) =Ty if Cls(A2) = Ki, else Ki

We also define the following function:

lift(Ty)= Ki
lift(Ki)= Sc
lift(Sc)= Ex

Lemma 14 If ∆ 
 A1 : A2 is derivable, then we have
lift(Cls(A1)) = Cls(A2). In particular, A1 �= Ext. Moreover, for
all pairs (X, A) in ∆, we have Cls(A) = lift(Cls(X)).

Proof Immediate by induction over the derivation of the judg-
ment. �

D.2.3 Well typed terms

We now consider the well typed terms. The following lemmas are
proved easily by induction over the typing derivations.

Lemma 15 (Substitution) If we can derive
∆1, (X, A),∆2 
 B : C and ∆1 
 A2 : A, then we can derive
∆1, ([A2/X]∆2) 
 [A2/X]B : [A2/X]C.

Proof Straightforward induction over the structure of the deriva-
tion. �

Lemma 16 If we can derive ∆1, (X, A),∆2 
 B : C, then we
also have that ∆1 
 A : s for some sort s. Moreover, we also
have that ∆1, (X, A),∆2 
 A : s.

Proof The proof is by induction over the structure of the deriva-
tion. �

Lemma 17 If we have that ∆ 
 ΠX :A.B : s, then we have
that ∆, X :A 
 B : s.

Proof The only interesting case is for the CONV case which fol-
lows from Corollary 17. �

Lemma 18 If the judgment ∆ 
 A : B is derivable, then either
B = Ext, or ∆ 
 B : s for some sort s.

Proof The proof is a straightforward induction over the structure
of the derivation. �

Lemma 19 (Inversion) If the judgment ∆ 
 A : B is derivable,
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then

A = t ⇒ t ∈ ∆
B =βηι ∆(t)
∆ 
 B : Kind

A = k ⇒ k ∈ ∆
B =βηι ∆(k)
∆ 
 B : Kscm

A = z ⇒ z ∈ ∆
B =βηι ∆(z)
∆ 
 B : Ext

A = Kind ⇒ B =βηι Kscm
A = Kscm ⇒ B = Ext
A = ΠX :A1. A2 ⇒ ∆ 
 A1 : s1

∆, X :A1 
 A2 : s2

B =βηι s2

where s1 is any sort and
s2 = Kind, or
s1 ∈ {Kind, Kscm} and
s2 = Kscm

A = λX :A1. A2 ⇒ ∆ 
 A1 : s1

∆, X :A1 
 A2 : A3

∆ 
 A3 : s2

B =βηι ΠX :A1. A3

∆ 
 B : s2

A = A1 A2 ⇒ ∆ 
 A1 : ΠX :B′. A′

∆ 
 A2 : B′

B =βηι [A2/X]A′

A = Ind(X :Kind){ �A} ⇒ ∆, X :Kind 
 Ai : Kind
wfcX(Ai)
B =βηι Kind

A = Ctor (i, I) ⇒ I = Ind(X :Kind){ �A}
same conditions on I
B =βηι [I/X]Ai

A = Elim[I, A′](A){ �B}⇒ I = Ind(X :Kind){ �A}
same conditions on I
∆ 
 A : I
∆ 
 A′ : I → Kind
∆ 
 B : Kind B =βηι A′ A
∆ 
 Bi :

ζX,I(Ai, A
′, Ctor (i, I))

A = Elim[I, A′](A){ �B}⇒ I = Ind(X :Kind){ �A}
same conditions on I
∆ 
 A : I
∆ 
 A′ : Kscm
∆ 
 B : Kscm and B =βηι A′

∆ 
 Bi : ΨX,I(Ai, A
′)

for all i small(Ai)

Proof By induction over the structure of the derivation. For every
case we consider the set of possible typing derivations. �

Lemma 20 (Uniqueness of types) If ∆ 
 A : A1 and
∆ 
 A : A2, then A1 =βηι A2.

Proof By induction over the structure of A. We use the fact that
if A1 =βηι B and A2 =βηι B, then A1 =βηι A2. For every case,
we use the corresponding clause from lemma 19. �

Corollary 22 Suppose A is a well typed term. If A �ι′ A′, then
A �ι A′.

D.2.4 Reductions on well typed terms

Lemma 21 (Subject reduction for βι reduction) If the
judgment ∆ 
 A : B is derivable, and if A �βι A′ and

∆ �βι ∆′, then we have that

∆ 
 A′ : B ∆′ 
 A : B

Proof The interesting cases are the APP and ELIM.

• APP When only the sub-terms reduce without a reduction at
the head, the lemma follows by using the induction hypothesis
on the sub-terms. Suppose that

A = λX :A1. A2
∆ 
 A : ΠX :B′. A′ ∆ 
 B : B′

∆ 
 A B : [B/X]A′

and A B �β [B/X]A2. We know from lemma 19 that

∆, X :A1 
 A2 : A3

ΠX :A1. A3 =βηι ΠX :B′. A′

∆ 
 A1 : s1

∆ 
 B′ : s2

This implies that A1 =βηι B′ and A3 =βηι A′. Moreover,

Cls(B′) = Cls(A1) = lift(Cls(X))

Therefore, we get from lemma 14 that

Cls(s2) = Cls(s1) ⇒ s2 = s1

Applying the CONV rule we get that ∆ 
 B : A1. By
lemma 15 we get that ∆ 
 [B/X]A2 : [B/X]A3. We can
show in a similar manner as before that Cls(A3) = Cls(A′).
This allows us to apply the CONV rule again which leads to
the required result.

• L-ELIM We will only consider the case when an ι reduction
takes place at the head. The other cases follow easily by struc-
tural induction.

∆ 
 A : I ∆ 
 A′ : Kscm
for all i ∆ 
 Bi : ΨX,I(Ci, A

′)

∆ 
 Elim[I, A′](A){ �B} : A′

where I = Ind(X :Kind){�C}and ∀i. small(Ci)

The interesting case is when we consider the reduction

Elim[I, A′](Ctor (i, I) �A){ �B} �ι (ΦX,I,B′(Ci, Bi)) �A

where I = Ind(X :Kind){�C}
B′ = λY :I. (Elim[I, A′](Y ){ �B})

Suppose A′′ = (ΦX,I,B′(Ci, Bi)) �A. Suppose that �A =
A1...n. We have that ∆ 
 Bi : ΨX,I(Ci, A

′). The proof is
by induction on the fact that Ci is a kind of a constructor and
the length of �A. We consider the different cases by which Ci

is a kind of a constructor.

– If Ci = X, then A′′ = Bi. From definition 9 we can
see that in this case, Bi has the type A′.

– If Ci = ΠY :B.C, then
A′′ = (ΦX,I,B′([A1/Y ]C, Bi A1)) A2...n. We have
that ∆ 
 Bi A1 : ΨX,I([A1/Y ]C, A′). By the in-
duction hypothesis, the reduct has type A′.

– If Ci = Π�Y : �B. X→C, then

A′′ =

ΦX,I,B′(C, Bi A1 (λ�Y : �B. B′ (A1
�Y ))) A2...n

From Definition 9 we have that
∆ 
 Bi : [I/X]A→ [A′/X]A→ΨX,I(C

′, A′). We
also know that ∆ 
 A1 : [I/X]A. From here, we can
apply the induction hypothesis and show that the reduct
has type A′.
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• ELIM We will only consider the case when an ι reduction
takes place at the head. The other cases follow easily by struc-
tural induction.

∆ 
 A : I ∆ 
 A′ : I → Kind
for all i ∆ 
 Bi : ζX,I(Ci, A

′, Ctor (i, I))

∆ 
 Elim[I, A′](A){ �B} : A′ A‘

where I = Ind(X :Kind){�C}
The interesting case is when we consider the reduction

Elim[I, A′](Ctor (i, I) �A){ �B} �ι (ΦX,I,B′(Ci, Bi)) �A

where I = Ind(X :Kind){�C}
B′ = λY :I. (Elim[I,A′](Y ){ �B})

Suppose A′′ = (ΦX,I,B′(Ci, Bi)) �A. Suppose that �A =
A1...n. We have that ∆ 
 Bi : ζX,I(Ci, A

′, Ctor (i, I)). By
using the inversion lemma we can get that ∆ 
 B′ : ΠX :
I. A′ X . By induction on the structure of Ci (where Ci is a
kind of a constructor), we can show that if Ci = Π�Y : �B. X,
then ∆ 
 ΦX,I,B′(Ci, Bi) : Π�Y : �B. A′ Ctor (i, I) �Y . The
required result follows from here.

�

Corollary 23 Suppose A is a well formed term. If A�∗
βι′ A

′, then
A �∗

βι A′ and A′ is well formed.

Corollary 24 Suppose A is a well formed term. If A �∗ A′, then
there exists a well formed term A′′ such that A �∗

βι A′′ �∗
η A′.

Lemma 22 Let ∆ 
 A : B and ∆ 
 A′ : B′ be two derivable
judgments. If A =βηι A′, then Cls(A) = Cls(A′).

Proof We know that ‖A‖ and ‖A′ ‖ have a common reduct, say
A2. This implies that

‖A‖ �
∗
βι′0B �

∗
η A2 and ‖A′ ‖ �

∗
βι′0B′

�
∗
η A2

From here we get that

A �
∗
βι B0 and A′

�
∗
βι B′

0 where ‖B0 ‖= B and ‖B′
0 ‖= B′

Eta reduction does not change the class of a term. Moving from
marked to unmarked terms also does not change the class of a term.
Therefore, we get that

Cls(A) = Cls(B0) = Cls(B) = Cls(A2) and
Cls(A2) = Cls(B′) = Cls(B′

0) = Cls(A′)

�

Corollary 25 Let ∆ 
 A : s1 and ∆ 
 B : s2 be two derivable
judgments. If A =βηι B, then s1 = s2.

Lemma 23 If ∆1, Y :C, ∆2 
 A : B and
Y /∈ FV (∆2) ∪ FV (A), then there exists a B′ such that
∆1∆2 
 A : B′. (This also implies that B =βηι B′).

Proof The proof is by induction on the structure of the derivation.
We will consider only the important cases.

