
Yale University
Department of Computer Science

VeriML: Typed Computation of Logical Terms inside a
Language with Effects

Antonis Stampoulis Zhong Shao

YALEU/DCS/TR-1430
July 2010

VeriML: Typed Computation of Logical Terms inside a
Language with Effects∗

Antonis Stampoulis † Zhong Shao ‡

Abstract

Modern proof assistants such as Coq and Isabelle provide high degrees of expressiveness and assur-
ance because they support formal reasoning in higher-order logic and supply explicit machine-checkable
proof objects. Unfortunately, large scale proof development in these proof assistants is still an extremely
difficult and time-consuming task. One major weakness of these proof assistants is the lack of a single
language where users can develop complex tactics and decision procedures using a rich programming
model and in a typeful manner. This limits the scalability of the proof development process, as users
avoid developing domain-specific tactics and decision procedures.

In this paper, we present VeriML—a novel language design that couples a type-safe effectful compu-
tational language with first-class support for manipulating logical terms such as propositions and proofs.
The main idea behind our design is to integrate a rich logical framework—similar to the one supported
by Coq—inside a computational language inspired by ML. The language design is such that the added
features are orthogonal to the rest of the computational language, and also do not require significant
additions to the logic language, so soundness is guaranteed. We have built a prototype implementation
of VeriML including both its type-checker and an interpreter. We demonstrate the effectiveness of our
design by showing a number of type-safe tactics and decision procedures written in VeriML.

1 Introduction

In recent years, there has been a growing interest in formal verification of substantial software code bases.
Two of the most significant examples of this trend is the verification of a full optimizing compiler for a
subset of the C language in the CompCert project Leroy [2009], as well as the verification of the practical
operating system microkernel seL4 Klein et al. [2009]. Both of these efforts use powerful proof assistants
such as Coq Barras et al. [2010] and Isabelle Nipkow et al. [2002] which support higher-order logic with
explicit proof objects. Other verification projects have opted to use first-order automated theorem provers;
one such example is the certified garbage collector by Hawblitzel and Petrank [2009].

Still, the actual process of software verification requires significant effort, as clearly evidenced by the
above developments. We believe that a large part of this effort could be reduced, if the underlying verification
frameworks had better support for extending their automation facilities. During a large proof development,
a number of user-defined datatypes are used; being able to define domain-specific decision procedures (for
these) can significantly cut back on the manual proof effort required. In other cases, different program logics

∗This work is supported in part by NSF grants CCF-0811665, CNS-0915888, and CNS-0910670.
†Department of Computer Science, Yale University, CT
‡Department of Computer Science, Yale University, CT

1

might need to be defined to reason about different parts of the software being verified, as is argued by Feng
et al. [2008] for the case of operating system kernels. In such cases, developing automated provers tailored
to these logics would be very desirable.

We thus believe that in order to be truly extensible, a proof development framework should support the
following features:

• Use of a well-established logic with well-understood metatheory, that also provides explicit proof
objects. This way, the trusted computing base of the verification process is kept at a minimum. The
high assurance offered by developments such as CompCert and seL4 owes largely to this characteristic
of the proof assistants they are developed on.

• Being able to programmatically reflect on logical terms (e.g., propositions) so that we can write a large
number of procedures (e.g., tactics, decision procedures, and automated provers) tailored to solving
different proof obligations. Facilities such as LTac Delahaye [2000], and their use in developments
like Chlipala et al. [2009], demonstrate the benefits of this feature.

• An unrestricted programming model for developing these procedures, that permits the use of features
such as non-termination and mutable references. The reason for this is that even simple decision pro-
cedures might make essential use of imperative data structures and might have complex termination
arguments. One such example are decision procedures for the theory of equality with uninterpreted
functions Bradley and Manna [2007]. By enabling an unrestricted programming model, porting such
procedures does not require significant re-engineering.

• At the same time, being able to provide certain static guarantees and rich type information to the
programmer. Terms of a formal logic come with rich type information: proof objects have “types”
representing the propositions that they prove, and propositions themselves are deemed to be valid
according to some typing rules. By retaining this information when programmatically manipulating
logical terms, we can specify the behavior of the associated code. For example, we could statically
specify that a tactic transforms a propositional goal into an equivalent one, by requiring a proof object
witnessing this equivalence. Another guarantee we would like is the correct handling of the binding
constructs that logical terms include (e.g. quantification in propositions), so that this common source
of errors is statically avoided.

A framework that combines these features is not currently available. As a result, existing proof assistants
must rely on a mix of languages (with incompatible type systems) to achieve a certain degree of extensibility.
In this paper, we present VeriML—a novel language design that aims to support all these features and
provide a truly extensible and modular proof development framework. Our paper makes the following new
contributions:

• As far as we know, VeriML is the first proof framework that successfully combines a type-safe ef-
fectful computational language with first-class support for manipulating rich logical terms such as
propositions, proofs, and inductive definitions.

• An important feature of VeriML is the strong separation of roles played by its underlying logic lan-
guage and computational language. The logic language, λHOLind, supports higher-order logic with
inductive definitions (as in Coq), so it can both serve as a rich meta logic and be used to define
new object logics/languages and reason about their meta theory. All proof objects in VeriML can

2

ML + λHOLind

tactics,
decision procedures,

proofs

ML

HOL tactics,
decision procedures

proofs

VeriML traditional LCF approach

ML

CIC tactics,
decision procedures

LTac tactics, reflection-based d.p., proofs

Coq approach

LTac

LF + Twelf/Beluga/Delphin

potential LF-based approach?

encoding of λHOLind

inside LF?
proofs, tactics,

decision procedures?

Figure 1: Schematic comparison of the structure of related approaches

static
guarantees

non-termination

mutable references

logic with
P.P.

Traditional LCF no no yes (maybe)
LTac no yes no yes
Reflection-based yes no no yes
Beluga, Delphin yes yes no no
VeriML yes yes yes yes

Table 1: Comparison of different approaches based on features

be represented using λHOLind alone. The computational language is used only for general-purpose
programming, including typed manipulation of logical terms.

This is in sharp contrast to recent work such as Beluga Pientka and Dunfield [2008] and Delphin Pos-
wolsky and Schürmann [2008] where meta-logical proofs are represented using their computational
languages. Maintaining soundness of such proofs when adding imperative features to these languages
would be non-trivial, and would put additional burden (e.g. effect annotations) on general-purpose
programming.

• We present the complete development of the type system and operational semantics for VeriML, as
well as their associated meta-theory . We also show how to adapt contextual modal type theory to
work for a rich meta-logic such as λHOLind.

• We have built a prototype implementation of VeriML and used it to write a number of type-safe tactics
and decision procedures. We use these examples to demonstrate the applicability of our approach and
show why it is important to support type-safe handling of binders, general recursion, and imperative
features such as arrays and hash tables in VeriML.

The rest of the paper is organized as follows. We first give a high-level overview of VeriML (Sec 2) and
then use examples to explain the basic design (Sec 3); we then present the logic language, the computational
language, and their meta-theory (Sec 4-5); finally, we describe the implementation and discuss related work.

2 Overview of the language design

We will start off by presenting a high-level overview of our framework design. The first choice we have
to make is the formal logic that we will use to base our framework. We opt to use a higher-order logic

3

with inductive definitions and explicit proof objects. This gives us a high degree of expressivity, enough for
software verification as evidenced by the aforementioned large-scale proof developments, while at the same
time providing a high level of assurance. Furthermore, we allow a notion of computation inside our logic, by
adding support for defining and evaluating total recursive functions. In this way, logical arguments that are
based solely on such computation need not be explicitly witnessed in proof objects, significantly reducing
their sizes. This notion of computation must of course be terminating, in order to maintain soundness.
Because of this characteristic, our logic satisfies what we refer to as the Poincaré Principle (abbreviated as
P.P.), following the definition in Barendregt and Geuvers [1999]. Last, we choose to omit certain features
like dependent types from our logic, in order to keep its metatheory straightforward. We will see more
details about this logic in Section 4. We refer to propositions, inhabitants of inductive types, proof objects,
and other terms of this logic as logical terms.

Developing proofs directly inside this logic can be very tedious due to the large amount of detail re-
quired; because of this, proof development frameworks provide a set of computational functions (tactics and
decision procedures) that produce parts of proofs, so that the proof burden is considerably lessened. The
problem that we are interested in is the design of a computational language, so that such functions can be
easily and effectively written by the user for the domains they are interested in, leading to a scalable and
modular proof development style.

As we have laid out in the introduction, we would like a number of features out of such a computational
language: being able to programmatically pattern match on propositions, have a general-purpose program-
ming model available, and provide certain static guarantees to the programmer.

Let us briefly consider how computational approaches in existing proof assistants fare towards those
points. A schematic comparison is given in Figure 1, while Table 1 compares existing approaches based
on these points. A standard and widely available approach Slind and Norrish [2008], Harrison [1996],
Nipkow et al. [2002], Barras et al. [2010] is to write user-defined tactics and decision procedures inside
the implementation language of the proof assistant, which is in most cases a member of the ML family of
languages. This gives to the user access to a rich programming model, with non-terminating recursion and
imperative data structures. Still, the user has to deal with the implementation details of the framework, and
no static guarantees are given whatsoever. All logical terms are essentially identified at the ML type level,
leading to an untyped programming style when programming with them.

Another approach is the use of LTac Delahaye [2000] in the Coq proof assistant: a specialized tactic
language that allows pattern matching on propositions, backtracking proof search and general recursion.
This language too does not provide any static guarantees, and has occasional issues when dealing with
binders and variables. Also, the programming model supported is relatively poor, without support for rich
data structures or imperativity.

An interesting approach is the technique of proof-by-reflection Boutin [1997], where the computational
notion inside the logic itself is used in order to create certified decision procedures. While this approach
gives very strong static guarantees (total correctness), it does not support non-termination or imperative data
structures, limiting the kind of decision procedures we can write. Also, the use of a mix of languages is
required in this technique.

In order to combine the benefits of these approaches, we propose a new language design, that couples
a general-purpose programming language like ML with first-class support for our logical framework. Fur-
thermore we integrate the type system of the logic inside the type system of the computational language,
leading to a dependently typed system. Logical term literals will thus retain the type information that can be
statically determined for them. Moreover, a pattern matching construct for logical terms is explicitly added,

4

which is dependently typed too; the type of each branch depends on the specific pattern being matched. We
use dependent types only as a way to provide lightweight static guarantees. For example, we can require
that a function receives a proposition and returns a proof object for that proposition, ruling out the possi-
bility of returning an “invalid” proof object because of programmer error. Our approach therefore differs
from other dependently-typed frameworks like Agda Norell [2007] or HTT Nanevski et al. [2006], as we are
not necessarily interested in reasoning about the correctness of code written in our computational language.
Also, programming in such systems includes an aspect that amounts to proof development, as evidenced
e.g. in the Russell framework Sozeau [2007]. We are interested in how proof development itself can be
automated, so our approach is orthogonal to such systems. Our notion of pattern matching on propositions
would amount to typecase-like constructs in these languages, which in general are not provided.

Dependently-typed frameworks for computing with LF terms like Beluga Pientka and Dunfield [2008]
and Delphine Poswolsky and Schürmann [2008], are not ideal for our purposes, because of the lack of
imperative features and the fact that encoding a logic like the one we describe inside LF is difficult and has
not been demonstrated yet in practice. The reason for this is exactly our logic’s support for the Poincaré
principle. Still, we draw inspiration from such frameworks.

In order to type-check logical terms, and make sure that binding is handled correctly, we need information
about the free variables context that they depend on. Not all logical terms manipulated during evaluation of
a program written in our language need to refer to the same context; for example, when pattern matching
a quantified proposition like ∀x : Nat.P, the variable P might refer to an extra variable compared to the
original proposition that was being matched. Therefore, in order to guarantee proper scoping of variables
used inside the logical terms, the type system of our computational language tracks the free variable context
of the logical terms that are manipulated. This is done by using the main idea of contextual modal type theory
Nanevski et al. [2008], Pientka [2008]. We introduce a notion of contextual logical terms, that is, logical
terms that come packaged together with the free variables context they depend on. Our computational
language manipulates such terms, instead of normal logical terms, which would also need some external
information about their context. A notion of context polymorphism will also need to be introduced, in order
to write code that is generic with respect to variable contexts.

3 Programming Examples

In this section we will present a number of programming examples in our computational language in order
to demonstrate its use as well as motivate some of our design choices, before presenting the full technical
details in later sections. Each example demonstrates one particular feature of the computational language.
The examples we will present are successive versions of a tactic that attempts to automatically derive intu-
itionistic proofs of propositional tautologies (similar to Coq’s tauto tactic Barras et al. [2010]) and a decision
procedure for the theory of equality, along with the data structures that they use. Note that we use a some-
what informal style here for presentation purposes. Full details for these examples can be found as part of
our implementation at http://flint.cs.yale.edu/publications/veriml.html.

3.1 Pattern matching

We will start with the automatic tautology proving tactic which is structured as follows: given a proposition,
it will perform pattern matching in order to deconstruct it, and attempt to recursively prove the included
subformulas; when this is possible, it will return a proof object of the given proposition. Some preliminary

5

code for such a function follows, which handles only logical conjunction and disjunction, and the True
proposition as a base case. Note that we use a monadic do notation in the style of Haskell for the failure
monad (computation with the ML option type), and we use the syntax e1||e2 where both expressions are of
option type in order to choose the second expression when the first one fails.

We use the “holcase · of · · ·” construct to perform pattern matching on a logical term. Also, we use the
notation 〈·〉 to denote the lifting of a logical term into a computational language term. Under the hood, this
is an existential package which packages a logical term with the unit value. Here we have used it so that
our function might return proof objects of the relevant propositions. We have not written out the details of
the proof objects themselves to avoid introducing unnecessary technical details at this point, but they are
straightforward to arrive at.

tauto P = holcase P of
P1∧P2 7→ do pf1← tauto P1;

pf2← tauto P2;
〈· · · proof of P1∧P2 · · · 〉

| P1∨P2 7→ (do pf1← tauto P1;
〈· · · proof of P1∨P2 · · · 〉) ||

(do pf2← tauto P2;
〈· · · proof of P1∨P2 · · · 〉)

| True 7→ Some 〈· · · proof of True · · · 〉
| P′ 7→ None

We assign a dependent type to this function, requiring that the proof objects returned by the function prove
the proposition that is given as an argument. This is done by having the pattern matching be dependently
typed too; we will see the details of how this is achieved after we describe our type system. We use the
notation LT(·) to denote lifting a logical term into the level of computational types; thus the function’s type
will be:

ΠP : Prop.option LT(P)

3.2 Handling binders and free variables

Next we want to handle universally quantified propositions. Our procedure needs to go below the quantifier,
and attempt to prove the body of the proposition; it will succeed if this can be done parametrically with re-
gards to the new variable. In this case, the procedure we have described so far will need to be run recursively
on a proposition with a new free variable (the body of the quantifier). To avoid capture of variables, we need
to keep track of the free variables used so far in the proposition; we do this by having the function also take
the free variables context of the proposition as an argument. Also, we annotate logical terms with the free
variables context they refer to. Thus we will be handling contextual terms in our computational language,
i.e., logical terms packaged with the free variables context they refer to. We use φ to range over contexts
(their kind is abbreviated as ctx), and the notation [φ]Prop to denote propositions living in a context φ; a
similar notation is used for other logical terms. The new type of our function will thus be:

Πφ : ctx.ΠP : [φ]Prop.option LT([φ]P)

6

The new code for the function will look like the following:

tauto φ P = holcase P of
P1∧P2 7→ do pf1← tauto φ P1;

pf2← tauto φ P2;
〈· · · proof of P1∧P2 · · · 〉

| ∀x : A.P 7→ do pf← tauto (φ, x : A) P;
〈· · · proof of ∀x : A.P · · · 〉

| · · ·

Here the proof object pf returned by the recursive call on the body of the quantifier will depend on an extra
free variable; this dependence is to be discharged inside the proof object for ∀x : A.P.