• case FUN. We know that

∆1, Y :C,∆2, X :A 
 B : B′

∆1, Y :C, ∆2 
 ΠX :A.B′ : s

∆1, Y :C, ∆2 
 λX :A.B : ΠX :A.B′

Applying the induction hypothesis to the formation of B

∆1∆2, X :A 
 B : C′ B′ =βηι C′

By lemma 18 we have that

∆1∆2, X :A 
 C′ : s which implies
∆1∆2 
 ΠX :A.C′ : s

Therefore we get that

∆1∆2 
 λX :A. B : ΠX :A. C′

• case APP We know that

∆1, Y :C, ∆2 
 A : ΠX :B′. A′

∆1, Y :C, ∆2 
 B : B′

∆1, Y :C, ∆2 
 A B : [B/X]A′

By applying the induction hypothesis we get that

∆1∆2 
 A : A2 and ∆1∆2 
 B : A3 where
A2 =βηι ΠX :B′. A′ and A3 =βηι B′

From lemma 13, A2 �βι λ�Y : �A. (ΠX :B′′. A′′) �B. Since
βι reduction preserves type, and A2 is well formed, we have
that A2 �βι ΠX : B′′. A′′. This implies that A′′ =βηι A′

and B′′ =βηι B′. We also get that A3 =βηι B′′. From
corollary 25 we get that A3 and B′′ have the same sort. By
applying the CONV rule we get that

∆1∆2 
 A : ΠX :B′′. A′′ and ∆1∆2 
 B : B′′

Therefore, we get that

∆1∆2 
 A B : [B/X]A′′

�

As a corollary we now get that

Lemma 24 (Strengthening) If ∆1, Y :C, ∆2 
 A : B and
Y /∈ FV (∆2) ∪ FV (A) ∪ FV (B), then ∆1∆2 
 A : B.

Lemma 25 (Subject reduction for η reduction) If ∆ 
 A : B,
and A �η A′ and ∆ �η ∆′, then we have that

∆ 
 A′ : B ∆′ 
 A : B

Proof The interesting case is that of functions. Suppose that

∆ 
 λX :A1. A2 X : B X /∈ FV (A2) λX :A1. A2 X �η A2

From lemma 19 we know that

∆, X :A1 
 A2 X : A3 B =βηι ΠX :A1. A3 ∆ 
 B : s

Again applying lemma 19 we get that

∆, X :A1 
 A2 : ΠY :B′. A′ B′ =βηι A1 A3 =βηι [X/Y ]A′

By applying the CONV rule now, we get that ∆, X :A1 
 A2 : B.
By applying lemma 24 we get that ∆ 
 A2 : B. �

Theorem 26 (Subject reduction) If ∆ 
 A : B, and A � A′

and ∆ � ∆′, then we have that: ∆ 
 A′ : B and ∆′ 
 A : B.

Proof Follows from lemma 21 and 25. �
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D.3 Strong Normalization

The proof is structured as follows:

• We introduce a calculus of pure terms. This is just the pure λ
calculus extended with a recursive filtering operator. We do
this so that we can operate in a confluent calculus.

• We define a notion of reducibility candidates. Every schema
gives rise to a reducibility candidate. We also show how these
candidates can be constructed inductively.

• We then define a notion of well constructed kinds which is a
weak form of typing.

• We associate an interpretation to each well formed kind. We
show that under adequate conditions, this interpretation is a
candidate.

• We show that type level constructs such as abstractions and
constructors belong to the candidate associated with their
kind.

• We show that the interpretation of a kind remains the same
under βη reduction.

• We define a notion of kinds that are invariant on their domain
– these are kinds whose interpretation remains the same upon
reduction.

• We show that kinds formed with large elimination are invari-
ant on their domain.

• From here we can show the strong normalization of the cal-
culus of pure terms. We show that if a type is well formed,
then the pure term derived from it is strongly normalizing.

• We then reduce the strong normalization of all well formed
terms to the strong normalization of pure terms.

D.3.1 Notation

The syntax for the language is:

(ctxt) ∆ ::= · | ∆, X :A

(sort) s ::= Kind | Kscm | Ext

(var) X ::= z | k | t
(ptm) A, B ::= s | X | λX :A.B | A B | ΠX :A.B

| Ind(X :Kind){ �A} | Ctor (i, A)

| Elim[A′, B′](A){ �B}
The proof of strong normalization uses the stratification in the

language shown below.

(ctxt) ∆ ::= · | ∆, z :Kscm | ∆, k :u | ∆, t :κ

(kscm) u ::= z | Πt :κ. u | Πk :u1. u2 | Kind

(kind) κ ::= k | λt :κ1. κ2 | κ[τ ] | λk :u. κ | κ1 κ2

| Πt :κ1. κ2 | Πk :u. κ | Πz :Kscm. κ

| Ind(k :Kind){�κ} | Elim[κ′, u](τ ){�κ}
(type) τ ::= t | λt :κ. τ | τ1 τ2 | λk :u. τ | τ [κ]

| λz :Kscm. τ | τ [u] | Ctor (i, κ)

| Elim[κ′, κ](τ ′){�τ} | Elim[κ′, κ](τ ′){�τ}
In this section, the types are also referred to as proof terms. We

sometimes use I to refer to an inductive definition.

D.3.2 Pure terms

The pure terms are defined as:

(Λ) a, b, c ::= t | a b | λt.a | Co(n) | match t.{�a}

The set of reductions on the pure terms are defined as:

(λt.a) b �β [b/t]a
λt.(a t) �η a if t /∈ FV (a)

match t.{�a} (Co(i) �b) �ι ([match t.{�a}/t]ai) �b

The translation from types to pure terms is defined as:

| t |= t
|τ1 τ2 |= |τ1 | |τ2 |
|τ [κ] |= |τ |
|τ [u] |= |τ |

|λt :κ. τ |=λt.|τ |
|λk :u. τ |= |τ |

|λz :Kscm. τ |= |τ |
|Ctor (n, κ) |=Co(n)

|Elim[κ, κ′](τ ){�τ}|=
(match t.{−−−−−−−−−−−−−→Υ(κi, |τi |, λt2.t t2)}) |τ |

where κ = Ind(k :Kind){�κ} and

Υ(k, a1, a2) = a1

Υ(Πt :κ1. κ2, a1, a2) =λt.Υ(κ2, a1 t, a2)
Υ(Πk :u. κ, a1, a2) =Υ(κ, a1, a2)

Υ(Πz :Kscm. κ, a1, a2) =Υ(κ, a1, a2)

Υ(Π �X : �A. k → κ, a1, a2) =

λt.Υ(κ, a1 t (λ| �X |.a2 (t | �X |)), a2)

Lemma 26 Let τ and τ ′ be two well formed types and let t be a
type variable. Then | [τ ′/t]τ |= [|τ ′ | /t] |τ |.
Proof It is a straightforward proof by induction over the structure
of τ . �

The following lemma uses Definitions 9 and 7 in Section D.2
and also the definition of Υ from above.

Lemma 27 |ΦX,I,B(κ, τ ) |=
[match t.{−−−−−−−−−−−−−→Υ(κi, |τi |, λt2.t t2)}/t]Υ(κ, |τ |, λt2.t t2)

Proof The proof is by induction on the fact that κ is the kind of
a constructor. �

Lemma 28 For all well formed proof terms τ1 and τ2, if
τ1 �i τ2, then |τ1 | �j |τ2 | where j ≤ i.

Proof Follows from lemmas 26 and 27. �

D.3.3 Interpretation of schemas

Definition 27 (Arity) We call ground kind schemas arities de-
noted as arity(u, Kind). The arities are defined with the following
grammar:

(kscm) u ::= Kind | Πk :u1. u2 | Πt :κ. u

Definition 28 (Schema map) We define a kind schema mapping
K as a function mapping kind schema variables z to arities. We
also use K, z :u to say that K has been augmented with the mapping
z �→ u.
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Definition 29 We define the function ρ(u)K as:

ρ(u)K = ρ0(K(u)) where

• ρ0(Kind) is the set of sets of pure terms;

• ρ0(Πk :u1. u2) is the set of functions from ρ0(u1) to ρ0(u2);
and

• ρ0(Πt :κ.u) is the set of functions from Λ to ρ0(u).

Definition 30 For each kind schema u and mapping K, we define
in ρ(u)K the relation of partial equivalence written as �K(u) as
follows:

• for all C and C′ in ρ0(Kind), we have that C �Kind C′ ⇐⇒
C = C′;

• for all C and C′ in ρ0(Πk :u1. u2), we have C �Πk:u1. u2 C′

⇐⇒ for all C1 and C2 in ρ0(u1) with C1 �u1 C2 we get
that C C1 �u2 C′ C2; and

• for all C and C′ in ρ0(Πt :κ. u), we have that C �Πt:κ. u C′

⇐⇒ for all a and b in Λ such that a =βηι b, we get that
C a �u C′b.

Definition 31 (Invariant) Given C in ρ(u)K, we say that C is in-
variant ⇐⇒ C �K(u) C.

Definition 32 (Neutral terms) A term is called neutral if it has
neither of the following forms – λt.a, Co(i) �a, or match t.{�a}.

Definition 33 We define CR0(Kind) as consisting of all sets C
such that:

• if a ∈ C, then a is strongly normalizing;

• if a1 � a2 and a1 ∈ C, then a2 ∈ C; and

• if a is neutral and for all terms a′ such that a�a′ and a′ ∈ C,
then a ∈ C.

Definition 34 (Candidates) We define CR(u)K as a subset of
ρ(u)K as:

CR(u)K = CR0(K(u)) where

• CR0(Kind) is defined as in Definition 33;

• CR0(Πt : κ. u) is the set of invariant elements C belonging
to ρ0(Πt :κ. u) such that C Λ ⊂ CR0(u); and

• CR0(Πk :u1. u2) is the set of invariant elements C belonging
to ρ0(Πk :u1. u2) such that C (CR0(u1)) ⊂ CR0(u2).

Proposition 35 All reducibility candidates are invariant.

Proposition 36 Let (Ci)i∈I be a family of reducibility candidates
of Kind indexed by a set I . Then ∩i∈ICi is a reducibility candidate
of schema Kind.

Lemma 29 Let C ∈ ρ(u)K. If C is invariant, then

C ∈ CR(u)K ⇐⇒ ∀C′ ∈ Dom(CR(u)K).C C′ ∈ CR(Kind)K

Proof Straightforward induction over the structure of K(u). �

Definition 37 Let a1 be a strongly normalizing term. Then the
length of the longest sequence of reductions to a normal form is
denoted as ν(a1).

Lemma 30 Let a1 and a2 be two terms and let C ∈ CR0(Kind)
be a reducibility candidate. If a2 is strongly normalizing, and if
[a2/t]a1 ∈ C, then (λt.a1) a2 ∈ C.

Proof By induction over ν(a1) + ν(a2). �

Corollary 38 Let a1 be a pure term and let C be a reducibility
candidate of schema Kind. Let �t and �a′ be respectively a sequence
of variables and terms of the same length. If for all i, a′

i is strongly
normalizing, and if [�a′/�t]a1 ∈ C, then (λ�t.a1) �a′ ∈ C.

Lemma 31 For all reducibility candidates C of kind Kind, for all
sequences of strongly normalizing �a and�b and for all i less than
the length of �a, we have that

match t.{�a} (Co(i) �b) ∈ C ⇐⇒ ([match t.{�a}/t]ai) �b ∈ C

Proof Follows by induction over ν(ai) + ν(bi) (for all i). �

Definition 39 (Canonical candidates) Define Can(u)K as:

Can(u)K = Can0(K(u)) where

• Can0(Kind) is the set of all strongly normalizing terms;

• Can0(Πt : κ. u) is the function mapping all pure terms to
Can0(u); and

• Can0(Πk : u1. u2) is the function mapping all elements of
ρ0(u1) to Can0(u2).

D.3.4 Properties of candidates

In this section, we state some properties of the reducibility candi-
dates. The properties with respect to the union and the intersection
of a family of candidates will be used for the inductive construc-
tions of candidates.

Definition 40 (Order over candidates) For each kind schema u
and mapping K, we define in ρ(u)K the relation <K(u) as follows:

• for all C and C′ in ρ0(Kind), we have that C <Kind C′ ⇐⇒
C ⊂ C′;

• for all C and C′ in ρ0(Πk :u1. u2), we have C <Πk:u1. u2 C′

⇐⇒ for all C1 in ρ0(u1), we get that C C1 <u2 C′ C1; and

• for all C and C′ in ρ0(Πt :κ. u), we have that C <Πt:κ. u C′

⇐⇒ for all a in Λ, we get that C a <u C′ a.

Definition 41 For all schemas u and mapping K, for all families
of elements in ρ(u)K, we define

∧
i∈I Ci as:

• for all Ci ∈ ρ0(Kind),
∧

i∈I Ci = ∩i∈ICi;

• for all Ci ∈ ρ0(Πt :κ. u),
∧

i∈I Ci = b ∈ Λ �→ ∧
i∈I Ci b;

and

• for all Ci ∈ ρ0(Πk : u1. u2),
∧

i∈I Ci = C′ ∈ ρ0(u1) �→∧
i∈I Ci C′.

Lemma 32 Let u be a schema and K a mapping and Ci a family
of elements of ρ(u)K. Then ∀j ∈ I ,

∧
i∈I Ci <K(u) Cj .

Proof It follows in a straightforward way by induction over the
structure of K(u). �

The following two propositions also follow easily by induction
over the structure of K(u).
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Proposition 42 Let u be a schema and K a mapping and Ci a fam-
ily of elements of ρ(u)K. If all Ci are invariants, then the same
holds for

∧
i∈I Ci.

Proposition 43 Let u be a schema and K a mapping and Ci a fam-
ily of elements of CR(u)K. Then we also have that

∧
i∈I Ci ∈

CR(u)K.

Corollary 44 We get that (CR(u)K, <K(u)) is an inf-semi-lattice
for all schema u and mapping K. We use min(K(u)) to denote the
smallest element.

Definition 45 For all schemas u and mapping K, for all families
of elements in ρ(u)K, we define

∨
i∈I Ci as:

• for all Ci ∈ ρ0(Kind),
∨

i∈I Ci = ∪i∈ICi;

• for all Ci ∈ ρ0(Πt :κ. u),
∨

i∈I Ci = b ∈ Λ �→ ∨
i∈I Ci b;

and

• for all Ci ∈ ρ0(Πk : u1. u2),
∨

i∈I Ci = C′ ∈ ρ0(u1) �→∨
i∈I Ci C′.

Lemma 33 Let u be a schema and K be a mapping. Let (Ci)i∈I

and (C′
i)i∈I be two families of elements of ρ(u)K. If for all

elements i of I we have that Ci �K(u) C′
i , then we also have that∨

i∈I Ci �K(u)

∨
i∈I C′

i .

Proof Straightforward induction over the structure of K(u). �

Corollary 46 Let u be a schema and K be a mapping. Let (Ci)i∈I

be a family of elements of ρ(u)K. If all Ci are invariant, then∨
i∈I Ci is also invariant.

Lemma 34 Let u be a schema and K be a mapping. Let (Ci)i∈I

be a family of elements of ρ(u)K and C ∈ ρ(u)K. If for all i,
Ci <K(u) C, then

∨
i∈I Ci <K(u) C.

Proof The proof is by induction over the structure of K(u). �

Lemma 35 Let (Ci)i∈I be a totally ordered family of elements of
CR(u)K. Then

∨
i∈I Ci ∈ CR(u)K.

Proof The proof is by induction over the structure of K(u). Sup-
pose

∨
i∈I Ci = C′.

• K(u) = Kind. We have to make sure that all three conditions
in Definition 33 are satisfied. The first two conditions follow
obviously. For the third case, assume that a is neutral and for
all terms ai such that a � ai, we have that ai ∈ C′. This
implies that ai ∈ Cj for some j. Since there are finitely
many such Cj and they are totally ordered, we can choose a
Ck among them that contains all the Cjs. Since this Ck is
also a candidate, it contains a. Therefore, a ∈ ∨

i∈I Ci.

• K(u) = Πt : κ. u. Since all the Ci are invariant, it follows
from Definitions 30 and 31 that for a term a ∈ Λ, we have that
Ci a is invariant. Again from Definition 40, it is clear that the
Ci a are totally ordered. Also from Corollary 46 we get that∨

i∈I Ci a is invariant. Applying the induction hypothesis we
get that

∨
i∈I Ci a ∈ CR0(u). From Definition 34, it follows

that
∨

i∈I Ci ∈ CR0(Πt :κ. u).

• K(u) = Πk :u1. u2. Similar to the previous case.

�

Definition 47 (Schema interpretation) A schema interpretation
U is a function that maps a kind variable k to an element of ρ(u)K.
We also use U , k : C to say that U has been augmented with the
mapping k �→ C.

Definition 48 (Well formed kinds) Let u be a schema, κ be a
kind, K be a mapping, and U be an interpretation. We say that
κ is a well formed kind of schema K(u) under K and U iff :

1. κ = k and U(k) = ρ(u)K;

2. κ = Πt : κ1. κ2 with K(u) =βηι Kind and κ1 and κ2 are
both well constructed of schema Kind under K and U ;

3. κ = Πk : u′. κ′ with K(u) =βηι Kind and κ′ is well con-
structed of schema Kind under K and U , k :ρ(u′)K;

4. κ = Πz :Kscm. κ′ with K(u) =βηι Kind and for all u′ such
that u′ ∈ arity(u1, Kind), we have that κ′ is well constructed
of schema Kind under K, z :u′ and U ;

5. κ = κ1 κ2 if there exists two schemas u1 and u2 with κ2

well constructed of schema K(u2) under K and U , also κ1

well constructed of schema K(Πk : u2. u1) under K and U ,
and ρ(u)K = ρ([κ2/k]u1)K;

6. κ = κ1 τ1 if there exists a schema u2 and kind κ2 such that
κ1 is well constructed of schema K(Πt :κ2. u2) under K and
U and ρ(u)K = ρ([τ1/t]u2)K;

7. κ = λk : u1. κ1 if there exists a u2 such that κ1 is well
constructed of schema K(u2) under K and U , k :ρ(u1)K and
ρ(u)K = ρ(Πk :u1. u2)K;

8. κ = λt : κ1. κ2 if there exists a u2 such that κ2 is well
constructed of schema K(u2) under K and U and ρ(u)K =
ρ(Πt :κ1. u2)K;

9. κ = Ind(k : Kind){�κ} if all κi are kinds of constructors
and well constructed of schema Kind under K and U , k :
ρ0(Kind), and ρ(u)K = ρ0(Kind); and

10. κ = Elim[κ′, u′](τ ){�κ} if κ′ = Ind(k : Kind){�κ′}, and κ′

is well constructed of schema Kind under K and U , also u′

is a schema and K(u) =βηι u′, and κi is well constructed of
schema K(Ψk,κ′(κ′

i, u
′)) under K and U .

Definition 49 We define compatible mappings and interpretation
as:

1. A mapping K is compatible with a context ∆ if for all z ∈ ∆,
we have K(z) = arity(u, Kind).

2. An interpretation U is compatible with a context ∆ and a
compatible mapping K if for all pairs (k, u) ∈ ∆, we have
U(k) ∈ ρ(u)K.

Lemma 36 If ∆ 
 κ : u, then for all compatible K and U , we
have that κ is well constructed of schema K(u).

Proof By induction over the structure of κ. �
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D.3.5 Inductive constructions

Consider an increasing function F in ρ0(Kind) for the order <Kind.
Denote the smallest element of ρ0(Kind) as ⊥. Since ρ0(Kind) is
closed under ∩, and (ρ0(Kind), <Kind) is an inf-semi-lattice, the
function F has a least fixed point (lfp). We will construct this least
fixed point inductively. We first define the transfinite iteration of F.

Definition 50 Let C ∈ ρ0(Kind) and o be an ordinal. We define
the iteration of order o of F over C as:

• F 0(C) = C;

• F o+1(C) = F (F o(C)); and

• F lim(U) = ∪o∈UF o(C).

Lemma 37 Let o be an ordinal; we have Fo(⊥) <Kind lfp(F ).

Proof The proof is by induction over o. If o = 0, then it follows
immediately. Otherwise,

• o = o′ + 1 Then we have that Fo(⊥) = F (F o′
(⊥)).

By the induction hypothesis, we get that F (Fo′
(⊥)) <Kind

F (lfp(F )). This implies that F (F o′
(⊥)) <Kind lfp(F ).

• o = lim(U) Follows immediately from the induction hypoth-
esis and lemma 34.

�

Remark 51 Since we do not consider the degenerate case of
F (⊥) = ⊥, it follows from lemma 37 that for some ordinal o,
we have that lfp(F ) = F o(⊥).

Lemma 38 Suppose S is a subset of ρ0(Kind) satisfying:

• if (Ci)i∈I is a totally ordered family of elements of S , then
∪i∈ICi ∈ S ;

• F (⊥) ∈ S ; and

• for all C in S , F (C) ∈ S .

Then lfp(F ) ∈ S .