Let us now consider the case of handling a propositional implication like P1→ P2. In this case we would
like to keep information about P1 being a hypothesis, so as to use it as a fact if it is later encountered inside
P2 (e.g. to prove a tautology like P→ P). The way we can encode this in our language is to have our tauto
procedure carry an extra list of hypotheses. The default case of pattern matching can be changed so that
this list is searched instead of returning None as we did above. Each element in the hypothesis list should
carry a proof object of the hypothesis too, so that we can return it if the hypothesis matches the goal. Thus
each element of the hypothesis list must be an existential package, bundling together the proposition and the
proof object of each hypothesis:

hyplist = λφ : ctx.list (ΣH : [φ]Prop.LT([φ]H))

The type list is the ML list type; we assume that the standard map and fold left functions are available for it.

For this data structure, we define the function hyplistWeaken which lifts a hypotheses list from one context
to an extended one; and the function hyplistFind which given a proposition P and a hypotheses list, goes
through the list trying to find whether the proposition P is included, returning the associated proof object if
it is. For hyplistWeaken we only give its desired type; we will see its full definition in Section 5, after we
have introduced some details about the logic and the computational language.

hyplistWeaken : Πφ : ctx.ΠA : [φ]Prop.hyplist φ→ hyplist (φ, x : A)

hypMatch : Πφ : ctx.ΠP : [φ]Prop.(ΣP′ : [φ]Prop.LT([φ]P′))→
option LT([φ]P)

hypMatch φ P hyp = let 〈P′, pf’〉= hyp in
holcase P of

P′ 7→ Some pf’
| 7→ None

hyplistFind : Πφ : ctx.ΠP : [φ]Prop.hyplist φ→ option LT([φ]P)
hyplistFind φ P hl =

fold left (λres.λhyp.res || hypMatch P hyp) None hl

Note that we use the notation 〈·, ·〉 as the introduction form for existential packages, and let 〈·, ·〉= · in · · ·
as the elimination form.

The tauto tactic should itself be modified as follows. When trying to prove P1→ P2, we want to add P1
as a hypothesis to the current hypotheses list hl. In order to provide a proof object for this hypothesis, we

7

introduce a new free variable pf1 representing the proof of P1 and try to prove P2 recursively in this extended
context using the extended hypotheses list. Note that we need to lift all terms in the hypotheses list to the
new context before being able to use it; this is what hyplistWeaken is used for. The proof object returned
for P2 might mention the new free variable pf1. This extra dependence is discharged using the implication
introduction axiom of the underlying logic, yielding a proof of P1→ P2. Details are shown below.

tauto : Πφ : ctx.ΠP : [φ]Prop.hyplist φ→ option LT([φ]P)
tauto φ P hl = holcase P of

...
| P1→ P2 7→ let hl’ = hyplistWeaken φ P1 hl in

let hl” = cons 〈P1, 〈[φ, pf1 : P1]pf1〉〉 hl’ in
do x← tauto (φ, pf1 : P1) P2 hl”;
〈· · · proof of P1→ P2 · · · 〉

| 7→ hyplistFind φ P hl

3.3 General recursion

We have extended this procedure in order to deconstruct the hypothesis before entering it in the hypothesis
list (e.g. entering two different hypotheses for P1∧P2 instead of just one, etc.), but this extension does not
give us any new insights with respect to the use of our language so we do not show it here.

A more interesting modification we have done is to extend the procedure that searches the hypothesis list
for the current goal, so that when trying to prove the goal G, a hypothesis like H ′→G can be used, making H ′

a new goal. This is easy to achieve: we can have the hyplistFind procedure used above be mutually recursive
with tauto, and have it pattern-match on the hypotheses, calling tauto recursively for the newly generated
goals. Still, we need to be careful in order to avoid recursive cycles. A naive implementation would be
thrown into an endless loop if a proof for a proposition like (A→ B)→ (B→ A)→ A was attempted.

The way to solve this is to have the two procedures maintain a list of “already visited” goals, so that we
avoid entering a cycle. Using the techniques we have seen so far, this is easy to encode in our language.
This extension complicates the termination argument for our tactic substantially, but since we are working
in a computational language allowing non-termination, we do not need to formalize this argument. This is
a point of departure compared to an implementation of this tactic based on proof-by-reflection, e.g. similar
to what is described in Chlipala [2008]. In that case, the most essential parts of the code we are describing
would be written inside the computational language embedded inside the logic, and as such would need to
be provably terminating. The complicated termination argument required would make the effort required
for this extension substantial. Compared to programming a similar tactic in a language like ML (following
the traditional LCF approach), in our implementation the partial correctness of the tactic is established
statically. This is something that would otherwise be only achievable by using a proof-by-reflection based
implementation.

8

3.4 Imperative features

The second example that we will consider is a decision procedure that handles the theory of equality, one of
the basic theories that SMT solvers support. This is the theory generated from the axioms:

∀x.x = x
∀x, y.x = y→ y = x
∀x, y, z.x = y→ y = z→ x = z

In a logic like the one we are using, the standard definition of equality includes a single constructor for the
reflexivity axiom; the other axioms above can then be proved as theorems using inductive elimination. We
will see how this is done in the next section.

Usually this theory is extended with the axiom:

∀x, y.x = y→ f x = f y

which yields the theory of equality with uninterpreted functions (EUF). We have implemented this extension
but we will not consider it here because it does not add any new insights. To simplify our presentation, we
will also assume that all terms taking part in equations are of a fixed type A.

We want to create a decision procedure that gets a list of equations as hypotheses, and then prove whether
two terms are equal or not, according to the above axioms and based on the given equations. The standard
way to write such a decision procedure is to use a union-find data structure to compute the equivalence
classes of terms, based on the given equations. We will use a simple algorithm, described in Bradley and
Manna [2007], which still requires imperative features in order to be implemented efficiently.

Terms are assigned nodes in a tree-like data structure, which gets usually implemented as an array. Each
equivalence class has one representative; each node representing a term has a pointer to a parent term, which
is another member of its equivalence class; if a term’s node points to itself, then it is the representative of
its class. We can thus find the representative of the equivalence class where a term belongs by successively
following pointers, and we can merge two equivalence classes by making the representative of one class
point to the representative of the other.

We want to stay as close as possible to this algorithm, yet have our procedure yield proof objects for the
claimed equations. We choose to encode the union-find data structure as a hash table; this table will map
each term into a (mutable) value representing its parent term. Since we also want to yield proofs, we need to
also store information on how the two terms are equal. We can encode such a hash table using the following
type (assuming that terms inhabit a context φ):

eqhash = array (ΣX : [φ]A.ΣX ′ : [φ]A.LT([φ]X = X ′))

We can read the type of elements in the array as key-value pairs, where the key is the first term of type A,
and the value is the existential package of its parent along with an appropriately typed proof object.

Implementing such a hash-table structure is straightforward, provided that there exists an appropriate
construct in our computational language to compute a hash value for a logical term. We can have dependent
types for the get/set functions as follows:

eqhashGet : ΠX : [φ]A.eqhash→ option (ΣX ′ : [φ]A.LT([φ]X = X ′))
eqhashSet : ΠX : [φ]A.ΠX ′ : [φ]A.Πpf : [φ]X = X ′.eqhash→ unit

9

The find operation for the union-find data structure can now be simply implemented using the following
code. Given a term, we need to return the representative of its equivalence class, along with a proof of
equality of the two terms. We look up a given term in the hash table, and keep following links to parents
until we end up in a term that links to itself, building up the equality proof as we go; if the term does not
exist in the hash table, we simply add it.

find : ΠX : ([φ]A).eqhash→ ΣX ′ : ([φ]A).LT([φ]X = X ′)
find X h =

(do x← eqhashGet X h;
let 〈X ′, pf :: X = X ′〉= x in
holcase X of

X ′ 7→ 〈X ′, pf〉
| 7→ let 〈X ′′, pf’ :: X ′ = X ′′〉= find X ′ h in

〈X ′′, 〈· · · proof of X = X ′′ · · · 〉〉)
|| (let self = 〈X , · · · proof of X = X · · · 〉 in

(eqhashSet X self); self)

The union operation is given two terms along with a proof that they are equal, and updates the hash-table
accordingly: it uses find to get the representatives of the two terms, and if they do not match, it updates the
one representative to point to the other.

union : ΠX : [φ]A.ΠX ′ : [φ]A.Πpf : [φ]X = X ′.eqhash→ unit
union X X ′ pf h =

let 〈Xrep, pf1 :: X = Xrep〉= find X h in
let
〈
X ′rep, pf2 :: X ′ = X ′rep

〉
= find X ′ h in

holcase Xrep of
X ′rep 7→ ()
| 7→ let upd =

〈
X ′rep,

〈
· · · proof of Xrep = X ′rep · · ·

〉〉
in

eqhashSet Xrep upd

A last function is needed, which will be used to check whether in the current hash table, two terms are equal
or not. Its type will be:

areEqual? : ΠX : ([φ]A).ΠX ′ : ([φ]A).eqhash→
option LT([φ]X = X ′)

Its implementation is very similar to the above function.

In the implementation we have seen above, we have used an imperative data-structure with a dependent
data type, that imposes an algorithm-specific invariant. Because of this, rich type information is available
while developing the procedure, and the type restrictions impose a principled programming style. At the
same time, a multitude of bugs that could occur in an ML-based implementation are avoided: at each
point where a proof object is explicitly given in the above implementation, we know that it proves the
expected proposition, while in an ML-based implementation, no such guarantee is given. Still, adapting the
standard implementation of the algorithm to our language is relatively straightforward, and we do not need
to use fundamentally different data structures, as we would need to do if we were developing this inside the
computational language of a logic (since only functional data structures could be used).

10

(sorts) s ::= Type | Type′

(kinds) K ::= Prop | cK | K1→K2 | x
(domain obj./props.) d,P ::= d1→ d2 | ∀x : K.d | λx : K.d | d1 d2 | cd | x

| Elim(cK,K′)
(proof objects) π ::= x | λx : P.π | π1 π2 | λx : K.π | π d | cπ | elim cK

| elim cd
(HOL terms) t ::= s | K | d | π

(logic variables env.) Φ ::= • | Φ, x : t
(definitions env.) ∆ ::= •

| ∆, Inductive cK : Type := {
−−−→
cd : K}

| ∆, Inductive ct(
−−→
x : K) : K1→ ··· →Kn→ Prop := {−−−→cπ : P}

Figure 2: Syntax of the base logic language λHOLind

4 The logic language λHOLind

We will now focus on the formal logic that we are using. We use a higher-order logic with support for
inductive definitions of data-types, predicates and logical connectives; such inductive definitions give rise
to inductive elimination axioms. Also, total recursive functions can be defined, and terms of the logic are
identified up to evaluation of these functions. Our logical framework also consists of explicit proof objects,
which can be viewed as witnesses of derivations in the logic.

This framework, which we call λHOLind, is based on λHOL as presented in Barendregt and Geuvers
[1999], extended with inductive definitions and a reduction relation for total recursive functions, in the style
of CIC Barras et al. [2010]. Alternatively, we can view this framework as a subset of CIC, where we have
omitted universes other than Prop and Type, as well as polymorphism and dependent types in Type. Logical
consistency of CIC Werner [1994] therefore implies logical consistency of our system. Still, a simpler
metatheory based on reducibility candidates is possible.

We view this logical framework as a common core between proof assistants like Coq and the HOL family,
that is still expressible enough for many applications. At the same time, we believe that it captures most of
the complexities of their logics (e.g. the notion of computation in CIC), so that the results that we have for
this framework can directly be extended to them.

The syntax of our framework is presented in Figure 2. The syntactic category d includes propositions
(which we denote as P) and predicates, as well as objects of our domain of discourse: terms of inductively
defined data types, as well as total functions between them. Inductive definitions come from a definitions
environment ∆; total functions are defined by primitive recursion (using the Elim(·, ·) construct). Terms
of this category get assigned kinds of the syntactic category K, with all propositions being assigned kind
Prop. Inductive datatypes are defined at this level of kinds. We can view Prop as a distinguished datatype,
whose terms can get extended through inductive definitions of predicates and logical connectives. Kinds
get assigned the sort Type, which in turn gets assigned the (external) sort Type′, so that contexts can include
variables over Type.

The last syntactic category of our framework is π, representing proof objects, which get assigned a propo-
sition as a type. We can think of terms at this level as corresponding to different axioms of our logic, e.g.
function application will witness the implication elimination rule (modus-ponens). We include terms for

11

Typing for domain objects, propositions and predicates:

x : K ∈Φ

Φ ` x : K
DP-VAR

Φ ` P1 : Prop Φ ` P2 : Prop

Φ ` P1→ P2 : Prop
DP-IMPL

Φ,x : K ` P : Prop

Φ ` ∀x : K.P : Prop
DP-FORALL

Φ,x : K ` d : K′

Φ ` λx : K.d : K→K′
DP-LAM

Φ ` d1 : K→K′ Φ ` d2 : K

Φ ` d1 d2 : K′
DP-APP

Typing for proof objects:

x : P ∈Φ

Φ ` x : P
PO-VAR

Φ, x : P ` π : P′ Φ ` P→ P′ : Prop

Φ ` λx : P.π : P→ P′
PO-IMPI

Φ ` π1 : P→ P′ Φ ` π2 : P
Φ ` π1 π2 : P′

PO-IMPE
Φ, x : K ` π : P′ Φ ` ∀x : K.P′ : Prop

Φ ` λx : K.π : ∀x : K.P′
PO-FORALLI

Φ ` π : ∀x : K.P′ Φ ` d : K

Φ ` π d : P′[d/x]
PO-FORALLE

Φ ` π : P P =βι P′

Φ ` π : P′
PO-CONVERT

Figure 3: Main typing judgements of λHOLind (selected rules)

performing proof by induction on inductive datatypes and inductive predicates. Using the syntactic category
t we represent terms at any level out of the ones we described; at the level of variables we do not distinguish
between these different levels.

To see how inductive definitions are used, let us consider the case of natural numbers. Their definition
would be as follows:

Inductive Nat : Type :=
zero : Nat

| succ : Nat→ Nat.

This gives rise to the Nat kind, the zero and succ constructors at the domain objects level, and the elimination
axiom elim Nat at the proof object level, that witnesses induction over natural numbers, having the following
type:

∀P : Nat→ Prop.P zero→ (∀x : Nat.P x→ P (succ x))→∀x : Nat.P x

Similarly we can define predicates, like equality of natural numbers, or logical connectives, through induc-
tive definitions at the level of propositions:

Inductive (=Nat) (x : Nat) : Nat→ Prop :=
refl : x =Nat x.

Inductive (∧) (A B : Prop) : Prop :=
conj : A→ B→ A∧B.

From the definition of =Nat we get Leibniz equality as the elimination principle, from which the axioms
mentioned in the previous section are easy to prove.

elim (=Nat) : ∀x : Nat.∀P : Nat→ Prop.P x→∀y : Nat.x =Nat y→ P y

12

(contextual terms) T ::= [Φ] t
(meta-variables env.) M ::= • |M, X : T

(substitution) σ ::= • | σ, t
K ::= · · · | X/σ

d,P ::= · · · | X/σ

π ::= · · · | X/σ

Figure 4: Syntax extension of λHOLind with contextual terms and meta-variables

Last, recursive functions over natural numbers can also be defined through the Elim(Nat,K) construct:
Elim(Nat,K) n fz fs proceeds by performing primitive recursion on the natural number n given fz : K and
fs : Nat→K→K, returning a term of kind K. For example, we can define the addition function for Nat as:

plus = λx,y : Nat.Elim(Nat,Nat) x y (λx′,rx′ : Nat.succ rx′)

Functions defined through primitive recursion are permitted to return propositions (where K = Prop), some-
thing that is crucial in order to prove theorems like ∀x : Nat.zero 6= succ x.