Proof Follows from the fact that lfp(F ) = F o(⊥) for some
ordinal o. �

Definition 52 Let a ∈ lfp(F ). We define deg(a) as the smallest
ordinal such that a ∈ F deg(a)(⊥).

Definition 53 To all a ∈ lfp(F ), we associate pred(a) defined as
F deg(a)−1(⊥).

Lemma 39 For all a, deg(a) is an ordinal successor.

Proof Suppose it is the limit of the set U . From Definition 50,
there exists some o ∈ U for which a ∈ Fo(⊥). This leads to a
contradiction. �

Definition 54 (Partial order) Suppose C and C′ are two elements
of CR0(Kind). We say that C <F C′ if C = F o(⊥) and C′ =

F o′
(⊥), and o < o′.

D.3.6 Interpretation of kinds

In this section we interpret kinds as members of reducibility candi-
dates. First we augment the schema interpretation

Definition 55 We augment U so that it maps a kind variable to an
element of ρ(u)K, and a type variable to a pure term a.

Definition 56 We denote the interpretation of a type τ as CK
U (τ ).

To form this, we first construct the corresponding pure term |τ | and
then substitute the type variables by the corresponding pure terms
in U . This is equivalent to U(|τ |).

Definition 57 (Interpreting kinds) Consider a kind κ, a schema
u, a mapping K, and an interpretation U . Suppose κ is well con-
structed of schema K(u) under K and U . We define by recursion
on κ:

1. CK
U (k) = U(k)

2. CK
U (Πt : κ1. κ2) = {a ∈ Λ,∀a1 ∈ CK

U (κ1), a a1 ∈
CK
U,t:a1(κ2)}

3. CK
U (Πk :u1. κ1) = ∩C∈CR(u1)KCK

U,k:C(κ1)

4. CK
U (Πz :Kscm. κ1) = ∩u1∈arity(u,Kind)CK,z:u1

U (κ1)

5. CK
U (κ1 τ ) = CK

U (κ1) CK
U (τ )

6. CK
U (κ1 κ2) = CK

U (κ1) CK
U (κ2)

7. CK
U (λt :κ1. κ2) = a ∈ Λ �−→ CK

U,t:a(κ2)

8. CK
U (λk :u1. κ1) = C ∈ CR(u1)K �−→ CK

U,k:C(κ1)

9. CK
U (Ind(k :Kind){�κ}) = the least fixed point of the function

F from ρ0(Kind) to ρ0(Kind) defined as :

for all S ∈ ρ0(Kind), for all C ′ in CR(I → Kind)K (where
I = Ind(k : Kind){�κ}), for all sequences of pure terms bi,
with for all i,

bi ∈ CK
U,k:S,A′:C′,B′:Co(i)(ζk,I(κi, A

′, B′))

F (S) is the union of min(Kind) with the set of pure terms a
such that

(match t.{−−−−−−−−−−−−−−−−−−−→CK
U,ai:bi

(Υ(κi, ai, λt2.t t2))}) a ∈ C′ a

10. CK
U (Elim[κ, u](τ ){�κ′}) = G(CK

U (κ))

where κ = Ind(k : Kind){�κ} is well constructed of schema
Kind under K and U and G(C) ∈ ρ(u)K is defined for all
C ∈ dom(<κ) as follows (<κ is the order induced by the
inductive definition κ):

• If CK
U (τ ) has a normal form b = Co(i) �a such that b ∈

C

G(C) = CK
U,t1:G(pred(b))(Φk,I,t1(κi, κ

′
i)) (�a)

• Can(u)K otherwise

Lemma 40 The function F in Definition 57.9 is monotonic.
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Proof We must prove that if C1 <Kind C2, then

CK
U,k:C2,A′:C′,B′:Co(i)(ζk,I(κi, A

′, B′)) <Kind

CK
U,k:C1,A′:C′,B′:Co(i)(ζk,I(κi, A

′, B′))

The proof is by induction on the fact that κi is the kind of a con-
structor.

• If κi = k, then both sides reduce to C′ Co(i).

• If κi = ΠX :A1. A2, then it follows directly from the induc-
tion hypothesis and because k does not occur in A1.

• If κi = Π �X : �A. k → A2, then

ζk,I(κi, A
′, B′) =

ΠZ : (Π �X : �A. k). Π �X ′ : �A. (A′ (Z �X ′)) → ζk,I(A2, A
′, B′ Z)

Suppose U ′ = U , k : C′′, A′ : C′, B′ : Co(i) where C′′ is
either C1 or C2. The required set is then

a ∈ Λ, such that ∀a1 ∈ CK
U′(Π �X : �A. k),

∀a2 ∈ CK
U′,Z:a1

(Π �X ′ : �A. A′ (Z �X ′))
a a1 a2 ∈ CK

U′,Z:a1
(ζk,I(A2, A

′, B′ Z))

The set of a1 and a2 is larger for the LHS. By the induction
hypothesis, the result a a1 a2 must occur in a smaller set for
the LHS. The required result follows from this.

�

Remark 58 The previous lemma ensures that the interpretation of
an inductive type sets up a well defined order. This ensures that
the interpretation of large elimination (Definition 57.10) is well
formed.

We get a bunch of substitution lemmas. The proof for each of
these is similar and follows directly by induction over the structure
of κ. We state them below:

Proposition 59 Let κ be a well constructed kind of schema u un-
der K and U . Let t be a type variable, and τ a type. We have
that

CK
U ([τ/t]κ) = CK

U,t:CK
U (τ)(κ)

Proposition 60 Let κ be a well constructed kind of schema u un-
der K and U . Let k be a kind variable and κ1 a kind such that κ1 is
well constructed under K and U of the same schema as U(k). We
have that

CK
U ([κ1/k]κ) = CK

U,k:CK
U (κ1)(κ)

Proposition 61 Let κ be a well constructed kind of schema u un-
der K and U . Let z be a schema variable, and u1 be a schema such
that K(u1) is an arity. We have that

CK
U ([u1/z]κ) = CK,z:K(u1)

U (κ)

D.3.7 Candidate interpretation of kinds

Definition 62 We say that U and U ′ are equivalent interpretations
if for all k, we have that U(k) � U ′(k) and for all t we have that
U(t) =βηι U ′(t).

Lemma 41 Let u be a schema, K be a mapping, and U and U′ be
two equivalent interpretations. Suppose κ is well constructed of
schema K(u) under K and both U and U′. Then
CK
U (κ) �K(u) CK

U′(κ).

Proof The proof is by induction over the structure of κ. Most of
the cases follow directly from the induction hypothesis.

• κ = Elim[κ′, u](τ ){�κ′}. Here κ′ = Ind(k : Kind){�κ}.
First note that CK

U (κ′) = CK
U′(κ′). Therefore, the function

F whose lfp generates the inductive definition is the same.
Moreover, CK

U (τ ) =βηι CK
U′(τ ). Since the set of pure terms

is confluent, CK
U (τ ) and CK

U′(τ ) have the same normal form.
We can now do induction on the structure of κi to prove that

CK
U,t1:G(pred(b))(Φk,I,t1(κi, κ

′
i)) �

CK
U′,t1:G(pred(b))(Φk,I,t1(κi, κ

′
i))

�

Lemma 42 Let K be a mapping, U a candidate interpretation, κ
be a kind and u be a schema such that κ is a well constructed kind
of schema K(u). Then CK

U (κ) ∈ CR(u)K.

Proof The proof is by induction over the structure of κ. Most of
the cases follow in a direct way.

• κ = Ind(k : Kind){�κ}. We will use lemma 38 to prove
this. For S ∈ CR0(Kind), the first condition is satisfied by
lemma 35.

– Suppose S = ⊥. If none of the branches is recur-
sive then the function F is a constant function and the
proof is similar to the non-bottom case. Suppose the
ith branch is recursive. Then it is easy to see that the bi

defined as:

bi ∈ CK
U,k:⊥,A′:C,B′:Co(i)(ζk,I(κi, A

′, B′))

includes the set of all terms, including non-normalizing
ones. Therefore, there are no terms a that would satisfy
the condition that:

(match t.{−−−−−−−−−−−−−−−−−−−→CK
U,ai:bi

(Υ(κi, ai, λt2.t t2))}) a ∈ C a

This implies that F (⊥) = ⊥ and we know that ⊥ ∈
CR0(Kind).

– Consider any other S . We will show that F (S) sat-
isfies the conditions in Definition 33 and hence be-
longs to CR0(Kind). F (S) is defined as the union of
min(Kind) with the set of pure terms a such that

(match t.{−−−−−−−−−−−−−−−−−−−→CK
U,ai:bi

(Υ(κi, ai, λt2.t t2))}) a ∈ C a

Since C is a candidate, the terms a must be strongly
normalizing.
To see that the set is closed under reduction, sup-
pose a � a′. Since C is a candidate we have that
(match t.{. . . }) a′ ∈ C a. Moreover, we have that
C a = C a′. Therefore, a′ is also in the generated set.
Suppose a is a neutral term and for all a′ such that
a � a′, we have that a′ belongs to this set. We have
to prove that a belongs to this set. This implies that we
must prove:

(match t.{−−−−−−−−−−−−−−−−−−−→CK
U,ai:bi

(Υ(κi, ai, λt2.t t2))}) a ∈ C a

Since a is a neutral term, the above term does not have
a redex at the head. From the induction hypothesis, we
get that CK

U,k:S,A′:C,B′:Co(i)(ζk,I(κi, A
′, B′)) is a can-

didate and therefore closed under reduction. Moreover,
the bi are strongly normalizing. We can now consider
all possible redices and prove by induction over ν(bi)
that the above condition is satisfied.
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• κ = Elim[κ′, u](τ ){�κ′} where κ′ = Ind(k :Kind){�κ}. First
note that CK

U (κ′) is a candidate by induction and gives rise to
a well founded order on CR0(Kind). We will do induction on
this order. Suppose CK

U (κ) = G(CK
U (κ′)). We will show that

for all sets S belonging to the order generated by κ′, and for
all pure terms b, we have that G(S) ∈ CR(u)K. For the non-
recursive case, the proof is immediate. For the recursive case,
consider CK

U,t1:G(pred(b))(Φk,κ′,t1(κi, κ
′
i)). Note that pred(b)

belongs to the same order. The required result follows now
by doing induction over the structure of κi and applying the
induction hypothesis to G(pred(b)).

�

Definition 63 Suppose ∆ is a context and K and U are a mapping
and an interpretation. We say that K and U are adapted to ∆ if:

• ∀z ∈ ∆, we have that K(z) is an arity and · 
 K(z) : Kscm.

• ∀k ∈ ∆, we have that U(k) ∈ CR(∆(k))K.

• ∀t ∈ ∆, we have that U(t) ∈ CK
U (∆(t)).

D.3.8 Interpretation of abstractions

We get a bunch of lemmas that state that an abstraction at the type
level belongs to the corresponding kind. The proof of each of these
lemmas is straightforward and follows in a similar way. We will
show the proof for only one of the lemmas.

Lemma 43 Let ∆ 
 λt :κ. τ : Πt :κ. κ1 be a judgment and K
and U be a mapping and a candidate interpretation adapted to ∆.
We have CK

U (λt :κ. τ ) ∈ CK
U (Πt :κ. κ1) if and only if for all pure

terms a ∈ CK
U (κ), we have that CK

U,t:a(τ ) ∈ CK
U,t:a(κ1).

Lemma 44 Let ∆ 
 λk :u. τ : Πk :u. κ be a judgment and K
and U be a mapping and a candidate interpretation adapted to ∆.
We have CK

U (λk :u. τ ) ∈ CK
U (Πk :u. κ) if and only if for all

reducibility candidates C ∈ CR(u)K we have that
CK
U,k:C(τ ) ∈ CK

U,k:C(κ) .

Lemma 45 Let ∆ 
 λz :Kscm. τ : Πz :Kscm. κ be a judgment
and K and U be a mapping and a candidate interpretation adapted
to ∆. We have CK

U (λz :Kscm. τ ) ∈ CK
U (Πz :Kscm. κ) if and only

if for all u ∈ arity(u′, Kind) we have that CK
U (τ ) ∈ CK,z:u

U (κ).

Proof By definition CK
U (λz : Kscm. τ ) = CK

U (τ ). Similarly
CK
U (Πz : Kscm. κ) = ∩u1∈arity(u,Kind)CK,z:u1

U (κ). The if part fol-
lows directly from the definition.

For the only if, suppose that CK
U (τ ) ∈ CK,z:u

U (κ) for all arities
u. This implies that CK

U (τ ) ∈ ∩u1∈arity(u,Kind)CK,z:u1
U (κ). This

implies that CK
U (τ ) ∈ CK

U (Πz :Kscm. κ). �

D.3.9 Interpretation of weak elimination

For this section κ = Ind(k : Kind){�κ}. Suppose also that C ∈
CR(κ → Kind)K and τi ∈ CK

U,A′:C,B′:Co(i)(ζk,I(κi, A
′, B′)).

Lemma 46 Suppose a ∈ CK
U (κ). We have then

(match t.{−−−−−−−−−−−→Υ(κi, τi, λt2.t t2)}) a ∈ C a

Proof Follows immediately from the definition of CK
U (κ). �

Lemma 47 Let ∆ 
 Elim[κ, κ1](τ ){�τ ′} : κ1 be a derivable
judgment where κ1 is a kind. Suppose K is a mapping and U is a
candidate interpretation adapted to ∆. If CK

U (τ ) ∈ CK
U (κ) and

CK
U (τ ′

i) ∈ CK
U (ζk,I(κi, κ1, Ctor (i, κ))), then we have

CK
U (Elim[κ, κ1](τ ){�τ ′}) ∈ CK

U (κ1)

Proof Follows now from the previous lemma. �

D.3.10 Interpretation of constructors

For this section, suppose I = κ = Ind(k : Kind){�κ}. Also, sup-
pose C ∈ CR(I → Kind)K.

Lemma 48 For all i, Co(i) ∈ CK
U (κi).

Proof We know that κi is of the form Π �X : �A. k. Suppose �B ∈
CK
U,k:CK

U (I)
( �X : �A). Then we need to prove that Co(i) �B ∈ CK

U (I).

This means that we need to prove that

(match t.{−−−−−−−−−−−−→Υ(κi, ai, λt2.t t2)}) (Co(i) �B) ∈ C (Co(i) �B)

where ai belongs to the appropriate candidate. This implies that
we need to prove that

Υ(κi, ai, λt2.match t.{. . . } t2) �B ∈ C (Co(i) �B)

This follows directly by an induction over the structure of κi. �

D.3.11 Invariance under β reduction

In this section, we show that the interpretation of kinds remains
invariant under β reduction.

Lemma 49 Let κ be a well constructed kind of schema u under a
mapping K and candidate interpretation U . If κ �β κ′, then κ′ is
well constructed of schema u under K and U , and
CK
U (κ) = CK

U (κ′).

Proof The proof is by induction over the structure of κ. Most
of the cases follow directly from the induction hypothesis. We will
only consider β reductions at the head.

• κ = (λt :κ1. κ2) τ . By definition,

CK
U ((λt :κ1. κ2) τ ) = CK

U (λt :κ1. κ2) CK
U (τ )

Again by definition this is equal to CK
U,t:CK

U (τ)
(κ2). By propo-

sition 59 this is equal to CK
U ([τ/t]κ2)

• κ = (λk :u1. κ1) κ2. By definition,

CK
U ((λk :u1. κ1) κ2) = CK

U (λk :u1. κ1) CK
U (κ2)

By lemma 42 we have that CK
U (κ2) ∈ CR(u1)K. Therefore,

we get that

CK
U ((λk :u1. κ1) κ2) = CK

U,k:CK
U (κ2)(κ1)

By proposition 60 this is equal to CK
U ([κ2/k]κ1).

�
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D.3.12 Invariance under η reduction

In this section, we show that the interpretation remains the same
under η reduction. The unmarked terms ‖ κ ‖ are defined in Sec-
tion D.2.1.

Lemma 50 Let κ be a well constructed kind of schema u under a
mapping K and candidate interpretation U . If κ �η κ′, then κ′ is
well constructed of schema u under K and U , and
CK
U (κ) = CK

U (κ′).

Proof The proof is again by induction over the structure of κ.
We will consider only the cases where the reduction occurs at the
head.

• κ = λt :κ1. (κ2 t). By definition CK
U (κ) is equal to:

a ∈ Λ �−→ CK
U,t:a(κ2) CK

U,t:a(t)

Since t does not occur free in κ2, this is equivalent to

a ∈ Λ �−→ CK
U (κ2) a

Since a does not occur free now in CK
U (κ2), we get that this

is equivalent to CK
U (κ2). Note from Definition 34 that the

domain of CK
U (κ2) is Λ.

• κ = λk :u1. (κ2 k). By definition CK
U (κ) is equal to:

C ∈ CR(u1)K �−→ CK
U,k:C(κ2) CK

U,k:C(k)

Since k does not occur free in κ2, this is equivalent to

C ∈ CR(u1)K �−→ CK
U (κ2) C

Since C does not occur free now in CK
U (κ2), we get that this

is equivalent to CK
U (κ2). Note from Definition 34 that the

domain of CK
U (κ2) is CR(u1)K.

�

Lemma 51 For all well constructed kinds κ of schema u under K
and U , we have CK

U (κ) = CK
U (‖κ‖).

Proof Follows from the fact that κ =βη‖κ‖. �

D.3.13 Invariance under ι reduction

In this section we essentially show that interpretation remains the
same under large elimination.

Lemma 52 Let Elim[κ, u](τ ){�κ′} be well constructed of schema
K(u) under K and U . Suppose κ = Ind(k :Kind){�κ}. Suppose G
is the function used for the interpretation of the large elimination.
If CK

U (τ ) ∈ CK
U (κ), then for all C ∈ CR0(Kind) with CK

U (τ ) ∈ C,
we have that G(CK

U (κ)) = G(C).

Proof The proof is immediate. �

Lemma 53 Suppose I = κ = Ind(k :Kind){�κ}. Suppose the
constructors of I are all small. Suppose the mth constructor of I

has the form Π�Y : �B. k and we have a sequence of terms�b such
that Co(m) �b ∈ CK

U (I). Then we have that
bi ∈ CK

U,∀k<i.Yk:bk,k:pred(Co(m) �b)
(Bi).

Proof We can have two cases.

• pred(Co(m) �b) �= ⊥
This implies that pred(Co(m) �b) ∈ CR0(Kind). Suppose
S = CK

U,∀k<i.Yk:bk,k:pred(Co(m) �b)
(Bi). Then we have that

S is a candidate of schema Kind. Suppose also that C′ be-
longs to CR(I → Kind)K and maps elements in the do-
main of I → Kind to S . Then for all indices i′, we
have that CK

U,k:pred(Co(m) �b),A′:C′(ζk,I(κi′ , A
′, Ctor (i′, I)))

is a reducibility candidate of Kind.

To prove the lemma we need to show that if for all indices i

τi ∈ CK
U,k:pred(Co(m) �b),A′:C′(ζk,I(κi, A

′, Ctor (i, I)))

then we have that Φk,I,B′(κm, τm) can reduce to bi by a head
reduction. To have this, for the indices i �= m choose τi as
some variable. For τm choose the term that returns the ith
argument of the constructor.

• pred(Co(m) �b) = ⊥ We can show that the constructors now
are not recursive. Hence k does not occur free in any of the
Bis. The proof for the previous case can be reused here.

�

Lemma 54 Let ∆ 
 Elim[κ, u](τ ){�κ′} : u be a derivable
judgment. Let K be a mapping and U be an interpretation adapted
to ∆. Suppose I = κ = Ind(k :Kind){�κ}. Suppose
CK
U (τ ) ∈ CK

U (κ) and τ �∗ Ctor (i, κ) �A. Also suppose
B′ = λt :I.Elim[κ, u](t){�κ′}. We then have that
CK
U (Elim[κ, u](τ ){�κ′}) = CK

U (Φk,I,B′(κi, κ
′
i) ( �A)).

Proof Let G be the function used for interpreting large elimina-
tion. Suppose Co(i) �a is the normal form of CK

U (τ ). Then given
the assumptions we have that:

CK
U (Elim[κ, u](τ ){�κ′}) =

CK
U,B′:G(pred(Co(i) �a))(Φk,I,B′(κi, κ

′
i)) (�a)

We therefore have to prove that

CK
U,B′:G(pred(Co(i) �a))(Φk,I,B′ (κi, κ

′
i)) (�a) =

CK
U (Φk,I,B′ (κi, κ

′
i) ( �A))

• κi = k it follows directly.

• κi = Πt :κ1. κ2 We have to prove that

CK
U,B′:G(pred(Co(i) �a)),t:a1

(Φk,I,B′(κ2, κ
′
i t)) (a2..n) =

CK
U,t:a1(Φk,I,B′(κ2, κ

′
i t) (A2..n))

Applying the induction hypothesis leads to the result.