We present the main typing judgements of λHOLind in Fig 3. These judgements use the logic variables
environment Φ. To simplify the presentation, we assume that the definitions environment ∆ is fixed and
we therefore do not explicitly include it in our judgements. We have not included its well-formedness
rules; these should include the standard checks for positivity of inductive definitions and are defined fol-
lowing CIC (see for example Paulin-Mohring [1993]). Similarly we have omitted the typing rules for
the elim constructs. We can view this as a standard PTS with sorts S = {Prop,Type,Type′}, axioms A =
{(Prop,Type),(Type,Type′)} and rules R = {(Prop,Prop,Prop), (Type,Prop,Prop),(Type,Type,Type)}, ex-
tended with inductive definitions and elimination at the levels we described earlier. In later sections we
follow this “collapsed” view, using the single typing judgement Φ ` t : t ′ for terms of all levels.

Of interest is the PO-CONVERT typing rule for proof objects. We define a limited notion of computation
within the logic language, composed by the standard β-reduction for normal β-redeces and by an additional
ι-reduction (defined as in CIC), which performs case reduction and evaluation of recursive function appli-
cations. With this rule, logical terms (propositions, terms of inductive datatypes, etc.) that are βι-equivalent
are effectively identified for type checking purposes. Thus a proof object for the proposition 2 =Nat 2 can
also be seen as a proof object for the proposition 1+1 =Nat 2, since both propositions are equivalent if they
are evaluated to normal forms. Because of this particular feature of having a notion of computation within
the logic language, λHOLind follows the Poincaré principle, which we view as one of the points of departure
of CIC compared to HOL. We have included this in our logic to show that a computational language as the
one we propose in the next section is still possible for such a framework.

4.1 Extension with meta-variables

As we have mentioned in the previous section, our computational language will manipulate logical terms
living in different contexts. In order to be able to type-check these terms properly, we introduce a new class
of terms T called contextual terms, which package a logical term along with its free variables environment.
We write a contextual term as [Φ] t where t can mention variables out of Φ. We identify these terms up to
alpha equivalence (that is, renaming of variables in Φ and t).

13

(context env.) W ::= • |W, φ : ctx
Φ ::= · · · | Φ, φ

σ ::= · · · | σ, idφ

Figure 5: Syntax extension of λHOLind with parametric contexts

W; M; Φ ` t : t ′ Typing for logical terms

W; M ` T : T ′ Typing for contextual terms

W; M; Φ ` σ : Φ′ Typing for substitutions

W; M `Φ Well-formedness for logical variables contexts

Figure 6: Summary of extended λHOLind typing judgements

Furthermore, we need a notion of contextual variables or meta-variables. Our computational language
will provide ways to abstract over such variables, which stand for contextual terms T . We denote meta-
variables as X and use capital letters for them. To use a meta-variable X inside a logical term t, we need to
make sure that when it gets substituted with a contextual term T = [Φ′] t ′, the resulting term t[T/X] will still
be properly typed. Since t ′ refers to different free variables compared to t, we need a way to map them into
terms that only refer to the same variables as t. This mapping is provided by giving an explicit substitution
when using the variable X . The syntax of our logic is extended accordingly, as shown in Figure 4.

Since logical terms t now include meta-variables, we need to refer to an additional meta-context M. Thus
the main typing judgement of the base logic, Φ ` t : t ′ is extended to include this new environment, resulting
in a typing judgement of the form M; Φ ` t : t ′. Existing typing rules ignore the extra M environment; what
is interesting is the rule for the use of a meta-variable. This is as follows:

X : T ∈M T = [Φ′] t M; Φ ` σ : Φ
′

M; Φ ` X/σ : t[σ/Φ
′]

We use the typing judgement M; Φ ` σ : Φ′ to check that the provided explicit substitution provides a
term of the appropriate type under the current free variable context, for each one of the free variables in the
context associated with the meta-variable X . The judgment M; Φ ` σ : Φ′ is defined below.

M; Φ ` • : •
M; Φ ` σ : Φ

′ M; Φ ` t : t ′[σ/Φ
′]

M; Φ ` (σ, t) : (Φ′, x : t ′)

A little care is needed since there might be dependencies between the types of the elements of the context.
Thus when type-checking a substitution against a context, we might need to apply part of the substitution in
order to get the type of another element in the context. This is done by the simultaneous substitution [σ/Φ]
of variables in Φ by terms in σ. To simplify this procedure, we treat the context Φ and the substitution σ as
ordered lists that adhere to the same variable order.

To type a contextual term T = [Φ] t, we use the normal typing judgement for our logic to type the packaged
term t under the free variables context Φ. The resulting type will be another contextual term T ′ associated

14

with the same free variables context. Thus the only information that is needed in order to type-check a
contextual term T is the meta-context M. The judgement M ` T : T ′ for typing contextual terms will
therefore look as follows:

T = [Φ] t M `Φ M;Φ ` t : t ′

M ` T : [Φ] t ′

We use the judgement M ` Φ to make sure that Φ is a well-formed context, i.e. that all the variables
defined in it have a valid type; dependencies between them are allowed.

M ` •
M `Φ M; Φ ` t : t ′

M `Φ, x : t

Last, let us consider how to apply the substitution [T/X] (where T = [Φ] t) on X inside a logical term t ′. In
most cases the substitution is simply recursively applied to the subterms of t ′. The only special case is when
t ′ = X/σ. In this case, the meta-variable X should be substituted by the logical term t; its free variables Φ

are mapped to terms meaningful in the same context as the original term t ′ using the substitution σ. Thus:

(X/σ)[T/X] = t[σ/Φ], when T = [Φ] t

For example, consider the case where X : [a : Nat,b : Nat]Nat,
t ′ = plus (X/1,2) 0 and T = [a : Nat,b : Nat]plus a b. We have:

t ′[T/X] = plus ((plus a b)[1/a,2/b]) 0 = plus (plus 1 2) 0 =βι 3

The above rule is not complete: the substitution σ is still permitted to use X based on our typing rules, and
thus we have to re-apply the substitution of T for X in σ. Note that no circularity is involved, since at some
point a substitution σ associated with X will need to not refer to it – the term otherwise would have infinite
depth. Thus the correct rule is:

(X/σ)[T/X] = t[(σ[T/X])/Φ], when T = [Φ] t

4.2 Extension with parametric contexts

As we saw from the programming examples in the previous section, it is also useful in our computational
language to be able to specify that a contextual term depends on a parametric context. Towards that effect,
we extend the syntax of our logic in Figure 5, introducing a notion of context variables, denoted as φ, which
stand for an arbitrary free variables context Φ. These context variables are defined in the environment W.
The definition of the logical variables context Φ is extended so that context variables can be part of it; thus
Φ contexts become parametric. In essence, a context variable φ inside a context Φ serves as a placeholder,
where more free variables can be substituted; this is permitted because of weakening.

We extend the typing judgements we have seen so that the W environment is also included; a summary
of this final form of the judgements is given in Figure 6. The typing judgement that checks well-formedness
of a context Φ is extended so that context variables defined in the context W are permitted to be part of it:

W; M `Φ φ : ctx ∈W

W; M `Φ, φ

15

With this change, meta-variables X and contextual terms T can refer to a parametric context Φ, by in-
cluding a context variable φ at some point. Explicit substitutions σ associated with use of meta-variables
must also be extended so that they can correspond to such parametric contexts; this is done by introducing
the identity substitution idφ for each context variable φ. The typing rule for checking a substitution σ against
a context Φ is extended accordingly:

W; M; Φ ` σ : Φ
′

φ ∈Φ

W; M; Φ ` (σ, idφ) : (Φ′, φ)

When substituting a context Φ for a context variable φ inside a logical term t, this substitution gets
propagated inside the subterms of t. Again the interesting case is what happens when t corresponds to a use
of a meta-variable (t = X/σ). In that case, we need to replace the identity substitution idφ in the explicit
substitution σ by the actual identity substitution for the context Φ. This is done using the idsubst(·) function:

idφ[Φ/φ] = idsubst(Φ) where:
idsubst(•) = •
idsubst(Φ, x : t) = idsubst(Φ), x
idsubst(Φ, φ) = idsubst(Φ), idφ

With the above in mind, it is easy to see how a proof object for P1→ P2 living in context φ can be created,
when all we have is a proof object X for P2 living in context φ, pf1 : P1.

[φ]λy : P1.(X/(idφ, y))

This can be used in the associated case in the tautology prover example given earlier, filling in as the term
〈· · · proof of P1→ P2 · · · 〉.

4.3 Metatheory

We have proved that substitution of a contextual term T for a meta-variable X and the substitution of a
context Φ for a context variable φ, preserve the typing of logical terms t. The statements of these substitution
lemmas are:

Lemma 4.1 If M, X0 : T, M′; Φ ` t : t ′ and M ` T0 : T , then M, M′[T0/X0]; Φ[T0/X0] ` t[T0/X0] : t ′[T0/X0].

Lemma 4.2 If M, M′; Φ, φ0, Φ′ ` t : t ′ and W;M;Φ ` Φ0, then M, M′[Φ0/φ0]; Φ, Φ0, Φ′ ` t[Φ0/φ0] :
t ′[Φ0/φ0].

These are proved by straightforward mutual structural induction, along with similar lemmas for explicit
substitutions σ, contextual terms T and contexts Φ, because of the inter-dependencies between them. The
proofs only depend on a few lemmas for the core of the logic that we have described, namely the standard
simultaneous substitution lemma, weakening lemma, and preservation of βι-equality under simultaneous
substitution. Details are provided in appendix A.

These extensions are inspired by contextual modal type theory and the Beluga framework; here we show
how they can be adapted to a different logical framework, like the one we have described. Compared to
Beluga, one of the main differences is that we do not support first-class substitutions, because so far we
have not found abstraction over substitutions in our computational language to be necessary. Also, context

16

K ::= ∗ | K1→ K2

τ ::= unit | int | bool | τ1→ τ2 | τ1 + τ2 | τ1× τ2 | µα : K.τ | ∀α : K.τ | α | array τ | λα : K.τ | τ1 τ2
| · · ·

e ::= () | n | e1 + e2 | e1 ≤ e2 | true | false | if e then e1 elsee2 | λx : τ.e | e1 e2 | (e1, e2) | proji e | inji e
| case(e, x1.e1, x2.e2) | fold e | unfold e | Λα : K.e | e τ | fix x : τ.e | mkarray(e,e′) | e[e′]
| e[e′] := e′′ | l | error | · · ·

Γ ::= • | Γ, x : τ | Γ, α : K
Σ ::= • | Σ, l : array τ

Figure 7: Syntax for the computational language (ML fragment)

K ::= · · · | Πx : T.K | Πφ : ctx.K
τ ::= · · · | ΠX : T.τ | ΣX : T.τ | Πφ : ctx.τ | Σφ : ctx.τ

| λX : T.τ | τ T | λφ : ctx.τ | τ Φ

e ::= · · · | λX : T.e | e T | 〈T, e〉 | let 〈X , x〉= e in e′

| λφ : ctx.e | e Φ | 〈Φ, e〉 | let 〈φ, x〉= e in e′ | holcase T of (p1 7→ e1) · · ·(pn 7→ en)
p ::= cd | p1→ p2 | ∀x : p1.p2 | λx : p1.p2 | p1 p2 | x | X/σ | Elim(cK,K′) | cK | Prop

Figure 8: Syntax for the computational language (new constructs)

variables are totally generic, not constrained by a context schema. The reason for this is that we will not
use our computational language as a proof meta-language, so coverage and totality of definitions in it is not
needed; thus context schemata are not necessary too. Last, our Φ contexts are ordered and therefore permit
multiple context variables φ in them; this is mostly presentational.

5 The computational language

Having described the logical framework we are using, we are ready to describe the details of our computa-
tional language. The ML fragment that we support is shown in Figure 7 and consists of algebraic datatypes,
higher-order function types, the native integer and boolean datatypes, mutable arrays, as well as polymor-
phism over types. For presentation purposes, we regard mutable references as one-element arrays. We use
bold face for variables x of the computational language in order to differentiate them from logical vari-
ables. In general we assume that we are given full typing derivations for well-typed terms; issues of type
reconstruction are left as future work.

The syntax for the new kinds, types and expressions of this language is given in Figure 8, while the
associated typing rules and small-step operational semantics are given in Figures 9 and 10 respectively.
Other than the pattern matching construct, typing and operational semantics for the other constructs are
entirely standard. We will describe them briefly, along with examples of their use.

Functions and existentials over contextual terms Abstraction over a contextual logical term (λX : T.e)
results in a dependent function type (ΠX : T.τ), assigning a variable name to this term so that additional

17

W;M ` T : T ′ W;M, X : T ;Σ;Γ ` e : τ

W;M;Σ;Γ ` λX : T.e : ΠX : T.τ

W;M;Σ;Γ ` e : ΠX : T.τ W;M ` T ′ : T

W;M;Σ;Γ ` e T ′ : τ[T ′/X]

W;M ` T ′ : T W;M;Σ;Γ ` e : τ[T ′/X]
W;M;Σ;Γ `

〈
T ′, e

〉
: ΣX : T.τ

W;M;Σ;Γ ` e : ΣX : T.τ W;M, X ′ : T ;Σ;Γ, x : τ[X ′/X] ` e′ : τ
′ X ′ 6∈ fv(τ′)

W;M;Σ;Γ ` let
〈
X ′, x

〉
= e in e′ : τ

′

W, φ : ctx;M;Σ;Γ ` e : τ

W;M;Σ;Γ ` λφ : ctx.e : Πφ : ctx.τ

W;M;Σ;Γ ` e : Πφ : ctx.τ W;M `Φ wf

W;M;Σ;Γ ` e Φ : τ[Φ/φ]

W;M `Φ wf W;M;Σ;Γ ` e : τ[Φ/φ]
W;M;Σ;Γ ` 〈Φ, e〉 : Σφ : ctx.τ

W;M;Σ;Γ ` e : Σφ : ctx.τ W,φ′ : ctx;M;Σ;Γ, x : τ[φ′/φ] ` e′ : τ
′

φ
′ 6∈ fv(τ′)

W;M;Σ;Γ ` let
〈
φ
′, x
〉

= e in e′ : τ
′

W;M ` T : T ′

T ′ = [Φ] t ′ W; M; Φ ` t ′ : Type ∀i,
(
M; Φ ` (pi⇐ t ′)⇒Mi W;M, Mi;Σ;Γ ` ei : τ[[Φ] pi/X]

)
W;M;Σ;Γ ` holcase T of (p1 7→ e1) · · ·(pn 7→ en) : τ[T/X]

Figure 9: Typing judgement of the computational language (selected rules)

v ::= λX : T.e | 〈T, v〉 | λφ : ctx.e | 〈Φ, v〉 | · · ·
E ::= • | E T | 〈T, E〉 | let 〈X , x〉= E in e′ | E Φ | 〈Φ, E〉 | let 〈φ, x〉= E in e′ | · · ·

σM ::= • | σM, X 7→ T
µ ::= • | µ, l 7→ [v1, · · · ,vn]

µ,e−→ µ′,e′

µ,E[e]−→ µ′,E[e′]
µ,E[error]−→ µ,error µ,(λX : T.e) T ′ −→ µ,e[T ′/X]

µ, let 〈X , x〉= 〈T, v〉 in e′ −→ µ,e′[T/X][v/x] µ,(λφ : ctx.e) Φ−→ µ,e[Φ/φ]

µ, let 〈φ, x〉= 〈Φ, v〉 in e′ −→ µ,e′[Φ/φ][v/x]
T = [Φ] t Φ ` unify(p1, t) = σM

µ,holcase T of (p1 7→ e1) · · ·(pn 7→ en)−→ µ,e1[σM]

T = [Φ] t Φ ` unify(p1, t) =⊥
µ,holcase T of (p1 7→ e1) · · ·(pn 7→ en)−→ µ,holcase T of (p2 7→ e2) · · ·(pn 7→ en)

µ,holcase T of • −→ µ,error

Figure 10: Operational semantics for the computational language (selected rules)

18

arguments or results of the function can be related to it. Still, because of the existence of the pattern matching
construct, such logical terms are runtime entities. We should therefore not view this abstraction as similar
to abstraction over types or type indexes in other dependently typed programming languages; rather, it is a
construct that gets preserved at runtime. Similarly, existential packages over contextual terms are also more
akin to normal tuples.

To lift an arbitrary HOL term to the computational language, we can use an existential package where
the second member is of unit type. This operation is very common, so we introduce the following syntactic
sugar at the type level, and for the introduction and elimination operations:

LT(T) = ΣX : T.unit
〈T 〉 = 〈T, ()〉
let 〈X〉 = e in e′ = let 〈X , 〉= e in e′

An example of the use of existential packages is the hyplistWeaken function of Section 3.2, which lifts a list
of hypotheses from one context to an extended one. This works by lifting each package of a hypothesis and
its associated proof object in turn to the extended context. We open up each package, getting two contextual
terms referring to context φ; we then repackage them, having them refer to the extended context φ, x : A:

hypWeaken : Πφ : ctx.ΠA : [φ]Prop.(ΣH : [φ]Prop.LT([φ]H))→
(ΣH : [φ, x : A]Prop.LT([φ, x : A]H))

hypWeaken φ A hyp = let 〈X , x1〉= hyp in
let 〈X ′, 〉= x1 in〈
([φ, x : A] (X/idφ)),

〈
[φ, x : A] (X ′/idφ)

〉〉
hyplistWeaken : Πφ : ctx.ΠA : [φ]Prop.hyplist φ→ hyplist (φ, x : A)
hyplistWeaken φ A hl = map hypWeaken hl

Functions and existentials over contexts Abstraction over contexts works as seen previously: we use
it in order to receive the free variables context that further logical terms refer to. Existential packages
containing contexts can be used in cases where we cannot statically determine the resulting context of
a term. An example would be a procedure for conversion of a propositional formula to CNF, based on
Tseitin’s encoding Tseitin [1968]. In this case, a number of new propositional variables might need to be
introduced. We could therefore give the following type to such a function:

cnf :: Πφ : ctx.ΠP : [φ]Prop.Σφ
′ : ctx.LT([φ,φ′]Prop)

Erasure semantics are possible for these constructs, since there is no construct that inspects the structure of
a context.

Type constructors At the type level we allow type constructors abstracting both over contexts and over
contextual terms. This is what enables the definition of the hyplist type constructor in Section 3.2. Similarly
we could take advantage of type constructors to define a generic type for hash tables where keys are logical
terms of type [φ]A and where the type of values is dependent on the key. The type of values is thus given as
another type constructor, and the overall type constructor for the hashtable should be:

hash : (ΠX : [φ]A.∗)→∗
= λres : (ΠX : [φ]A.∗).array (ΣX : [φ]A.res X)

19

Implementation of such a data structure is possible, because of a built-in hashing function in our compu-
tational language, that maps any logical term to an integer. Some care is needed with this construct, since
we want terms that are βι-equivalent to generate the same hashing value (α-equivalence is handled implic-
itly by using deBruijn indices). To that effect we need to reduce such terms to full βι-normal forms before
computing the hash value.

Static and dynamic semantics of pattern matching The last new construct in our computational lan-
guage is the pattern matching construct for logical terms. Let us first describe its typing rule, as seen in
Figure 9. First we make sure that the logical term to be pattern matched upon (the scrutinee) is well-typed.
Furthermore, only logical terms that correspond to propositions, predicates or objects of the domain of dis-
course are allowed to be pattern matched upon; we thus require that the scrutinee’s kind is Type. Patterns
can be viewed as normal logical terms (of syntactic levels K and d of the logic) that contain certain unifica-
tion variables; we will discuss their typing shortly. Unification variables are normal meta-variables that are
newly introduced. The result type of the pattern matching construct is dependent on the scrutinee, enabling
each branch to have a different type depending on its associated pattern.

At runtime, patterns are attempted to be unified against the scrutinee in sequence, and only the first
succeeding branch is evaluated; an error occurs when no pattern can be matched. Unification merely checks
whether the pattern and the scrutinee match up to βι-equivalence; if they do, it returns a substitution for the
unification variables, which gets applied to the body of the branch.

Higher-order unification in a setting like the logic we are describing is undecidable. We therefore restrict
the patterns allowed to linear patterns where unification variables are used at most once. For efficiency
reasons, we also impose the restriction that when we use a unification variable in a certain context, it must
be applied to the identity substitution of that context. These restrictions are imposed using the pattern
typing judgement M;Φ ` (p⇐ t)⇒M′. This judgement checks that p is a valid pattern corresponding to
a logical term of type t, and outputs the unification variables environment M′ that p uses. We further check
that patterns are terms in normal form; that is, patterns should only be neutral terms. The details for this
judgement, as well as the dynamic semantics of the unification procedure, are given in appendix D.

Revisiting the example of the tautology prover from Section 3.1, the pattern matching would more accu-
rately be written as follows. Note that we also use a return clause in order to specify the result type of the
construct. Though this is verbose, most of the contexts and substitutions would be easy to infer from the
context.

holcase P return option LT(P) with
P1/idφ∧P2/idφ 7→ · · ·
| ∀x : A/idφ.P′/(idφ, x) 7→ · · ·

Metatheory We have studied the metatheory for this language, and have found it relatively straightforward
using standard techniques. Preservation depends primarily on the substitution lemmas:

Lemma 5.1 (Substitution of contextual terms into expressions) If W; M, X : T ; Σ; Γ ` e : τ and W; M `
T ′ : T ,
then W; M; Σ[T ′/X]; Γ[T ′/X] ` e[T ′/X] : τ[T ′/X].

20

Lemma 5.2 (Substitution of contexts into expressions)
If W, φ : ctx; M, X : T ; Σ; Γ ` e : τ and W; M `Φ wf,
then W; M[Φ/φ]; Σ[Φ/φ]; Γ[Φ/φ] ` e[Φ/φ] : τ[Φ/φ].

A lemma detailing the correct behavior of pattern unification is also needed, intuitively saying that by
applying the substitution yielded by the unification procedure to the pattern, we should get the term we are
matching against:

Lemma 5.3 (Soundness of unification)
If Φ ` unify(p, t) = σM , W; M ` [Φ] t : T0 and W; M ` (p⇐ T0)⇒ M′ then W; M ` σM : M′ and
([Φ] p)[σM/M′] =βι T .

Theorem 5.4 (Preservation) If •; •; Σ; • ` e : τ , •; •; Σ; • ` µ and µ,e−→ µ′,e′ then there exists a Σ′ ⊇ Σ

so that •; •; Σ′; • ` e′ : τ and •; •; •; Σ′; • ` µ′.

Proof by structural induction on the step relation µ,e −→ µ′,e′, made relatively simple for the new con-
structs by use of the above lemmas. The proofs for common constructs do not require special provisions and
follow standard practice Pierce [2002].

Progress depends on the following canonical forms lemma:

Lemma 5.5 (Canonical forms) If •;•;Σ;• ` v : τ then:
If τ = ΠX : T.τ′, then v = λX : T.e.
If τ = ΣX : T.τ′, then v = 〈T ′, v′〉 and •;• ` T ′ : T .
If τ = Πφ : ctx.τ′, then v = λφ : ctx.e.
If τ = Σφ : ctx.τ′, then v = 〈Φ′, v′〉 and •;• `Φ′ wf.
. . .

Theorem 5.6 (Progress) If •; •; Σ; • ` e : τ then either e is a value, or, for every µ such that •; •; Σ; • ` µ,
µ,e−→ error, or there exists e′ and µ′ such that µ,e−→ µ′,e′.

The proof is a straightforward structural induction on the typing derivation of e. The only cases for the error
result come from non-exhaustive pattern matching or out-of-bounds access in arrays. More details about the
proofs can be found in appendix C. We have found these proofs to be relatively orthogonal to proofs about
the type safety of the basic constructs of the computational language.

From type safety we immediately get the property that if an expression evaluates to an existential package
containing a proof object π, then it will be a valid proof of the proposition that its type reflects. This means
that, at least in principle, the type checker of the logic language does not need to be run again, and decision
procedures and tactics written in our language always return valid proof objects. In practice, the compiler
for a language like this will be much larger than a type checker for the logic language so we will still prefer
to use the second as our trusted base. Furthermore, if we are only interested in type checking proof objects
yielded from our language, our trusted base can be limited to a type checker for the base logic language, and
does not need to include the extensions with meta-variables and parametric contexts.

6 Implementation and examples

We have created a prototype implementation of a type-checker and interpreter for VeriML, along with an
implementation of the higher-order logic we use. Readers are encouraged to download it from

21

http://flint.cs.yale.edu/publications/veriml.html

The implementation is about 4.5kLOC of OCaml code, and gives a VeriML toplevel to the user where
examples can be tested out. Concrete syntax for VeriML is provided through Camlp4 syntax extensions.

The implementation of the logic can be used in isolation as a proof checker, and is done using the PTS
style; thus generalization to a theory like CIC is relatively straightforward. Binding is represented using
the locally nameless approach. Both at the level of the logic, as well as at the level of the computational
language, we allow named definitions. In the computational language we allow some further constructs not
shown here, like mutually recursive function definitions, as well as a printing function for HOL terms, used
primarily for debugging purposes.

We are currently working on a code generator that translates well-typed programs of our computational
language into normal OCaml code for efficiency. This translation essentially is a type-erasure operation,
where the annotations needed to support our dependent type system are removed and we are thus left with
code similar to what one would write for an LCF-style theorem prover. We are investigating the possibility
of emitting code for existing frameworks, like Coq or HOL.

We have used this implementation to test two larger examples that we have developed in VeriML; these
are included in the language distribution. The first example is an extension of the decision procedure for the
theory of equality given in Section 3, so that uninterpreted functions are also handled. Furthermore, we use
this decision procedure as part of a version of the tauto tactic that we showed earlier. Equality hypotheses
are used in order to create the equivalence class hash table; terms contained in goals are then viewed up to
equivalence based on this hash table, by using the functions provided by the decision procedure.

The second example is a function that converts a proposition P into its negation normal form P′, returning
a proof object witnessing the fact that P′ implies P. Such proof objects are not built manually. They get
produced by a version of the tauto tactic with all the extensions that we described in Section 3, along with
handling of the False proposition. This tactic is enough to prove all the propositional tautologies required in
NNF conversion.

7 Related work

There is a large body of existing related work that we should compare the work we described here to. We
will try to cover other language and framework designs that are similar in spirit or goals to the language
design we have described here.

The LTac language Delahaye [2000, 2002] available in the Coq proof assistant is an obvious point of
reference for this work. LTac is an untyped domain-specific language that can be used to define new tactics
by combining existing ones, employing pattern matching on propositions and proof contexts. Its untyped
nature is sometimes viewed as a shortcoming (e.g. in Nanevski et al. [2010]), and there are problems with
handling variables and matching under binders. Our language does not directly support all of the features
of LTac. Still, we believe that our language can serve as a kernel where missing features can be developed
in order to recover the practicality that current use of LTac demonstrates. Also, our language is strongly
typed, statically guarantees correct behavior with regards to binding, and gives access to a richer set of
programming constructs, including effectful ones; this, we believe, enables the development of more robust
and complex tactics and decision procedures. Last, our language has formal operational semantics, which
LTac lacks to the best of our knowledge, so the behaviour of tactics written in it can be better understood.

22

The comparison with the LCF approach Gordon et al. [1979] to building theorem provers is interesting
both from a technical as well as from a historical standpoint, seeing how ML was originally developed
toward the same goals as its extension that we are proposing here. The LCF approach to building a theorem
prover for the logic we have presented here would basically amount to building a library inside ML that
contained implementations for each axiom, yielding a term of the abstract thm datatype. By permitting the
user to only create terms of this type through these functions, we would ensure that all terms of this datatype
correspond to valid derivations – something that depends of course on the type safety of ML. Our approach
is different in that the equivalent of the thm datatype is dependent on the proposition that the theorem shows.
Coupled with the rest of the type system, we are able to specify tactics, tacticals, and other functions that
manipulate logical terms and theorems in much more detail, yielding stronger static guarantees. Essentially,
where such manipulation is done in an untyped manner following the usual LCF approach, it is done in
a strongly typed way using our approach. We believe that this leads to a more principled and modular
programming paradigm, a claim that we aim to further substantiate with future work.

In recent years many languages with rich dependent type systems have been proposed, which bear sim-
ilarity to the language design we proposed here; unfortunately they are too numerous to cover here but we
refer the reader to three of the most recent and relevant proposals Norell [2007], Fogarty et al. [2007], Chen
and Xi [2005] and the references therein. The way that our approach contrasts with languages like these is
that we are not primarily interested in certifying properties of code written in our language. We rather view
our language as a foundation for an “extensible” proof assistant, where proofs about code written in other
(however richly typed or untyped) languages can be developed in a scalable manner.

Of the above languages, we believe Concoqtion Fogarty et al. [2007] is the one that is closest to our
language, as it embeds the full CIC universe as index types for use inside a version of the ML language.
Our language does the same thing, even though only a subset of CIC is covered; the point of departure
compared to Concoqtion is that our language also includes a computational-level pattern matching construct
on such terms. Thus logical terms are not to be viewed only as index types, and actually have a runtime
representation that is essential for the kind of code we want to write. Pattern matching for logical terms
would amount to a typecase-like construct in languages like Concoqtion, a feature that is generally not
available in them.

It is interesting to contrast our framework with computational languages that deal with terms of the LF
logical framework Harper et al. [1993], like Beluga Pientka and Dunfield [2008] and Delphin Poswolsky
and Schürmann [2008]. Especially Beluga has been an inspiration for this work, and our use of meta-
variables and context polymorphism is closely modeled after it. LF provides good support for encoding
typing judgements like the ones defining our logic; in principle our logic could be encoded inside LF,
and languages such as the above could be used to write programs manipulating such encodings with static
guarantees similar to the ones provided through our language. In practice, because of the inclusion of a
notion of computation inside our logic, for which LF does not provide good support, this encoding would be
a rather intricate exercise. The βι-reduction principles would have to be encoded as relations inside LF, and
explicit witnesses of βι-equivalence would have to be provided at all places where our logic alludes to it.
We are not aware of an existing encoding of a logic similar to the one we describe inside LF, and see it as a
rather complicated endeavour. This situation could potentially be remedied by a framework like Licata et al.
[2008] that considers adding computation to a subset of LF; still, this framework currently lacks dependent
types, which are essential for encoding the judgements of our logic in LF.

Even if this encoding of our logic was done, the aforementioned computational languages do not provide
the imperative constructs that we have considered. Last, writing procedures that could be part of a proof

23

assistant, even for simpler logics, has not been demonstrated yet in these languages, as we do here.

Another framework that is somewhat related is Hoare Type Theory (HTT) and the associated YNot project
Chlipala et al. [2009], Nanevski et al. [2010]. This framework attempts to extend the programming model
available in the Coq proof assistant with support for effectful features like mutable references. This is
done by axiomatically extending Coq’s logic with support for a stateful monad; essentially, imperative
computational features are integrated inside the logical framework. Our approach, instead, integrates the
logical framework inside a computational language, keeping the two as orthogonal as possible. Thus, it does
not require any significant metatheoretic additions to the logic. Additional features in our computational
language like concurrency could be easily added, as long as they are type safe. In principle, one could use
HTT in conjunction with the standard proof-by-reflection technique in order to program decision procedures
in an imperative style inside the proof assistant. We are not aware of a development based on this idea; for
example, even though a decision procedure for the EUF theory is proved correct in Nanevski et al. [2010],
it is not evident whether this procedure can be used as a tactic in order to prove further goals. We would be
interested in attempting this approach in future work.

8 Future work and conclusion

There are many directions for extending the work we have presented here. One is to investigate how to
replicate most of the functionality of a language like LTac inside our language, by providing ways to perform
pattern matching with back-tracking, and pattern matching on contexts. Furthermore, we want to explore
issues of type and term inference in our language in order to limit its current verbosity, especially with
respect to context quantification and instantiation. Last, the context manipulation currently allowed by
our language is relatively limited, e.g. with respect to contraction of variables out of contexts. We are
investigating how such limitations can be lifted, without complicating the language design or its metatheory.