• κi = Π�t :�κ. k → κ2 The LHS becomes

CK
U′(Φk,I,B′(κ2, κ

′
it(λ�Y :�κ. B′(t�Y )))) (a2..n)

where U ′ = U , B′ : G(pred(Co(i) �a)), t : a1

By lemma 53, a1 belongs to CK
U,k:pred(Co(i) �a)(Π�t :�κ. k). This

implies that a1
�Y ∈ pred(Co(i) �a). Moreover, by lemma 52

G(pred(Co(i) �a))(a1
�Y ) is equal to G(CK

U (κ))(a1
�Y ) and

which is in turn equal to CK
U (Elim[κ, u](A1

�Y ){�κ′}). The
required result follows directly from here by performing one
head reduction on the RHS and applying the induction hy-
pothesis.

�
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D.3.14 Kinds invariant on their domain

Definition 64 Let ∆ 
 κ : u be a derivable judgment and K
and U be a mapping and an interpretation adapted to ∆. We say
(κ, u, ∆,K,U) is invariant if:

• u = Kind and for all κ′ such that κ �∗ κ′, we have that
CK
U (κ) = CK

U (κ′);

• u = Πt :κ1. u1 then for all derivable judgments ∆ 
 τ : κ1

and CK
U (τ ) ∈ CK

U (κ1), we have that (κ τ, [τ/t]u1, ∆,K,U)
is invariant;

• u = Πk : u1. u2 then for all derivable judgments ∆ 
 κ1 :
u1, we have that (κ κ1, [κ1/k]u2, ∆,K,U) is invariant.

• u = z and we have that (K(κ),K(u),K(∆),K,U) is invari-
ant.

Lemma 55 Let ∆ 
 κ1 : Kind and ∆ 
 κ2 : Kind be two
derivable judgments and K and U be a mapping and an
interpretation adapted to ∆. If (κ1, Kind, ∆,K,U) and
(κ2, Kind, ∆,K,U) are invariant and κ1 =βηι κ2, then
CK
U (κ1) = CK

U (κ2).

Proof We know that there exists a B such that ‖κ1 ‖ �∗B and
‖κ2 ‖ �∗B. This implies that there exists a κ′

1 and a κ′
2 (lemma 13

and 12) such that κ1 �βι κ′
1 and ‖κ′

1 ‖ �∗
ηB. Similarly, κ2 �βι κ′

2

and ‖κ′
2 ‖ �∗

ηB. From here we get that

CK
U (κ1) = CK

U (κ′
1) = CK

U (B) = CK
U (κ′

2) = CK
U (κ2)

�

Proposition 65 If ([τ/t]κ, u, ∆,K,U) is invariant, and also ∆ 

(λt :κ1. κ) τ : u, then ((λt :κ1. κ) τ, u, ∆,K,U) is invariant.

D.3.15 Interpretation of large elimination

Lemma 56 Let ∆ 
 Elim[κ, u](τ ){�κ′} : u be a judgment.
Suppose I = κ = Ind(k :Kind){�κ}. Let K and U be a mapping
and an interpretation adapted to ∆. Suppose

1. CK
U (τ ) ∈ CK

U (κ).

2. for all i, (κ′
i, Ψk,I(κi, u), ∆,K,U) is invariant.

Then we have that (Elim[κ, u](τ ){�κ′}, u, ∆,K,U) is invariant.

Proof Suppose κ1 = Elim[κ, u](τ ){�κ′}. Suppose we are given
a sequence of terms �A of the proper type so that κ1

�A is in Kind.
To show the invariance, we have to show that if κ1

�A �∗ κ2, then
CK
U (κ1

�A) = CK
U (κ2). We will reason by induction on CK

U (τ ) over
the order defined by I .

• If the term CK
U (τ ) can not be reduced to a term of the form

Co(i)�a, then it is minimal with respect to the order defined
by I . Then κ2 is necessarily of the form
Elim[κ′, u′](τ ′){ �κ′′} �A′ and we have that the interpretation
of both κ1

�A and κ2 is Can0(Kind).

• Suppose the term CK
U (τ ) can be reduced to a term of the

form Co(i)�a, but τ is not reduced to a term of the form
Ctor (i, I) �C. Then κ2 is again of the form
Elim[κ′′′, u′](τ ′){ �κ′′} �A′. By definition, we have that

B1 = CK
U (κ1

�A) = CK
U,�t:�a

(Φk,I,B′(κi, κ
′
i) (�t) �A)

B2 = CK
U (κ2) = CK

U,�t:�a
(Φk,I′,B′′( �κ′′′

i , �κ′′
i ) (�t) �A′)

where B′ = λY : I. Elim[κ, u](τ ){�κ′}, and B′′ = λY :

I ′. Elim[κ′′′, u′](τ ′){ �κ′′}. It is evident that B2 is a reduct of
B1, and therefore we need to prove that (B1, Kind, ∆,K,U)
is invariant.

This follows by an induction over the structure of κi and by
using the condition 2. The non-recursive cases follow di-
rectly. For the recursive case, we use lemma 53 to show that
B′ is applied to a smaller argument with respect to the order
defined by I .

• We are left with the case when τ reduces to a term of the form
Ctor (i, I) �C. In going from κ1

�A to κ2, we will now have a
ι reduction. The sequence of reductions is now

κ1
�A �∗ Elim[κ, u](Ctor (i, I) �A){�κ′}

�ι (Φk,I,κ′
i
(κi, B

′) ( �B)) �A
�∗ κ2

The first reduction does not change the interpretation since
we are reducing only a type. By lemma 54, the second does
not change the interpretation. Finally, as above, we can prove
that the result of the ι reduction is invariant over Kind.

�

D.3.16 Instantiation of contexts

Definition 66 Let ∆ be a well formed context. Let Θ be a con-
text and φ be a mapping from variables to terms such that ∀X /∈
∆, φ(X) = X.

We say that (Θ, φ) is an instantiation of ∆ if for all variables
X ∈ ∆, we have that Θ 
 φ(X) : φ(∆(X)).

Lemma 57 Let ∆ 
 A : B be a derivable judgment and (Θ, φ)
an instantiation of ∆. Then Θ 
 φ(A) : φ(B).

Proof By induction over the structure of A. �

Definition 67 (Adapted instantiation) We say that an instantia-
tion (Θ, φ) is adapted to a context ∆ if:

• for all t ∈ ∆, φ(t) ∈ C∅
Can0(Θ)(φ(∆(t)));

• for all k ∈ ∆, (φ(k), φ(∆(k)), Θ, ∅, Can0(Θ)) is invariant;

• for all z ∈ ∆, (φ(z),Kscm, Θ, ∅, Can0(Θ)) is invariant and
φ(z) is an arity.

Definition 68 Suppose ∆ 
 κ : u is a derivable judgment. We
say that all instantiations of (κ,u, ∆) are invariant if for all instan-
tiations (Θ, φ) adapted to ∆ and for all interpretations U adapted
to Θ, we have that (φ(κ), φ(u), Θ, ∅,U) is invariant.

D.3.17 Kind schema invariant on their domain

Definition 69 Let ∆ 
 u : Kscm be a derivable judgment and K
and U be a mapping and an interpretation adapted to ∆. We say
that (u, Kscm, ∆,K,U) is invariant:

• if u = Kind, then (u, Kscm, ∆,K,U) is invariant;

• if u = Πt : κ1. u1, then it is invariant if and only if
(κ1, Kind, ∆,K,U) is invariant and for all terms τ such that
∆ 
 τ : κ1 is derivable and CK

U (τ ) ∈ CK
U (κ1), we have that

([τ/t]u1, Kscm, ∆,K,U) is invariant;
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• if u = Πk : u1. u2, then it is invariant if and only if
(u1, Kscm, ∆,K,U) is invariant, and for all kinds κ such that
∆ 
 κ : u1 is derivable and (κ, u1, ∆,K,U) is invariant, we
have that ([κ/k]u2, Kscm, ∆,K,U) is invariant;

• if u = z, then it is invariant iff (K(z), Kscm, ∆,K,U) is
invariant.

Lemma 58 Let ∆ 
 κ : u and ∆ 
 u′ : Kscm be derivable
judgments. Let K and U be a mapping and an interpretation
adapted to ∆. Suppose u =βηι u′, and (u, Kscm, ∆,K,U) and
(u′, Kscm, ∆,K,U) are invariant. If (κ, u, ∆,K,U) is invariant,
then (κ, u′, ∆,K,U) is also invariant.

Proof The proof is by induction over the structure of u and u′.

• if u = u′ = Kind, then it is trivially true.

• if u = u′ = z, then again it is trivially true.

• if u = Πt : κ1. u1 and u′ = Πt : κ2. u2, then we have
that κ1 =βηι κ2 and u1 =βηι u2. By assumption, we
know that (κ1, Kind, ∆,K,U) and (κ2, Kind, ∆,K,U) are
invariant. This means that CK

U (κ1) = CK
U (κ2). Moreover,

∆ 
 τ : κ1 is true iff ∆ 
 τ : κ2 is true. Applying the
induction hypothesis now leads to the required result.

• if u = Πk :u1. u2 and u′ = Πk :u′
1. u

′
2, the proof is similar

to the previous case.

�

Definition 70 Suppose ∆ 
 u : Kscm is a derivable judgment.
We say that all instantiations of (u,Kscm, ∆) are invariant if for
all instantiations (Θ, φ) adapted to ∆ and for all interpretations U
adapted to Θ, we have that (φ(u), Kscm, Θ, ∅,U) is invariant.

D.3.18 Strong normalization of pure terms

Theorem 71 Let ∆ 
 τ : κ be a derivable judgment and K and
U be a mapping and an interpretation adapted to ∆. Then
CK
U (τ ) ∈ CK

U (κ).

Proof The proof is by induction over the length of the derivation.
The induction hypothesis are as follows:

• if ∆ 
 τ : κ and K and U be a mapping and an interpretation
adapted to ∆, then CK

U (τ ) ∈ CK
U (κ);

• if ∆ 
 κ : u, then all instantiations of (κ,u, ∆) are invariant;

• if ∆ 
 u : Kscm, then all instantiations of (u,Kscm, ∆) are
invariant;

type formation rules This paragraph deals with rules of the
form ∆ 
 τ : κ.

• abstractions – Follows directly from the induction hypothesis
and lemmas 43 and 44 and 45.

• var – Follows because the interpretation U is adapted to the
context ∆.

• weak elimination – Follows from lemma 47.