We have described VeriML, a new language design that introduces first-class support for a logical frame-
work modeled after HOL and CIC inside a computational language with effects. The language allows pattern
matching on arbitrary logical terms. A dependent type system is presented, which allows for strong specifi-
cations of effectful computation involving such terms. We have shown how tactics and decision procedures
can be implemented in our language, providing strong static guarantees while at the same time allowing a
rich programming model with non-termination and mutable references.

Acknowledgments

We thank anonymous referees for their comments on this paper. This work is supported in part by NSF
grants CCF-0811665, CNS-0915888, and CNS-0910670.

References

Henk P. Barendregt and Herman Geuvers. Proof-assistants using dependent type systems. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier Sci. Pub. B.V., 1999.

B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye, D. de Rauglaudre, J.C. Filliâtre,
E. Giménez, H. Herbelin, et al. The Coq proof assistant reference manual (version 8.3), 2010.

24

S. Boutin. Using reflection to build efficient and certified decision procedures. Lecture Notes in Computer
Science, 1281:515–529, 1997.

A.R. Bradley and Z. Manna. The calculus of computation: decision procedures with applications to verifi-
cation. Springer-Verlag New York Inc, 2007.

C. Chen and H. Xi. Combining programming with theorem proving. In Proceedings of the tenth ACM
SIGPLAN international conference on Functional programming, page 77. ACM, 2005.

A. Chlipala. Certified Programming with Dependent Types, 2008. URL http://adam.chlipala.net/
cpdt/.

Adam J. Chlipala, J. Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. Effective
interactive proofs for higher-order imperative programs. In Proceeding of the 14th ACM SIGPLAN inter-
national conference on Functional programming, pages 79–90. ACM, 2009.

D. Delahaye. A tactic language for the system Coq. Lecture notes in computer science, pages 85–95, 2000.

D. Delahaye. A proof dedicated meta-language. Electronic Notes in Theoretical Computer Science, 70(2):
96–109, 2002.

X. Feng, Z. Shao, Y. Guo, and Y. Dong. Combining domain-specific and foundational logics to verify
complete software systems. In Proc. 2nd IFIP Working Conference on Verified Software: Theories, Tools,
and Experiments (VSTTE’08), volume 5295 of LNCS, pages 54–69. Springer, October 2008.

S. Fogarty, E. Pasalic, J. Siek, and W. Taha. Concoqtion: indexed types now! In Proceedings of the 2007
ACM SIGPLAN symposium on Partial evaluation and semantics-based program manipulation, pages
112–121. ACM New York, NY, USA, 2007.

M.J. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: a mechanized logic of computation.
Springer-Verlag Berlin, 10:11–25, 1979.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the ACM, 40(1):143–184,
1993.

J. Harrison. HOL Light: A tutorial introduction. Lecture Notes in Computer Science, pages 265–269, 1996.

C. Hawblitzel and E. Petrank. Automated verification of practical garbage collectors. ACM SIGPLAN
Notices, 44(1):441–453, 2009.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, et al. seL4: Formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, pages 207–220. ACM, 2009.

X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–115, 2009.

D.R. Licata, N. Zeilberger, and R. Harper. Focusing on binding and computation. In Logic in Computer
Science, 2008. LICS’08, pages 241–252, 2008.

A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in hoare type theory. In Proceed-
ings of the eleventh ACM SIGPLAN international conference on Functional programming, pages 62–73.
ACM New York, NY, USA, 2006.

25

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. ACM Trans.
Comput. Log., 9(3), 2008.

Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. Structuring the verification of heap-manipulating
programs. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 261–274. ACM, 2010.

T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL : A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS, 2002.

Ulf Norell. Towards a practical programming language based on dependent type theory. Technical report,
Goteborg University, 2007.

C. Paulin-Mohring. Inductive definitions in the system Coq; rules and properties. Lecture Notes in Computer
Science, pages 328–328, 1993.

Brigitte Pientka. A type-theoretic foundation for programming with higher-order abstract syntax and first-
class substitutions. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 371–382. ACM, 2008.

Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit contexts. In Proceedings of the
10th international ACM SIGPLAN conference on Principles and practice of declarative programming,
pages 163–173. ACM New York, NY, USA, 2008.

B.C. Pierce. Types and programming languages. The MIT Press, 2002.

A. Poswolsky and C. Schürmann. Practical programming with higher-order encodings and dependent types.
Lecture Notes in Computer Science, 4960:93, 2008.

K. Slind and M. Norrish. A brief overview of HOL4. In TPHOLs, pages 28–32. Springer, 2008.

M. Sozeau. Subset coercions in Coq. Types for Proofs and Programs, pages 237–252, 2007.

G.S. Tseitin. On the complexity of derivation in propositional calculus. Studies in constructive mathematics
and mathematical logic, 2(115-125):10–13, 1968.

Benjamin Werner. Une Théorie des Constructions Inductives. PhD thesis, A L’Université Paris 7, Paris,
France, 1994.

26

Appendices

A Metatheory for logic language extensions

Syntax

s ::= Type | Type′ | Prop
t ::= s | c | x | λsx : t.t ′ | t1 t2 | ∀sx : t.t ′ | elim(c, t) | X/σ

T ::= [Φ] t
σ ::= • | σ, t | σ, idφ

Φ ::= • | Φ, x : t | Φ, φ

M ::= • |M, X : T
W ::= • |W, φ : ctx
∆ ::= • | ∆, Inductive c : Type := {−−→ci : t} | ∆, Inductive c (−→x : t) : t1→ ··· → tn→ Prop := {−−→ci : t}

Typing of logical terms

W; M; Φ `∆ t : t ′

S = { Prop, Type, Type′ }
A = {(Prop,Type), (Type,Type′)}
R = {(Prop,Prop), (Type,Type),(Type,Prop)}
IND = {Type,Prop}
NoDep = {(Type,Type), (Prop,Prop)}
Dep = {(Type,Prop)}

(s,s′) ∈A = {(Prop,Type), (Type,Type′)}
W; M; Φ `∆ s : s′

x : t ∈Φ

W; M; Φ `∆ x : t

∆ ` c : t

W; M; Φ `∆ c : t

W; M; Φ `∆ t1 : s W; M; Φ, x : t1 `∆ t2 : t ′

W; M; Φ, x : t1 `∆ t ′ : s′ (s,s′) ∈ R = {(Prop,Prop), (Type,Type), (Type,Prop)}
W; M; Φ `∆ ∀sx : t1.t2 : s′

W; M; Φ `∆ t1 : s W; M; Φ, x : t1 `∆ t2 : t ′ W; M; Φ `∆ ∀sx : t1.t2 : s′

W; M; Φ `∆ λsx : t1.t2 : ∀sx : t1.t2

X : T ∈M T = [Φ′] t ′ W; M; Φ `∆ σ : Φ
′

W; M; Φ `∆ X/σ : t ′[σ/Φ
′]

27

(Inductive c · · · := {
−−→
ci : tc

i }) ∈ ∆

W; M; Φ `∆ c : ∀
−−−→
xp : t p.s (s,s′) ∈ NoDep W; M; Φ `∆ t : ∀

−−−→
xp : t p.s′

W; M; Φ `∆ elim(c, t) : ∀
−−−→
xp : t p.∀

−−−−−−−−−−−−→
Cnodep

[
ci,c, t,

−→
xp
]
.∀x : c

−→
xp .t
−→
xp

(Inductive c · · · := {
−−→
ci : tc

i }) ∈ ∆

W; M; Φ `∆ c : ∀
−−−→
xp : t p.s (s,s′) ∈ Dep W; M; Φ `∆ t : ∀

−−−→
xp : t p.∀x : c

−→
xp .s′

W; M; Φ `∆ elim(c, t) : ∀
−−−→
xp : t p.∀

−−−−−−−−−−→
Cdep

[
ci,c, t,

−→
xp
]
.∀x : c

−→
xp .t
−→
xp x

W; M; Φ `∆ t : t ′ t ′ =βι t ′′

W; M; Φ `∆ t : t ′′

Typing of contextual terms

W; M ` T : T ′

T = [Φ] t W; M `Φ wf W; MΦ; Φ `∆ t : t ′ T ′ = [Φ] t
W; M ` T : T ′

Typing of substitutions

W; M; Φ `∆ σ : Φ′

W; M; Φ `∆ • : •
W; M; Φ `∆ σ : Φ

′ W; M; Φ `∆ t : t ′[σ/Φ
′]

W; M; Φ `∆ σ, t : Φ
′, x : t ′

W; M; Φ `∆ σ : Φ
′

φ ∈Φ

W; M; Φ `∆ σ, idφ : Φ
′, φ

Well-formed logical variables contexts

W; M `Φ wf

W; M ` • wf

W; M `Φ wf W; M; Φ `∆ t : t ′ (x 6∈Φ)
W; M `Φ, x : t wf

W; M `Φ wf φ ∈W

W; M `Φ, φ wf

Well-formed metavariables contexts

W `M wf

W ` • wf

W `M wf W; M ` T : T ′ (X 6∈M)
W `M, X : T wf

We assume that all environments are well-formed.

28

Substitutions: simultaneous logical terms

t[σ/Φ]

s[σ/Φ] = s
c[σ/Φ] = c
x[σ/Φ] = ti when σ = t1, · · · , ti, · · · , tn and Φ = · · · , x : t ′i , · · ·
(λsx : t.t ′)[σ/Φ] = λsx : t[σ/Φ].t ′[σ/Φ]when x 6∈Φ

(t1 t2)[σ/Φ] = t1[σ/Φ] t2[σ/Φ]
(∀sx : t.t ′)[σ/Φ] = ∀sx : t[σ/Φ].t ′[σ/Φ]when x 6∈Φ

(elim(c, t))[σ/Φ] = elim(c, t[σ/Φ])
(X/σ′)[σ/Φ] = X/(σ′[σ/Φ])

σ′[σ/Φ]

•[σ/Φ] = •
(σ′, t)[σ/Φ] = σ′[σ/Φ], t[σ/Φ]
(σ′, idφ)[σ/Φ] = σ′[σ/Φ], idφ

Substitutions: contextual term for metavariable

t[T/X]

s[T/X] = s
c[T/X] = c
x[T/X] = x
(λsx : t.t ′)[T/X] = λsx : t[T/X].t ′[T/X]
(t1 t2)[T/X] = t1[T/X] t2[T/X]
(∀sx : t.t ′)[T/X] = ∀sx : t[T/X].t ′[T/X]
(elim(c, t))[T/X] = elim(c, t[T/X])
(X/σ)[T/X] = t[σ′/Φ] when T = [Φ] t and σ′ = σ[T/X]
(Y/σ)[T/X] = Y/(σ[T/X])

T ′[T/X]

T ′[T/X] = [Φ′[T/X]] t ′[T/X] when T ′ = [Φ′] t ′

σ[T/X]

•[T/X] = •
(σ, t)[T/X] = σ[T/X], t[T/X]
(σ, idφ)[T/X] = σ[T/X], idφ

Φ[T/X]

•[T/X] = •
(Φ, x : t)[T/X] = Φ[T/X], x : t[T/X]
(Φ, φ)[T/X] = Φ[T/X], φ

29

Substitutions: context for context variable

t[Φ/φ]

s[Φ/φ] = s
c[Φ/φ] = c
x[Φ/φ] = x
(λsx : t.t ′)[Φ/φ] = λsx : t[Φ/φ].t ′[Φ/φ]
(t1 t2)[Φ/φ] = t1[Φ/φ] t2[Φ/φ]
(∀sx : t.t ′)[Φ/φ] = ∀sx : t[Φ/φ].t ′[Φ/φ]
(elim(c, t))[Φ/φ] = elim(c, t[Φ/φ])
(X/σ)[Φ/φ] = X/(σ[Φ/φ])

T ′[Φ/φ]

T ′[Φ/φ] = [Φ′[Φ/φ]] (t ′[Φ/φ]) when T ′ = [Φ′] t ′ and fv(Φ)∩ fv(Φ′) = /0

σ[Φ/φ]

•[Φ/φ] = •
(σ, t)[Φ/φ] = σ[Φ/φ], t[Φ/φ]
(σ, idφ)[Φ/φ] = σ[Φ/φ], idsubst(φ)

where:
idsubst(•) = •
idsubst(Φ, x : t) = idsubst(Φ), x
idsubst(Φ, φ) = idsubst(Φ), idφ

Φ[Φ′/φ]

only defined when fv(Φ)∩ fv(Φ′) = /0:
•[Φ′/φ] = •
(Φ, x : t)[Φ′/φ] = Φ[Φ′/φ], x : t[Φ′/φ]
(Φ, φ)[Φ′/φ] = Φ[Φ′/φ], Φ′

(Φ, φ′)[Φ′/φ] = Φ[Φ′/φ], φ′

Substitution theorems

Theorem A.1 (Substitution of contextual terms for metavariables)

1. If W; M` T0 : T ′0 and W; M, X0 : T ′0, M′; Φ`∆ t1 : t ′1 then W; M, M′[T0/X0]; Φ[T0/X0]` t1[T0/X0] :
t ′1[T0/X0].

2. If W; M ` T0 : T ′0 and W; M, X0 : T ′0, M′ ` T1 : T ′1 then W; M, M′[T0/X0] ` T1[T0/X0] : T ′1[T0/X0].

3. If W; M ` T0 : T ′0 and W; M, X0 : T ′0, M′; Φ `∆ σ1 : Φ1 then W; M, M′[T0/X0]; Φ[T0/X0] `
σ1[T0/X0] : Φ1[T0/X0].

4. If W; M ` T0 : T ′0 and W; M, X0 : T ′0, M′ `Φ wf then W; M, M′[T0/X0] `Φ[T0/X0].

5. If W; M ` T0 : T ′0 and W `M, X0 : T ′0, M′ wf then W `M, M′[T0/X0] wf.

Proceed by mutual structural induction.

30

Sub-lemma 1. Most cases are simple directly by inductive hypothesis and use of the definition of substi-
tution. The three special cases follow.

Case
T ′0 = [Φ′] t ′ W; M, X0 : T ′0, M′; Φ `∆ σ : Φ

′

W; M, X0 : T ′0, M′; Φ `∆ X0/σ : t ′[σ/Φ
′]

�

Assume that T0 = [Φ0] t0. From inversion of W; M ` T0 : T ′0 we have that W; M; Φ′ `∆ t0 : t ′ and
Φ0 = Φ′. Now we need to prove that W; M, M′[T0/X0]; Φ[T0/X0] ` t0[σ[T0/X0]/Φ′] : t ′[σ/Φ′][T0/X0]. By
the use of sub-lemma 3 we get that
W; M,M′[T0/X0]; Φ[T0/X0] `∆ σ[T0/X0] : Φ′[T0/X0]. From well-formedness of M we get that Φ′ cannot
depend on X0, thus Φ′[T0/X0] = Φ′; also that t ′ cannot depend on X0, so t ′[T0/X0] = t ′. From
W; M,M′[T0/X0]; Φ[T0/X0] `∆ σ[T0/X0] : Φ′ and W; M; Φ′ `∆ t0 : t ′ (plus use of weakening for the
second judgement), we get through simultaneous substitution for the logical term t0 that W; M; Φ[T0/X0]`∆

t0[σ[T0/X0]/Φ′] : t ′[σ[T0/X0]/Φ′]. This is our desired result, since t ′[σ[T0/X0]/Φ′] = t ′[σ/Φ′][T0/X0].

Case
Y : T ′1 ∈M,X0 : T ′0,M

′ Y 6= X0 T ′1 = [Φ1] t ′1 W; M, X0 : T ′0, M′; Φ `∆ σ : Φ1

W; M, X0 : T ′0, M′; Φ `∆ Y/σ : t ′1[σ/Φ1]
�

Similar to the above, we use sub-lemma 3 in order to prove that W; M, M′[T0/X0]; Φ[T0/X0]`∆ σ[T0/X0] :
Φ1[T0/X0]. Also Y : T ′1[T0/X0]∈M[T0/X0] and T ′1[T0/X0] = [Φ1[T0/X0]] t ′1[T0/X0]. By use of the same typing
rule we get:
W; M, M′[T0/X0]; Φ[T0/X0] `∆ Y/σ[T0/X0] : (t ′1[T0/X0])[σ[T0/X0]/Φ1[T0/X0]]. But:
(t ′1[T0/X0])[σ[T0/X0]/Φ1[T0/X0]] = t ′1[σ/Φ1][T0/X0] and we thus have the desired.

Case
W; M, X0 : T ′0, M′; Φ `∆ t : t ′ t ′ =βι t ′′

W; M, X0 : T ′0, M′; Φ `∆ t : t ′′
�

Without loss of generality, assume t ′ →βι t ′′ or t ′′ →βι t ′ (through successive uses of the same rule we
can get the general t ′ =βι t ′′ case). In the first case, we perform structural induction on the βι-relation,
in order to prove that t ′[T0/X0] →βι t ′′[T0/X0]. The only non-trivial case is, when t ′ = X0/σ′, whether
t0[σ[T0/X0]/Φ0]→βι t0[σ′[T0/X0]/Φ0] when σ→βι σ′. σ→βι σ′ implies that for some j and t j ∈ σ, there
exists t ′j such that t j →βι t ′j, σ = t1, · · · , t j, · · · , tn and σ′ = t1, · · · , t ′j, · · · , tn. By induction hypothesis for t j

and t ′j we get t j[T0/X0]→βι t ′j[T0/X0] and thus σ[T0/X0]→βι σ′[T0/X0]. From this, and compatibility of
βι-reduction with simultaneous substitution of logical terms, we get the desired result. Through a similar
argument for t ′′→βι t ′ we complete the proof.

Sub-lemma 2. This is needed in order to prove in sub-lemma 5 that metavariable substitution is compatible
with well-formedness of meta-contexts. Proved directly through use of sub-lemmas 1 and 4.

Sub-lemma 3. Proof by structural induction on the typing derivation for σ. The interesting case is:

Case
W; M, X0 : T ′0, M′; Φ `∆ σ : Φ

′ W; M, X0 : T ′0, M′; Φ `∆ t : t ′[σ/Φ
′]

W; M, X0 : T ′0, M′; Φ `∆ σ, t : Φ
′, x : t ′

�

From inductive hypothesis we have that W; M, M′[T0/X0]; Φ[T0/X0] `∆ σ[T0/X0] : Φ′[T0/X0]. Also
from inductive hypothesis, sub-lemma 1, for the (structurally smaller) term t we have:
W; M, M′[T0/X0]; Φ[T0/X0] `∆ t[T0/X0] : t ′[σ/Φ′][T0/X0]. But we have that:

31

t ′[σ/Φ′][T0/X0] = (t ′[T0/X0])[σ[T0/X0]/Φ′[T0/X0]]. Thus by use of the same typing rule we get:
W; M, M′[T0/X0]; Φ[T0/X0] `∆ σ[T0/X0], t[T0/X0] : Φ′[T0/X0], x : t ′[T0/X0].

Sub-lemma 4. Straightforward proof by structural induction on the typing derivation for Φ, again with
use of sub-lemma 1.

Sub-lemma 5. This is used implicitly above, when we use the assumption that meta-contexts are well-
formed. Simple structural induction on M′, and use of sub-lemma 2.

Theorem A.2 (Substitution of contexts for context variables)

1. If W; M `Φ0 wf, fv(Φ)∩ fv(Φ0) = /0 and W, φ0 : ctx, W′; M; Φ `∆ t1 : t ′1 then
W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆ t1[Φ0/φ0] : t ′1[Φ0/φ0].

2. If W; M`Φ0 wf and W, φ0 : ctx, W′; M` T1 : T ′1 then W[Φ0/φ0]; M[Φ0/φ0]; Φ, W′ `∆ T1[Φ0/φ0] :
T ′1[Φ0/φ0].

3. If W; M ` Φ0 wf, fv(Φ)∩ fv(Φ0) = /0, fv(Φ1)∩ fv(Φ0) = /0 and W, φ0 : ctx, W′; M; Φ `∆ σ1 : Φ1
then W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆ σ1[Φ0/φ0] : Φ1[Φ0/φ0].

4. If W; M ` Φ0 wf, fv(Φ)∩ fv(Φ0) = /0 and W, φ0 : ctx, W′; M ` Φ wf then W, W′; M[Φ0/φ0] `
Φ[Φ0/φ0] wf.

5. If W; M `Φ0 wf and W, φ0 : ctx, W′ `M wf then W, W′ `M[Φ0/φ0] wf.

Proof by mutual structural induction.

Sub-lemma 1. The interesting cases follow.

Case
x : t ∈Φ

W, φ0 : ctx, W′; M; Φ `∆ x : t
�

We have that (x : t[Φ0/φ0]) ∈Φ[Φ0/φ0] directly from the definition of Φ[Φ0/φ0], from which the desired
follows by use of the same typing rule.

Case
X : T ∈M T = [Φ′] t ′ W, φ0 : ctx, W; M; Φ `∆ σ : Φ

′

W, φ0 : ctx, W′; M; Φ `∆ X/σ : t ′[σ/Φ
′]

�

We have X : T [Φ0/φ0] ∈M[Φ0/φ0] and T [Φ0/φ0] = [Φ′[Φ0/φ0]] (t ′[Φ0/φ0]), maybe with α-renaming of
Φ′ inside T in order to make sure that fv(Φ′)∩ fv(Φ0) = /0. From sub-lemma 3, we get:
W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆ σ[Φ0/φ0] : Φ′[Φ0/φ0]. From these, and use of the same typing rule, we
get W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆ X/(σ[Φ0/φ0]) : (t ′[Φ0/φ0])[σ[Φ0/φ0]/Φ′[Φ0∧φ0]].
Since (t ′[Φ0/φ0])[σ[Φ0/φ0]/Φ′[Φ0/φ0]] = (t ′[σ/Φ′])[Φ0/φ0], this is the desired result.

Case
W; M, X0 : T ′0, M′; Φ `∆ t : t ′ t ′ =βι t ′′

W; M, X0 : T ′0, M′; Φ `∆ t : t ′′
�

Similarly to the same case for theorem A.1.1, we perform structural induction on t ′→βι t ′′; all cases are
trivial.

32

Sub-lemma 2.

Case
T = [Φ] t W, φ0 : ctx, W′; M `Φ wf W; MΦ; Φ, φ0 : ctx, W′ `∆ t : t ′ T ′ = [Φ] t

W, φ0 : ctx, W′; M ` T : T ′
�

Choose Φ such that T = [Φ] t and fv(Φ)∩ fv(Φ0)= /0. Then using sub-lemma 4 we get W, W′; M[Φ0/φ0]`
Φ[Φ0/φ0] wf. Similarly using sub-lemma 1 we get W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆ t[Φ0/φ0] : t ′[Φ0/φ0].
From these we get W, W′; M[Φ0/φ0] ` T [Φ0/φ0] : T ′[Φ0/φ0].

Sub-lemma 3. The interesting cases follow.

Case
W, φ0 : ctx, W′; M; Φ `∆ σ : Φ

′ W, φ0 : ctx, W′; M; Φ `∆ t : t ′[σ/Φ
′]

W, φ0 : ctx, W′; M; Φ `∆ σ, t : Φ
′, x : t ′

�

Simple by use of induction hypothesis and sub-lemma 1; also note that (t ′[Φ0/φ0])[σ[Φ0/φ0]/Φ′[Φ0/φ0]].

Case
W, φ0 : ctx, W′; M; Φ `∆ σ : Φ

′
φ0 ∈Φ

W, φ0 : ctx, W′; M; Φ `∆ σ, idφ0 : Φ
′, φ0

�

By induction hypothesis we have: W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆ σ[Φ0/φ0] : Φ′[Φ0/φ0]. By structural
induction on Φ′0 we prove that W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆ σ[Φ0/φ0], idsubst(Φ′0) : Φ′[Φ0/φ0], Φ′0
for all Φ′0 that are prefixes of Φ0. (Then the desired follows directly by taking Φ′0 = Φ0).

When Φ′0 = •, this is trivial.

When Φ′0 = Φ′′0, x : t, we have that idsubst(Φ′0) = idsubst(Φ′′0), x. By (inner) induction hypothesis we
have:

W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆ σ, idsubst(Φ′′0) : Φ
′, Φ

′′
0

We also have that x : t ∈ Φ[Φ0/φ0] (because φ0 ∈ Φ and x 6∈ fv(Φ)), thus by the appropriate typing rule for
substitutions we have: W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆ σ[Φ0/φ0], idsubst(Φ′′0), x : Φ′[Φ0/φ0], Φ′′0, x : t.

When Φ′0 = Φ′′0, φ′, we proceed similar to the above case, getting W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆

σ[Φ0/φ0], idsubst(Φ′′0) : Φ′[Φ0/φ0], Φ′′0 . Also we have that φ′ ∈ Φ[Φ0/φ0]. Thus by the relevant typing
rule we get: W, W′; M[Φ0/φ0]; Φ[Φ0/φ0] `∆ σ[Φ0/φ0], idsubst(Φ′′0), idφ′ : Φ′[Φ0/φ0], Φ′′0, φ′.

Case
W, φ0 : ctx, W′; M; Φ `∆ σ : Φ

′
φ1 ∈Φ

W, φ0 : ctx, W′; M; Φ `∆ σ, idφ1 : Φ
′, φ1

�

Trivial by use of inductive hypothesis.

Sub-lemma 4. The interesting cases follow.

Case
W, φ0 : ctx, W′; M `Φ wf W, φ0 : ctx, W′; M; Φ `∆ t : t ′ (x 6∈Φ)

W, φ0 : ctx, W′; M `Φ, x : t wf
�

By use of induction hypothesis, plus sub-lemma 1.

Case
W, φ0 : ctx, W′; M `Φ wf

W, φ0 : ctx, W′; M `Φ, φ0 wf
�

33

By induction hypothesis we have: W, W′; M[Φ0/φ0] `Φ[Φ0/φ0] wf. By structural induction on prefixes
Φ′0 of Φ0 we prove W, W′; M[Φ0/φ0] ` Φ[Φ0/φ0], Φ′0 wf, from which the desired immediately follows.
In the case where Φ′0 = Φ′′0, x : t, by inversion of W; M ` Φ0 wf we get that W; M; Φ′′0 `∆ t : t ′. By
weakening and the fact that t can only depend on the part of M that does not depend on φ0, we have
W, W′; M[Φ0/φ0]; Φ[Φ0/φ0], Φ′′0 `∆ t : t ′, thus W, W′; M[Φ0/φ0] ` Φ[Φ0/φ0], Φ′′0, x : t wf. The case
where Φ′0 = Φ′′0, φ′ is simple, since φ′ cannot be the same as φ0 because of well-formedness under the context
variables environment W.

Sub-lemma 5. Simple structural induction on M, and use of sub-lemma 2.

B Computational language: full static and dynamic semantics

Syntax

K ::= ∗ | K1→ K2 | Πx : T.K | Πφ : ctx.K
τ ::= unit | int | bool | τ1→ τ2 | τ1 + τ2 | τ1× τ2 | µα : K.τ | ∀α : K.τ | α | array τ | λα : K.τ | τ1 τ2
| ΠX : T.τ | ΣX : T.τ | Πφ : ctx.τ | Σφ : ctx.τ | λX : T.τ | τ T | λφ : ctx.τ | τ Φ

e ::= λX : T.e | e T | 〈T, e〉 | let 〈X , x〉= e in e′

| λφ : ctx.e | e Φ | 〈Φ, e〉 | let 〈φ, x〉= e in e′ | holcase T of ([M1].T1 7→ e1) · · ·([Mn].Tn 7→ en)
| holhash T | () | n | e1 + e2 | e1 ≤ e2 | true | false | if e then e1 elsee2 | λx : τ.e | e1 e2 | (e1, e2)
| proji e | inji e | case(e, x1.e1, x2.e2) | fold e | unfold e | Λα : K.e | e τ | fix x : τ.e | mkarray(e,e′)
| e[e′] | e[e′] := e′′ | l | error

Γ ::= • | Γ, x : τ | Γ, α : K
Σ ::= • | Σ, l : array τ

Typing rules

Note that we leave patterns abstract here, as logical terms with an explicitly specified metavariable context
representing unification variables. This is done in order to simplify our presentation and proofs. In section
D we will see pattern typing and show that it adheres to the properties that we will require here.

Kind level

W;M ` ∗ wf

W;M ` K1 wf W;M ` K2 wf

W;M ` K1→ K2 wf

W, φ : ctx;M ` K wf

W;M ` ∀φ : ctx.K wf

W;M ` T : T ′ W;M,X : T ` K wf

W;M ` ∀X : T.K wf

34

Type level

W;M;Γ ` unit : ∗ W;M;Γ ` int : ∗ W;M;Γ ` bool : ∗
W;M;Γ ` τ1 : ∗ W;M;Γ ` τ2 : ∗

W;M;Γ ` τ1→ τ2 : ∗

W;M;Γ ` τ1 : ∗ W;M;Γ ` τ2 : ∗
W;M;Γ ` τ1× τ2 : ∗

W;M;Γ ` τ1 : ∗ W;M;Γ ` τ2 : ∗
W;M;Γ ` τ1 + τ2 : ∗

W;M;Γ, α : K ` τ : ∗
W;M;Γ ` µα : K.τ : ∗

W;M;Γ, α : K ` τ : ∗
W;M;Γ ` ∀α : K.τ : ∗

α : K ∈ Γ

W;M;Γ ` α : K

W;M;Γ ` τ : ∗
W;M;Γ ` array τ : ∗

W;M;Γ, α : K ` τ : K′

W;M;Γ ` λα : K.τ : K→ K′

W;M;Γ ` τ1 : K→ K′ W;M;Γ ` τ2 : K

W;M;Γ ` τ1 τ2 : K′
W;M ` T : T ′ W;M, X : T ;Γ ` τ : ∗

W;M;Γ `ΠX : T.τ : ∗

W;M ` T : T ′ W;M, X : T ;Γ ` τ : ∗
W;M;Γ ` ΣX : T.τ : ∗

W, φ : ctx;M;Γ ` τ : ∗
W;M;Γ `Πφ : ctx.τ : ∗

W, φ : ctx;M;Γ ` τ : ∗
W;M;Γ ` Σφ : ctx.τ : ∗

W;M ` T : T ′ W;M, X : T ;Γ ` τ : K

W;M;Γ ` λX : T.τ : ∀X : T.K

W;M;Γ ` τ : ∀X : T.K W;M ` T ′ : T

W;M;Γ ` τ T ′ : K[T ′/X]

W, φ : ctx;M;Γ ` τ : K

W;M;Γ ` λφ : ctx.τ : ∀φ : ctx.K

W;M;Γ ` τ : ∀φ : ctx.K W;M `Φ wf

W;M;Γ ` τ Φ : K[Φ/φ]

Expression level:

W;M ` T : T ′ W;M, X : T ;Σ;Γ ` e : τ

W;M;Σ;Γ ` λX : T.e : ΠX : T.τ

W;M;Σ;Γ ` e : ΠX : T.τ W;M ` T ′ : T

W;M;Σ;Γ ` e T ′ : τ[T ′/X]

W;M ` T ′ : T W;M;Σ;Γ ` e : τ[T ′/X]
W;M;Σ;Γ `

〈
T ′, e

〉
: ΣX : T.τ

W;M;Σ;Γ ` e : ΣX : T.τ W;M, X ′ : T ;Σ;Γ, x : τ[X ′/X] ` e′ : τ
′ X ′ 6∈ fv(τ′)

W;M;Σ;Γ ` let
〈
X ′, x

〉
= e in e′ : τ

′

W, φ : ctx;M;Σ;Γ ` e : τ

W;M;Σ;Γ ` λφ : ctx.e : Πφ : ctx.τ

W;M;Σ;Γ ` e : Πφ : ctx.τ W;M `Φ wf

W;M;Σ;Γ ` e Φ : τ[Φ/φ]

W;M `Φ wf W;M;Σ;Γ ` e : τ[Φ/φ]
W;M;Σ;Γ ` 〈Φ, e〉 : Σφ : ctx.τ

W;M;Σ;Γ ` e : Σφ : ctx.τ W,φ′ : ctx;M;Σ;Γ, x : τ[φ′/φ] ` e′ : τ
′

φ
′ 6∈ fv(τ′)