• constructor – Follows from lemma 48.

• weakening – Follows directly from the induction hypothe-
sis since the mapping and interpretation remain adapted for
a smaller context.

• conv – Follows from the recursion hypothesis and lemma 55.

• app – All three cases of app are proved similarly. We will
show only one case here.

– ∆ 
 τ [u′] : κ. Then we know that ∆ 
 τ : Πz :
Kscm. κ1 and ∆ 
 u′ : Kscm and [u′/z]κ1 = κ. By
the induction hypothesis

CK
U (τ ) ∈ ∩u1∈arity(u,Kind)CK,z:u1

U (κ1)

Suppose u′
1 = K(u′). Then we know that CK

U (τ ) ∈
CK,z:u′

1
U (κ1). By proposition 61 we know that CK

U (τ ) ∈
CK
U ([u′/z]κ1). But CK

U (τ [u′]) = CK
U (τ ).

kind formation rules This paragraph deals with rules of the
form ∆ 
 κ : u.

• product – All the product formation rules are proved in the
same way. We show only one case here.

– Consider the following formation rule

∆, z :Kscm 
 κ : Kind

∆ 
 Πz :Kscm. κ : Kind

We have to prove that for all instantiations (Θ, φ) we
have that (Πz :Kscm. φ(κ), Kind, Θ, ∅,U) is invariant.
This implies that we must prove that if κ � κ′, then
C∅
U(Πz : Kscm. φ(κ)) = C∅

U(Πz : Kscm. φ(κ′)). By
the induction hypothesis, for all instantiations (Θ, φ; z :
arity(u, Kind)) we have that

(φ; z :arity(u, Kind)(κ), Kind, Θ, ∅,U)

is invariant. This implies that if κ � κ′ then

C,z:arity(u,Kind)
U (κ) = C,z:arity(u,Kind)

U (κ′)

The required result follows from here.

• var – follows since the instantiation is adapted.

• conv – follows from lemma 58.

• application – Both of the applications are proved similarly
and follow directly from the induction hypothesis. We will
show only one case here.

– If ∆ 
 κ1 κ2 : [κ2/k]u, then given Θ, φ, and U ,
we must prove that (φ(κ1 κ2), φ([κ2/k]u), Θ, ∅,U) is
invariant. But by the induction hypothesis we know that
(φ(κ1), φ(Πk : u1. u), Θ, ∅,U) is invariant and ∆ 

κ2 : u1. By lemma 57 Θ 
 φ(κ2) : φ(u1). This leads
to the required result.

• ind – Suppose I = Ind(k : Kind){�κ}. Note that CK
U (I)

depends only on CK
U,k:S,A′:C,B′:Co(i)(ζk,I(κi, A

′, B′)) where
S ∈ ρ0(Kind) and C ∈ CR(I → Kind)K. By induction on
the structure of κi, we can show that this is invariant. This im-
plies that if κi � κ′

i then the interpretation remains the same.
If I � I ′, then for some i, κi � κ′

i. From here we can deduce
that if I � I ′, then CK

U (I) = CK
U (I ′).

• large elim – Follows from lemma 56.

• abstraction – Both of the abstractions are proved similarly. So
we will show only one of the cases.
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– ∆ 
 λt : κ1. κ2 : Πt : κ1. u. We must prove that
(φ(λt : κ1. κ2), φ(Πt : κ1. u), Θ, ∅,U) is invariant,
given Θ, φ, and U . This implies that if Θ 
 τ : φ(κ1)
and τ belongs to the appropriate candidate, then we
must have (φ(λt : κ1. κ2) τ, [τ/t]φ(u),Θ, ∅,U) is in-
variant. By proposition 65 we must prove that

([τ/t]φ(κ2), [τ/t]φ(u), Θ, ∅,U)

is invariant. But (φ, t : τ ) is an instantiation that is
adapted to (∆, t : κ1). Applying the induction hypoth-
esis now leads to the result.

schema formation rules This paragraph deals with rules of
the form ∆ 
 u : Kscm.

• u = Kind follows directly.

• u = z follows since the instantiation is adapted.

• u = Πk : u1. u2 Given Θ, φ, and U we have to prove that
(φ(Πk : u1. u2), Kscm, Θ, ∅,U) is invariant. By the induc-
tion hypothesis, we know that (φ(u1), Kscm, Θ, ∅,U) is in-
variant. The induction hypothesis also says that
([φ, k : κ](u2), Kscm, Θ, ∅,U) is invariant. We also know
that ∆ 
 κ : φ(u1) and (κ, φ(u1), Θ, ∅,U) is invariant since
the instantiation is adapted. This implies that
(φ([κ/k]u2), Kscm, Θ, ∅,U) is invariant.

• u = Πt :κ1. u1 the proof is very similar to the above case.

�

Corollary 72 If τ is a well formed type, |τ | is strongly normaliz-
ing.

Proof Since τ is well formed we have that ∆ 
 τ : κ. We
only need to construct an interpretation and a mapping. For the
interpretation, let U(t) = t for every type variable. Then we get
CK
U (τ ) =|τ |.

We can build the rest of U and K as:

• if ∆ = · then U(k) = Can0(Kind) and K(z) = Kind for all
variables k and z;

• if ∆ = ∆′, t : κ then return the U ′ and K′ associated with
∆′;

• if ∆ = ∆′, k : u then U = U ′, k : C and K = K′, where
C ∈ CR(u)K′ and K′ and U ′ are associated with ∆′;

• if ∆ = ∆′, z : Kscm then K = K′, z : Kind and U = U ′

where K′ and U ′ are associated with ∆′.

�

D.3.19 Normalization of terms

In this section, we use an encoding that maps all well formed terms
to types. This encoding preserves the number of reductions. The
idea is similar to that of Harper et al [20].

The encoding uses two constants. A is a kind and B is a type.
∗ is a variable that is never used, it is a wild-card.

A :Kind
B :Πk :Kind. k
∗ unused variable

The encoding for Kscm is as follows:

S(Kscm) = Kscm
U(Kscm) = Kind
K(Kscm) = A

The encoding for schemas is as follows:

U(Kind)= Kind
U(Πt :κ. u)= Πt :K(κ). U(u)

U(Πk :u1. u2)= Πk :U(u1). Πtk :K(u1). U(u2)
U(z)= z

K(Kind)=A
K(Πt :κ. u)= Πt :K(κ).K(u)

K(Πk :u1. u2)= Πk :U(u1). Πtk :K(u1). K(u2)
K(z)= kz

T (Kind)=B A
T (Πt :κ. u)=B[A → Πt :K(κ).A → A]

T (κ)(λt :K(κ). T (u))
T (Πk :u1. u2)=B[A → Πk :U(u1). Πtk :K(u1).A → A]

T (u1)(λk :U(u1). λtk :K(u1). T (u2))
T (z)= tz

The encoding for kinds is as follows:

K(k) = k
K(Πt :κ1. κ2) = Πt :K(κ1). K(κ2)

K(Πk :u. κ) = Πk :U(u).Πtk :K(u). K(κ)
K(Πz :Kscm. κ) = Πz :Kscm. Πkz :Kind. Πtz :A. K(κ)

K(λk :u. κ) = λk :U(u). λtk :K(u). K(κ)
K(λt :κ1. κ2) = λt :K(κ1). K(κ2)

K(κ τ )= K(κ) T (τ )
K(κ1 κ2) = K(κ1) K(κ2)T (κ2)

K(Ind(k :Kind){�κ}) = Ind(k :Kind){−−−→K(κ)}
K(Elim[κ, u](τ ){�κ′}) = Elim[K(κ), U(u)](T (τ )){−−−→K(κ′)}

T (k) = tk

T (Πt :κ1. κ2) =B[A → Πt :K(κ1).A → A]
T (κ1)(λt :K(κ1). T (κ2))

T (Πk :u. κ) =B[A → Πk :U(u).Πtk :K(u).A → A]
T (u)(λk :U(u). λtk :K(u). T (κ))

T (Πz :Kscm. κ) =
B[Πz :Kscm. Πkz :Kind. Πtz :A.A → A]

(λz :Kscm. λkz :Kind. λtz :A. T (κ))
T (λk :u. κ) =

λk :U(u). λtk :K(u). (λ∗ :A. T (κ))T (u)
T (λt :κ1. κ2) =λt :K(κ1). (λ∗ :A. T (κ2))T (κ1)

T (κ τ )=T (κ) T (τ )
T (κ1 κ2) =T (κ1)[K(κ2)]T (κ2)

T (Ind(k :Kind){�κ}) =
B[(Kind → A → (A → . . . → A) → A) → A]

(λk :Kind. λtk :A. λY : (A → . . . → A). (Y
−−−→
T (κi)))

T (Elim[κ, u](τ ){�κ′}) =
Elim[K(κ), (λ∗ :K(κ). K(u))](T (τ ))

{−−−−−−−−−−−−−−−−−−−−−−→(λ∗ :A. λ∗ :A. T (κ′
i))T (κ)T (u)}

The encoding for types is as follows:
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T (t)= t
T (λt :κ. τ )= λt :K(κ). (λ∗ :A. T (τ ))T (κ)

T (τ1 τ2)= T (τ1)T (τ2)
T (λk :u. τ )= λk :U(u). λtk :K(u). (λ∗ :A. T (τ ))T (u)

T (τ [κ])= T (τ )[K(κ)]T (κ)
T (λz :Kscm. τ )= λz :Kscm. λkz :Kind. λtz :A. T (τ )

T (τ [u])= T (τ )[U(u)][K(u)] T (u)
T (Ctor (i, κ))= (λ∗ :A. Ctor (i, K(κ)))T (κ)

T (Elim[κ, κ1](τ ){�τ}) =

Elim[K(κ), K(κ1)](T (τ )){−−−−−−−−−−−−−−−−−−−−−−→(λ∗ :A. λ∗ :A. T (τi))T (κ)T (κ1)}

We have to define a similar transformation on contexts:

Γ(·) = ·,A :Kind,B :Πk :Kind. k
Γ(∆, t :κ) = Γ(∆), t :K(κ)
Γ(∆, k :u) = Γ(∆), k :U(u), tk :K(u)

Γ(∆, z :Kscm) = Γ(∆), z :Kscm, kz :Kind, tz :A

D.3.20 Coding and reduction

In this section we state lemmas that prove that the coding preserves
the number of reductions. We omit the proofs since they follow by
a straightforward induction over the structure of terms.

Lemma 59 For all well typed terms A, if A �β A′, then we have

T (A) �
1+
β T (A′)

K(A) �∗
β K(A′)

U(A) �∗
β U(A′)

Moreover, if ‖A‖ �βA1, then there exists A2 such that
‖A2 ‖= A1 and |T (A) | �1+ |T (A2) |.

Lemma 60 For all well typed terms A, if A �ι A′, then we have

T (A) �1+
ι T (A′)

K(A) �∗
ι K(A′)

U(A) �∗
ι U(A′)

Moreover, if ‖A‖ �ι0A1, then there exists A2 such that
‖A2 ‖= A1 and |T (A) | �1+ |T (A2) |.

Lemma 61 For all well typed terms A, if A �η A′, then we have

T (A) �1+
βη T (A′)

K(A) �∗
βη K(A′)

U(A) �∗
βη U(A′)

D.3.21 Coding and typing

In this section we show that the coding of a well typed term is also
well typed. For this we need to prove that the coding preserves
βηι equality. This requires a confluent calculus. Therefore, we use
the unmarked terms from Section D.2.1. We extend the coding to
unmarked terms by defining:

U( ) =
K( ) =
T ( ) =

It is now easy to prove by a straightforward induction on the
structure of terms that the following lemma holds:

Lemma 62 Suppose ∆ 
 A : B and B �= Ext. Then we have
that

Γ(∆) 
 T (A) : K(B) and Γ(∆) 
 K(B) : Kind
Γ(∆) 
 K(A) : U(B) and Γ(∆) 
 U(B) : Kscm if defined
Γ(∆) 
 U(A) : S(B) and Γ(∆) 
 S(B) : Ext if defined

Corollary 73 Suppose ∆ 
 A : B and B �= Ext. Then |T (A) |
is strongly normalizing.

D.3.22 Normalization of unmarked terms

Lemma 63 For all well typed terms A, we have that ‖A‖ is
strongly normalizing for βηι0 reduction.

Proof Since there can not be an infinite sequence of η reductions
and we can delay η reductions, we need to prove the normalization
for βι0 reductions only. Suppose ‖ A ‖ is not normalizing and
there exists a sequence A1 . . . Ai . . . such that Ai �βι0 Ai+1

and A0 =‖ A ‖. By lemma 59 and 60, we get that there exists a
sequence of terms A′

1 . . . A′
i . . . such that ‖A′

i ‖= Ai and |T (A′
i) |

�
1+
βι |T (A′

i+1) | and also |T (A) | �
1+
βι |T (A′

1) |. This implies
that | T (A) | is not strongly normalizing which is a contradiction.
�

D.3.23 Normalization of all terms

Lemma 64 Suppose A �βι B. Then ‖T (A)‖ �1+
βι ‖T (B)‖.

Proof By induction over the derivation of A �βι B. Note that
in taking a term A to T (A), all the terms C that appear as annota-
tions at lambda abstractions are duplicated with the corresponding
T (C). �

Lemma 65 Suppose ∆ 
 A : B. Then A is strongly
normalizing.

Proof We only have to prove normalization for βι reduction. By
lemma 64, if A is not normalizing, then ‖ T (A) ‖ is also not nor-
malizing. But by lemma 62 we have that Γ(∆) 
 T (A) : K(B)
which implies ( lemma 63) that ‖ T (A) ‖ is strongly normalizing.
�

Theorem 74 (Strong normalization) All well typed terms are
strongly normalizing.

Proof Follows from lemma 65. �

D.4 Church-Rosser Property

The proof is structured as follows:

• We first prove that a well typed term A in βι normal form has
the same η reductions as ‖A‖.

• From here we know that if A and A′ are in normal form, then
‖A‖ and ‖A′ ‖ are equal. We then show that the annotations
in the λ-abstractions are equal.

D.4.1 Structure of normal forms

Lemma 66 All well typed βι normal terms N have the following
form:

1. λX :N1. N2.

2. ΠX :N1. N2.
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3. s ∈ {Kind, Kscm, Ext}.

4. X �N .

5. Ind(X :Kind){ �N}.

6. Ctor (i, N) �N where N is of the form 5.

7. Elim[N, N2](N1){ �N} �N ′ where N is of the form 5 and N1

is of the form 4.

Lemma 67 Let ∆, X :C, ∆′ 
 A : B be a judgment and A in βι
normal form. If X does not occur in
FV (B) ∪ FV (∆′) ∪ FV (‖A‖), then X /∈ FV (A).

Proof The proof is by induction over the size of A. We use
lemma 66 to enumerate the different cases.

• The case where A is a variable or a sort is immediate.

• Suppose ∆, X : C, ∆′ 
 ΠY : N1. N2 : B. It follows
directly from the induction hypothesis that X does not occur
in N1 and N2.

• Suppose ∆, X : C, ∆′ 
 λY : N1. N2 : B and B = ΠY :
N1. A

′. We know that ∆, X :C, ∆′ 
 N1 : s and therefore
X /∈ FV (N1). Also B�∗ΠY :N ′

1. A
′′ and ∆, X :C, ∆′, Y :

N1 
 N2 : A′′. Since X /∈ FV (A′′) ∪ FV (N1), we can
apply the induction hypothesis and therefore X /∈ FV (N2).

• Suppose ∆, X :C, ∆′ 
 Y �N : B. This implies that ∆, X :
C, ∆′ 
 Y : ΠZ : A1. A2 and ∆, X : C, ∆′ 
 N1 :
A1. From lemma 23 and 13 we have that ∆, X : C, ∆′ 

Y : ΠZ : A3. A4 where X does not occur free in A3 and
A3 =βηι A1 and A4 =βηι A2. From here we can show that
∆, X : C, ∆′ 
 N1 : A3. We can now apply the inductive
hypothesis to show that X /∈ FV (N1). Iterating in this way,
we can show that X /∈ FV (Ni).

• Suppose ∆, X : C, ∆′ 
 Ind(Y : Kind){ �N} : B. Follows
directly from the induction hypothesis that X /∈ FV (Ni).

• Suppose ∆, X :C, ∆′ 
 Ctor (i, I) �N : B. Follows directly
from the induction hypothesis that X /∈ FV (I). We can then
show as above that X /∈ FV (Ni).

• Suppose ∆, X : C, ∆′ 
 Elim[N, N1](N2){ �N} �N ′ : B.
Since ∆, X : C, ∆′ 
 N : Kind, it follows from the induc-
tion hypothesis that X /∈ FV (N). Similarly, since ∆, X :
C, ∆′ 
 N1 : Kscm, or ∆, X :C, ∆′ 
 N1 : N → Kind, it
follows that X /∈ FV (N1). Similarly we can prove directly
from the induction hypothesis that X /∈ FV (N2)∪FV ( �N).
Finally, as above we can prove that X /∈ FV ( �N ′). �

Corollary 75 Let ∆ 
 A : B. If A is in normal form, then ‖A‖
is also in normal form.

Proof We must show that ‖ A ‖ does not contain any η re-
ductions. The interesting case is when A is of the form λX :
N1. N2 X. We want to show that if X /∈ FV (‖ N2 ‖), then
X /∈ FV (N2). Since it is well typed we know that ∆ 
 λX :
N1. N2 X : ΠX : N1. C. We have that X /∈ FV (ΠX : N1. C).
From here we get that ∆, X : N1 
 N2 : ΠX : N1. C. This
implies that if X /∈ FV (‖N2 ‖), then X /∈ FV (N2). �

D.4.2 Church-Rosser

Theorem 76 (Church-Rosser) Let ∆ 
 A : B and ∆ 
 A′ : B
be two derivable judgments. If A =βηι A′, and if A and A′ are in
normal form, then A = A′.

Proof We know that ‖A ‖ and ‖A′ ‖ are in normal form. Since
the unmarked terms are confluent we have that ‖A ‖=‖A′ ‖. The
proof is by induction over the structures of A and A′.

• The case when A = A′ = s or A = A′ = a variable is
immediate.

• Suppose A = λX :N1. N2 and A′ = λX :N ′
1. N

′
2. We know

that B =βηι ΠX :N1. A3 =βηι ΠX : N ′
1. A

′
3. This implies

that N1 =βηι N ′
1 which implies that both of them have the

same sort. This implies that N1 = N ′
1. We can now apply the

induction hypothesis to N2 and N ′
2 to get that N2 = N ′

2.

• Suppose A = ΠX :N1. N2 and A′ = ΠX :N ′
1. N

′
2. Follows

directly from the induction hypothesis.

• Suppose A = X �N and A′ = X �N ′. We know that in the
context ∆, the variable X has the type Π�Y : �B. A3. Therefore
each of the Ni and N ′

i have the same type. Applying the
induction hypothesis to each of them leads to the required
result.

• Suppose A = Ind(X : Kind){ �N} and A′ = Ind(X :

Kind){ �N ′}. By the typing rules we know that ∆, X :Kind 

Ni : Kind and ∆, X : Kind 
 N ′

i : Kind. Applying the
induction hypothesis leads to Ni = N ′

i .

• Suppose A = Ctor (i, N) �N and A′ = Ctor (i, N ′) �N ′. We
know that both N and N′ have type Kind. The induction
hypothesis directly leads to N = N′. We can then show as
above that Ni = N ′

i .

• Suppose A = Elim[N, N1](N2){ �N} �N0 and
A′ = Elim[N ′, N ′

1](N
′
2){ �N ′} �N ′

0. Since N and N ′ are
both of type Kind, it follows that N = N ′. From here we get
that N2 = N ′

2. Since both N1 and N ′
1 have the type Kscm or

have the type N → Kind, it follows that N1 = N ′
1. From this

we can show that the Ni and N ′
i are equal. Finally as above,

we can show that the N0i and the N ′
0i are equal. �

Theorem 77 (Confluence) Let ∆ 
 A : B and ∆ 
 A′ : B be
two judgments. If A =βηι A′, then A and A′ have a common
reduct – there exists a term C such that A �∗ C and A′ �∗ C.

Proof We know that both A and A′ reduce to normal forms A1

and A′
1. Due to subject reduction, both A1 and A′

1 have the same
type B. By the previous lemma A1 = A′

1. �

D.5 Consistency

Theorem 78 (Consistency of the logic) There exists no term A
for which · 
 A : ΠX :Kind. X.

Proof Suppose there exists a term A for which · 
 A : ΠX :
Kind. X. By theorem 74, there exists a normal form B for A. By
the subject reduction · 
 B : ΠX : Kind. X. We can show now
that this leads to a contradiction by case analysis of the possible
normal forms for the types in the calculus. �
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