W;M;Σ;Γ ` let
〈
φ
′, x
〉

= e in e′ : τ
′

35

W;M ` T : T ′ T ′ = [Φ] t ′ W; M; Φ ` t ′ : Type
W; M, X : T ′; Γ ` τ : ∗ ∀i,

(
W;M `Mi wf W;M,Mi ` Ti : T ′ W;M, Mi;Σ;Γ ` ei : τ[Ti/X]

)
W;M;Σ;Γ ` holcase T of ([M1].Ti 7→ e1) · · ·([M1].Ti 7→ en) : τ[T/X]

W;M ` T : T ′

W;M;Σ;Γ ` holhash T : int

W;M;Σ;Γ, x : τ ` e : τ
′

W;M;Σ;Γ ` λx : τ.e : τ→ τ
′

W;M;Σ;Γ ` e : τ→ τ
′ W;M;Σ;Γ ` e′ : τ

W;M;Σ;Γ ` e e′ : τ
′

x : τ ∈ Γ

W;M;Σ;Γ ` x : τ

W;M;Σ;Γ, α : K ` e : τ

W;M;Σ;Γ ` Λα : K.e : ∀α : K.τ

W;M;Σ;Γ ` e : ∀α : K.τ W;M;Γ ` τ
′ : K

W;M;Σ;Γ ` e τ
′ : τ[τ′/α]

W;M;Σ;Γ ` () : unit W;M;Σ;Γ ` n : int

W;M;Σ;Γ ` e1 : int W;M;Σ;Γ ` e2 : int

W;M;Σ;Γ ` e1 + e2 : int

W;M;Σ;Γ ` e1 : int W;M;Σ;Γ ` e2 : int

W;M;Σ;Γ ` e1 ≤ e2 : bool W;M;Σ;Γ ` true : bool W;M;Σ;Γ ` false : bool

W;M;Σ;Γ ` e : bool W;M;Σ;Γ ` e1 : τ W;M;Σ;Γ ` e2 : τ

W;M;Σ;Γ ` if e then e1 elsee2 : τ

W;M;Σ;Γ ` e1 : τ1 W;M;Σ;Γ ` e2 : τ2

W;M;Σ;Γ ` (e1, e2) : τ1× τ2

W;M;Σ;Γ ` e : τ1× τ2

W;M;Σ;Γ ` proji e : τi

W;M;Σ;Γ ` e : τi

W;M;Σ;Γ ` inji e : τ1 + τ2

W;M;Σ;Γ ` e : τ1 + τ2 W;M;Σ;Γ, x1 : τ1 ` e1 : τ W;M;Σ;Γ, x2 : τ2 ` e2 : τ

W;M;Σ;Γ ` case(e, x1.e1, x2.e2) : τ

W;M;Σ;Γ ` e : τ[µα : K.τ/α]
W;M;Σ;Γ ` fold e : µα : K.τ

W;M;Σ;Γ ` e : µα : K.τ

W;M;Σ;Γ ` unfold e : τ[µα : K.τ/α]
W;M;Σ;Γ,x : τ ` e : τ

W;M;Σ;Γ ` fix x : τ.e : τ

W;M;Σ;Γ ` error : τ

W;M;Σ;Γ ` e : int W;M;Σ;Γ ` e′ : τ

W;M;Σ;Γ `mkarray(e,e′) : array τ

W;M;Σ;Γ ` e1 : array τ W;M;Σ;Γ ` e2 : int W;M;Σ;Γ ` e3 : τ

W;M;Σ;Γ ` e1[e2] := e3 : unit

W;M;Σ;Γ ` e : array τ W;M;Σ;Γ ` e′ : int

W;M;Σ;Γ ` e[e′] : τ

l : array τ ∈ Σ

W;M;Σ;Γ ` l : array τ

W;M;Σ;Γ ` e : τ τ =βι τ
′

W;M;Σ;Γ ` e : τ
′

36

Metavariable Substitution Typing

W; M ` σM : M′

W; M ` • : •
W; M ` σM : M′ W; M ` T : T ′[σM]

W; M ` (σM, X 7→ T) : (M′, X : T ′)

β-equality for type level:

The contextual, reflexive, symmetric, transitive closure of:

(λα : K.τ) τ′ =β τ[τ′/α]
(λX : T.τ) T ′ =β τ[T ′/X]
(λφ : ctx.τ) Φ =β τ[Φ/φ]

Note also that we identify types up to βι-conversion of the logic.

Operational semantics

v ::= λX : T.e | 〈T, v〉 | λφ : ctx.e | 〈Φ, v〉 | · · · | () | n | true | false | λx : τ.e | (v1, v2) | inji v | fold v
| Λα : K.e | l

E ::= • | E T | 〈T, E〉 | let 〈X , x〉= E in e′ | E Φ | 〈Φ, E〉 | let 〈φ, x〉= E in e′ | · · · | E+ e | v+E

| E≤ e | v≤ E | if E then e1 elsee2 | E e | v E | (E, e) | (v, E) | proji E | inji E

| case(E, x1.e1, x2.e2) | fold E | unfold E | E τ | mkarray(E,e) | mkarray(v,E) | E[e] | v[E]
| E[e] := e′ | v[E] := e′ | v[vi] := E

σM ::= • | σM, X 7→ T
µ ::= • | µ, l 7→ [v1, · · · ,vn]

µ,e−→ µ′,e′

µ,E[e]−→ µ′,E[e′]
µ,E[error]−→ µ,error µ,(λX : T.e) T ′ −→ µ,e[T ′/X]

µ, let 〈X , x〉= 〈T, v〉 in e′ −→ µ,e′[T/X][v/x] µ,(λφ : ctx.e) Φ−→ µ,e[Φ/φ]

µ, let 〈φ, x〉= 〈Φ, v〉 in e′ −→ µ,e′[Φ/φ][v/x]

T = [Φ] t Φ ` unify(t1, t) = σM

µ,holcase T of ([M1].[Φ] t1 7→ e1) · · ·([Mn].[Φ] tn 7→ en)−→ µ,e1[σM]

T = [Φ] t Φ ` unify(t1, t) =⊥
µ,holcase T of ([M1].[Φ] t1 7→ e1) · · ·([Mn].[Φ] tn 7→ en)−→

µ,holcase T of ([M2].[Φ] t2 7→ e2) · · ·([Mn].[Φ] tn 7→ en)

µ,holcase T of • −→ µ,error

37

T −→βι T ′ hash(T ′) = n

µ,holhash T −→ µ,n

n1 +n2 = n

µ,n1 +n2 −→ µ,n

n1 ≤ n2

µ,n1 ≤ n2 −→ µ, true

n1 > n2

µ,n1 > n2 −→ µ, false

µ, if true then e1 elsee2 −→ µ,e1 µ, if false then e1 elsee2 −→ µ,e2 µ,(λx : τ.e) v−→ µ,e[v/x]

µ,proji (v1, v2)−→ µ,vi µ,case(inji v, x1.e1, x2.e2)−→ µ,ei[v/xi] µ,unfold (fold v)−→ µ,v

µ,(Λα : K.e) τ−→ µ,e[τ/α] µ,fix x : τ.e−→ µ,e[fix x : τ.e/x]

l 6∈ dom(µ)
µ,mkarray(n,v)−→ µ|l 7→ [v, · · · ,v]︸ ︷︷ ︸

n times

, l

µ(l) = [v0, v1, · · · ,vm−1] n < m

µ, l[n]−→ µ,vn

µ(l) = [v0, v1, · · · ,vm−1] n≥ m

µ, l[n]−→ µ,error

µ(l) = [v0, v1, · · · ,vm−1] n < m

µ, l[n] := v−→ µ|l 7→ [v0, v1, · · · , vn−1,v,vn+1, · · · ,vm−1],()

µ(l) = [v0, v1, · · · ,vm−1] n≥ m

µ, l[n] := v−→ µ,error

Substitutions

K[T/X]

∗[T/X] = ∗
(K1→ K2)[T/X] = K1[T/X]→ K2[T/X]
(ΠY : T ′.K)[T/X] = ΠY : T ′[T/X].K[T/X] when Y 6∈ fv(T)
(Πφ : ctx.K)[T/X] = Πφ : ctx.K[T/X]

τ[T/X]

unit[T/X] = unit
int[T/X] = int
bool[T/X] = bool
(τ1→ τ2)[T/X] = τ1[T/X]→ τ2[T/X]
(τ1× τ2)[T/X] = τ1[T/X]× τ2[T/X]
(τ1 + τ2)[T/X] = τ1[T/X]+ τ2[T/X]
(µα : K.τ)[T/X] = µα : K[T/X].τ[T/X]
(∀α : K.τ)[T/X] = ∀α : K[T/X].τ[T/X]
α[T/X] = α

(array τ)[T/X] = array τ[T/X]
(λα : K.τ)[T/X] = λα : K[T/X].τ[T/X]

38

τ[T/X] (continued)

(τ1 τ2)[T/X] = τ1[T/X] τ2[T/X]
(ΠY : T ′.τ)[T/X] = ΠY : T ′[T/X].τ[T/X] when Y 6∈ fv(T)
(ΣY : T ′.τ)[T/X] = ΣY : T ′[T/X].τ[T/X] when Y 6∈ fv(T)
(λY : T ′.τ)[T/X] = λY : T ′[T/X].τ[T/X] when Y 6∈ fv(T)
(τ T ′)[T/X] = τ[T/X] T ′[T/X]
(Πφ : ctx.τ)[T/X] = Πφ : ctx.τ[T/X]
(Σφ : ctx.τ)[T/X] = Σφ : ctx.τ[T/X]
(λφ : ctx.τ)[T/X] = λφ : ctx.τ[T/X]
(τ Φ)[T/X] = τ[T/X] Φ[T/X]

e[T/X]

(λY : T ′.e)[T/X] = λY : T ′[T/X].e[T/X] when Y 6∈ fv(T)
(e T ′)[T/X] = e[T/X] T ′[T/X]
(〈T ′, e〉)[T/X] = 〈T ′[T/X], e[T/X]〉
(let 〈Y, x〉= e in e′)[T/X] = let 〈Y, x〉= e[T/X] in e′[T/X] when Y 6∈ fv(T)
(λφ : ctx.e)[T/X] = λφ : ctx.e[T/X]
(e Φ)[T/X] = e[T/X] Φ[T/X]
(〈Φ, e〉)[T/X] = 〈Φ[T/X], e[T/X]〉
(let 〈φ, x〉= e in e′)[T/X] = let 〈φ, x〉= e[T/X] in e′[T/X]
(holcase T ′ of ([M1].T1 7→ e1) · · ·([Mn].Tn 7→ en))[T/X] =

holcase T ′[T/X] of ([M1[T/X]].T1[T/X] 7→ e1[T/X]) · · ·([Mn[T/X]].Tn[T/X] 7→ en[T/X])
where we rename Mi such that ∀i, fv(Mi)∩ fv(T) = /0

(holhash T ′)[T/X] = holhash T ′[T/X]
· · ·

o[σM] where o = τ or o = e

o[•] = o
o[X 7→ T, σM] = (o[T/X])[σM]

K[Φ/φ]

∗[Φ/φ] = ∗
(K1→ K2)[Φ/φ] = K1[Φ/φ]→ K2[Φ/φ]
(ΠX : T.K)[Φ/φ] = ΠX : T [Φ/φ].K[Φ/φ]
(Πφ′ : ctx.K)[Φ/φ] = Πφ′ : ctx.K[Φ/φ] where φ′ 6∈ fv(Φ)

39

τ[Φ/φ]

unit[Φ/φ] = unit
int[Φ/φ] = int
bool[Φ/φ] = bool
(τ1→ τ2)[Φ/φ] = τ1[Φ/φ]→ τ2[Φ/φ]
(τ1× τ2)[Φ/φ] = τ1[Φ/φ]× τ2[Φ/φ]
(τ1 + τ2)[Φ/φ] = τ1[Φ/φ]+ τ2[Φ/φ]
(µα : K.τ)[Φ/φ] = µα : K[Φ/φ].τ[Φ/φ]
(∀α : K.τ)[Φ/φ] = ∀α : K[Φ/φ].τ[Φ/φ]
α[Φ/φ] = α

(array τ)[Φ/φ] = array τ[Φ/φ]
(λα : K.τ)[Φ/φ] = λα : K[Φ/φ].τ[Φ/φ]
(τ1 τ2)[Φ/φ] = τ1[Φ/φ] τ2[Φ/φ]
(ΠX : T.τ)[Φ/φ] = ΠX : T [Φ/φ].τ[Φ/φ]
(ΣX : T.τ)[Φ/φ] = ΣX : T [Φ/φ].τ[Φ/φ]
(λX : T.τ)[Φ/φ] = λX : T [Φ/φ].τ[Φ/φ]
(τ T)[Φ/φ] = τ[Φ/φ] T [Φ/φ]
(Πφ′ : ctx.τ)[Φ/φ] = Πφ′ : ctx.τ[Φ/φ] where φ′ 6∈ fv(Φ)
(Σφ′ : ctx.τ)[Φ/φ] = Σφ′ : ctx.τ[Φ/φ] where φ′ 6∈ fv(Φ)
(λφ′ : ctx.τ)[Φ/φ] = λφ′ : ctx.τ[Φ/φ] where φ′ 6∈ fv(Φ)
(τ Φ′)[Φ/φ] = τ[Φ/φ] Φ′[Φ/φ] choosing (by α-renaming) Φ′ such that fv(Φ′)∩ fv(Φ) = /0

e[Φ/φ]

(λX : T.e)[Φ/φ] = λX : T [Φ/φ].e[Φ/φ]
(e T)[Φ/φ] = e[Φ/φ] T ′[Φ/φ]
(〈T, e〉)[Φ/φ] = 〈T [Φ/φ], e[Φ/φ]〉
(let 〈X , x〉= e in e′)[Φ/φ] = let 〈X , x〉= e[Φ/φ] in e′[Φ/φ]
(λφ′ : ctx.e)[Φ/φ] = λφ′ : ctx.e[Φ/φ]

where φ′ 6∈ fv(Φ)
(e Φ′)[Φ/φ] = e[Φ/φ] Φ′[Φ/φ]

(choosing (by α-renaming) Φ′ such that fv(Φ′)∩ fv(Φ) = /0)
(〈Φ′, e〉)[Φ/φ] = 〈Φ′[Φ/φ], e[Φ/φ]〉
(let 〈φ′, x〉= e in e′)[Φ/φ] = let 〈φ, x〉= e[Φ/φ] in e′[Φ/φ]

where φ′ 6∈ fv(Φ)
(holcase T ′ of ([M1].T1 7→ e1) · · ·([Mn].Tn 7→ en))[Φ/φ] =

holcase T ′[Φ/φ] of ([M1[Φ/φ]].T1[Φ/φ] 7→ e1[Φ/φ]) · · ·([Mn[Φ/φ]].Tn[Φ/φ] 7→ en[Φ/φ])
(holhash T ′)[Φ/φ] = holhash T ′[Φ/φ]
· · ·

The rest of the substitutions are standard; we do not include them here.

C Computational language: metatheory

Theorem C.1 (Substitution of contextual terms for metavariables in kinds)

40

If W; M ` T0 : T ′0 and W; M, X0 : T ′0, M′ ` K wf then W; M, M′[T0/X0] ` K[T0/X0] wf.

Straightforward structural induction, and use of theorem A.1 in the cases K = ∀Y : T.K′ and K = ∀φ : ctx.K′.

Theorem C.2 (Substitution of contextual terms for metavariables in types)

If W; M ` T0 : T ′0 and W; M, X0 : T ′0, M′; Γ ` τ : K then W; M, M′[T0/X0];Γ[T0/X0] ` τ[T0/X0] : K[T0/X0].

Straightforward structural induction, and use of theorem A.1 and C.1 in various cases. Some sample cases:

Case
W;M, X0 : T ′0, M′ ` T : T ′ W;M, X0 : T ′0, M′, X : T ;Γ ` τ : ∗

W;M, X0 : T ′0, M′;Γ `ΠX : T.τ : ∗
�

By A.1.2, get W;M,M′[T0/X0]`T [T0/X0] : T ′[T0/X0]. By induction hypothesis, get W;M, M′[T0/X0], X :
T [T0/X0];Γ[T0/X0] ` τ[T0/X0] : ∗. Through the use of the same rule, we get the desired result.

Case
W, φ : ctx;M, X0 : T ′0, M′;Γ ` τ : ∗
W;M, X0 : T ′0, M′;Γ `Πφ : ctx.τ : ∗

�

By weakening for context variables of T0 we get: W, φ : ctx;M ` T0 : T ′0 . Then, directly by application of
induction hypothesis for τ.

Case
W;M, X0 : T0, M′;Γ ` τ : ∀φ : ctx.K W;M, X0 : T0, M′ `Φ wf

W;M, X0 : T0, M′;Γ ` τ Φ : K[Φ/φ]
�

By induction hypothesis we get W;M, M′[T0/X0];Γ[T0/X0] ` τ[T0/X0] : ∀φ : ctx.K[T0/X0]. By A.1.4 we
get W;M,M′[T0/X0] ` Φ[T0/X0] wf. From these we get W;M, M′[T0/X0];Γ[T0/X0] ` τ[T0/X0] Φ[T0/X0] :
(K[T0/X0])[Φ[T0/X0]/φ] which proves this case since (K[T0/X0])[Φ[T0/X0]/φ] = K[Φ/φ][T0/X0].

Theorem C.3 (Substitution of contextual terms for metavariables in expressions)

If W; M ` T0 : T ′0 and W; M, X0 : T ′0, M′; Σ; Γ ` e : τ then W; M, M′[T0/X0]; Σ[T0/X0];Γ[T0/X0] `
e[T0/X0] : τ[T0/X0].

Proof by simple structural induction on the typing derivation for e. Some interesting cases follow.

Case
W;M, X0 : T ′0, M′ ` T : T ′ W;M, X0 : T ′0, M′, X : T ;Σ;Γ ` e : τ

W;M, X0 : T ′0, M′;Σ;Γ ` λX : T.e : ΠX : T.τ
�

Using theorem A.1.2 get W;M,M′[T0/X0] ` T [T0/X0] : T ′[T0/X0]. By induction hypothesis get:
W;M, M′[T0/X0];Σ[T0/X0];Γ[T0/X0] ` e[T0/X0] : τ[T0/X0]. From these the result is immediate by applica-
tion of the typing rule.

Case
W;M, X0 : T ′0, M′;Σ;Γ ` e : ΠX : T.τ W;M, X0 : T ′0, M′ ` T ′ : T

W;M, X0 : T ′0, M′;Σ;Γ ` e T ′ : τ[T ′/X]
�

Assume X 6∈ fv(M, X0 : T0,M
′). By induction hypothesis get W;M, M′[T0/X0];Σ[T0/X0];Γ[T0/X0] `

e[T0/X0] : ΠX : T [T0/X0].τ[T0/X0]. By A.1.2 get W;M,M′[T0/X0] ` T ′[T0/X0] : T [T0/X0]. By application
of the typing rule get W;M, M′[T0/X0];Σ[T0/X0];Γ[T0/X0] ` e[T0/X0] T ′[T0/X0] : (τ[T0/X0])[T ′[T0/X0]/X].
But (τ[T0/X0])[T ′[T0/X0]/X] = (τ[T ′/X])[T0/X0].

41

Case
W;M, X0 : T ′0, M′ ` T ′ : T W;M, X0 : T ′0, M′;Σ;Γ ` e : τ[T ′/X]

W;M, X0 : T ′0, M′;Σ;Γ `
〈
T ′, e

〉
: ΣX : T.τ

�

Similarly to the above W;M, M′[T0/X0] ` T ′[T0/X0] : T [T0/X0].
Also get W;M, M′[T0/X0];Σ[T0/X0];Γ[T0/X0] ` e[T0/X0] : τ[T ′/X][T0/X0] from induction hypothesis. We
also have τ[T ′/X][T0/X0] = (τ[T0/X0])[T ′[T0/X0]/X]. Thus from the same typing rule, get:
W;M, M′[T0/X0];Σ[T0/X0];Γ[T0/X0] ` 〈T ′[T0/X0], e[T0/X0]〉 : ΣX : T [T0/X0].τ[T0/X0].

Case
W;M, X0 : T ′0, M′;Σ;Γ ` e : ΣX : T.τ

W;M, X0 : T ′0, M′, X ′ : T ;Σ;Γ, x : τ[X ′/X] ` e′ : τ
′ X ′ 6∈ fv(τ′)

W;M, X0 : T ′0, M′;Σ;Γ ` let
〈
X ′, x

〉
= e in e′ : τ

′
�

From induction hypothesis get W;M, M′[T0/X0];Σ[T0/X0];Γ[T0/X0] ` e : ΣX : T [T0/X0].τ[T0/X0]. Also
from induction hypothesis for e′ get:
W;M, M′[T0/X0], X ′ : T [T0/X0];Σ[T0/X0];Γ[T0/X0],x : (τ[T0/X0])[X ′/X] ` e′[T0/X0] : τ′[T0/X0].
From well-formedness of T0 under M we get that it does not depend on X ′, so X ′ 6∈ fv(τ[T0/X0]) still holds.
From these we can immediately use the same typing rule.

Case
W, φ : ctx;M, X0 : T ′0, M′;Σ;Γ ` e : τ

W;M, X0 : T ′0, M′;Σ;Γ ` λφ : ctx.e : Πφ : ctx.τ
�

From weakening for context variables for T0 we get W, φ : ctx;M ` T0 : T ′0; thus we can use the induction
hypothesis from which the result follows immediately.

Case
W;M, X0 : T ′0, M′;Σ;Γ ` e : Πφ : ctx.τ W;M, X0 : T ′0, M′ `Φ wf

W;M, X0 : T ′0, M′;Σ;Γ ` e Φ : τ[Φ/φ]
�

From induction hypothesis get W;M, M′[T0/X0];Σ[T0/X0];Γ[T0/X0] ` e : Πφ : ctx.τ[T0/X0]. Also from
A.1.4 get W;M, M′[T0/X0] `Φ[T0/X0] wf. From these we can use the typing rule to get:
W;M, M′[T0/X0];Σ[T0/X0];Γ[T0/X0] ` e[T0/X0] Φ[T0/X0] : (τ[T0/X0])[Φ[T0/X0]] where:
(τ[T0/X0])[Φ[T0/X0]/φ] = τ[Φ/φ][T0/X0].

Case

W;M, X0 : T ′0, M′ ` T : T ′ T ′ = [Φ] t ′ W; M, X0 : T ′0, M′; Φ ` t ′ : Type
W; M, X0 : T ′0, M′ X : T ′; Γ ` τ : ∗ ∀i,(W;M, X0 : T ′0, M′ `Mi wf

W;M, X0 : T ′0, M′, Mi ` Ti : T ′ W;M, X0 : T ′0, M′, Mi;Σ;Γ ` ei : τ[Ti/X])
W;M, X0 : T ′0, M′;Σ;Γ ` holcase T of ([M1].T1 7→ e1) · · ·([Mn].Tn 7→ en) : τ[T/X]

�

We α-rename so that the Mi do not have clashing variable names with M,X0 : T ′0,M
′. From A.1.2

for T get W;M,M′[T0/X0] ` T [T0/X0] : T ′[T0/X0], with T ′ = [Φ[T0/X0]] (t ′[T0/X0]). From A.1.1 for t ′

get that W; M, M′[T0/X0];Φ[T0/X0] ` t ′[T0/X0] : Type. From C.2 for τ we get W; M, M′[T0/X0], X :
T ′[T0/X0]; Γ[T0/X0] ` τ[T0/X0] : ∗. For any i, we have by A.1.5 that W; M,M′[T0/X0] `Mi[T0/X0] wf.
By A.1.2 we get that W; M,M′[T0/X0],Mi[T0/X0] ` Ti[T0/X0] : T ′[T0/X0]. Last, by induction hypothe-
sis get W; M,M′[T0/X0],Mi[T0/X0];Σ[T0/X0];Γ[T0/X0] ` ei[T0/X0] : τ[Ti/X][T0/X0]. Using the facts that
τ[Ti/X][T0/X0] = (τ[T0/X0])[Ti[T0/X0]/X], τ[T/X][T0/X0] = (τ[T0/X0])[T [T0/X0]/X] and use of the same
typing rule, we immediately get the desired result.

Theorem C.4 (Multiple metavariable substitution in expressions) If W;M ` σM : M′ and
W; M,M′,M′′; Σ; Γ ` e : τ then W; M,M′[σM]; Σ[σM]; Γ[σM] ` e[σM] : τ[σM].

42

By structural induction on σM. The base case is trivial; in the induction step we have that σM = σ0
M, X 7→

T . By inversion of typing for σM we get W;M ` T : T ′[σ′M], M′ = M0, X : T ′ and W;M ` σ0
M : M0. Thus

we have W; M,M0,X : T ′,M′′;Σ;Γ ` e : τ. We use the induction hypothesis (with M′′ = X : T ′,M′′) and
thus get W; M,X : T ′[σ0

M],M′′[σ0
M];Σ[σ0

M];Γ[σ0
M] ` e[σ0

M] : τ[σ0
M]. From substitution lemma A.1.2 for

substituting T for X we get: W; M,M′′[σ0
M][T/X];Σ[σ0

M][T/X];Γ[σ0
M][T/X] ` e[σ0

M][T/X] : τ[σ0
M][T/X],

which is exactly equal to W; M,M′′[σM];Σ[σM];Γ[σM] ` e[σM] : τ[σM].

(Note that we assume similar lemmas for the other language entities – like types, environments, etc. –.
These are similar to this so we do not include them here)

Theorem C.5 (Context substitution in expressions) If W;M `Φ0 wf and W, φ0,W
′; M; Σ; Γ ` e : τ

then
W,W′; M[Φ0/φ0]; Σ[Φ0/φ0]; Γ[Φ0/φ0] ` e[Φ0/φ0] : τ[Φ0/φ0].

Structural induction on the typing derivation for e, and use of theorem A.2. Some interesting cases follow.

Case
W, φ0 : ctx, W′;M ` T : T ′ W, φ0 : ctx, W′;M, X : T ;Σ;Γ ` e : τ

W, φ0 : ctx, W′;M;Σ;Γ ` λX : T.e : ΠX : T.τ
�

By A.2.2 for T we get W, W′;M[Φ0/φ0] ` T [Φ0/φ0] : T ′[Φ0/φ0]. By induction hypothesis for e (and use
of metavariable context weakening for Φ0) we get: W, W′;M[Φ0/φ0], X : T [Φ0/φ0];Σ[Φ0/φ0];Γ[Φ0/φ0] `
e[Φ0/φ0] : τ[Φ0/φ0]. From this the result is immediate.

Case
W, φ0 : ctx, W′;M;Σ;Γ ` e : ΣX : T.τ

W, φ0 : ctx, W′;M, X ′ : T ;Σ;Γ, x : τ[X ′/X] ` e′ : τ
′ X ′ 6∈ fv(τ′)

W, φ0 : ctx, W′;M;Σ;Γ ` let
〈
X ′, x

〉
= e in e′ : τ

′
�

By induction hypothesis for e we get:
W, W′;M[Φ0/φ0];Σ[Φ0/φ0];Γ[Φ0/φ0] ` e[Φ0/φ0] : ΣX : T [Φ0/φ0].τ[Φ0/φ0]. Similarly by induction hy-
pothesis for e′ (after use of weakening for metavariable contexts for Φ0) we get W, W′;M[Φ0/φ0], X ′ :
T [Φ0/φ0];Σ[Φ0/φ0];Γ[Φ0/φ0], x : τ[X ′/X][Φ0/φ0] ` e′[Φ0/φ0] : τ′[Φ0/φ0]. The fact that X ′ 6∈ fv(τ′[Φ0/φ0])
is maintained, because Φ0 cannot mention X ′ (because it is well-formed under an M that does not include
X ′). Also τ[X ′/X][Φ0/φ0] = τ[Φ0/φ0][X ′/X] and thus by the use of the same typing rule we get the desired
result.

Case
W, φ0 : ctx, W′, φ : ctx;M;Σ;Γ ` e : τ

W, φ0 : ctx, W′;M;Σ;Γ ` λφ : ctx.e : Πφ : ctx.τ
�

Immediate by the use of induction hypothesis with W′ = W′, φ : ctx.

Case
W, φ0 : ctx, W′;M;Σ;Γ ` e : Πφ : ctx.τ W, φ0 : ctx, W′;M `Φ wf

W, φ0 : ctx, W′;M;Σ;Γ ` e Φ : τ[Φ/φ]
�

We α-rename Φ so that there is no clashing of variables with Φ0. From induction hypothesis for e we get

W, W′[Φ0/φ0];M[Φ0/φ0];Σ[Φ0/φ0];Γ[Φ0/φ0]` e[Φ0/φ0] : Πφ : ctx.τ[Φ0/φ0]. From A.2.4 (and the fact that
fv(Φ)∩ fv(Φ0) = /0), we get that W, W′;M[Φ0/φ0] ` Φ[Φ0/φ0]. From these we apply the same typing rule
to get
W, W′;M[Φ0/φ0];Σ[Φ0/φ0];Γ[Φ0/φ0] ` e[Φ0/φ0] Φ[Φ0/φ0] : (τ[Φ0/φ0])[Φ[Φ0/φ0]/φ]. This is the desired

43

result since (τ[Φ0/φ0])[Φ[Φ0/φ0]/φ] = (τ[Φ/φ])[Φ0/φ0].

Case
W, φ0 : ctx, W′;M `Φ W, φ0 : ctx, W′;M;Σ;Γ ` e : τ[Φ/φ]

W, φ0 : ctx, W′;M;Σ;Γ ` 〈Φ, e〉 : Σφ : ctx.τ
� Very similar to the above case.

Case
W, φ0 : ctx, W′;M;Σ;Γ ` e : Σφ : ctx.τ

W, φ0 : ctx, W′,φ′ : ctx;M;Σ;Γ, x : τ[φ′/φ] ` e′ : τ
′

φ
′ 6∈ fv(τ′)

W, φ0 : ctx, W′;M;Σ;Γ ` let
〈
φ
′, x
〉

= e in e′ : τ
′

�

By induction hypothesis for e we get W, W′;M[Φ0/φ0];Σ[Φ0/φ0];Γ[Φ0/φ0]` e[Φ0/φ0] : Σφ : ctx.τ[Φ0/φ0].
Also from induction hypothesis for e′ we get:
W, W′,φ′ : ctx;M[Φ0/φ0];Σ[Φ0/φ0];Γ[Φ0/φ0], x : τ[φ′/φ][Φ0/φ0] ` e′[Φ0/φ0] : τ′[Φ0/φ0]. Since Φ0 is well-
formed under a W that does not include φ′, it will not depend on it; thus φ′ 6∈ fv(τ′[Φ0/φ0]). From these we
can apply the same typing rule to get the desired result.

Case

W, φ0 : ctx, W′;M ` T : T ′ T ′ = [Φ] t ′

W, φ0 : ctx, W′; M; Φ ` t ′ : Type W; M, X : T ′; Γ ` τ : ∗ ∀i,(W, φ0 : ctx, W′;M `Mi wf
W, φ0 : ctx, W′;M,Mi ` Ti : T ′ W, φ0 : ctx, W′;M, Mi;Σ;Γ ` ei : τ[Ti/X])

W, φ0 : ctx, W′;M;Σ;Γ ` holcase T of ([M1].T1 7→ e1) · · ·([Mn].Tn 7→ en) : τ[T/X]

�

Similar to the above, with use of A.2.5 for the case of well-formedness of Mi.

Axiom C.6 (Pattern unification) If •; • `M1 wf, •; M1 ` [Φ] t1 : T ′, •; • ` [Φ] t : T ′, and Φ ` unify(t1, t) =
σM, then •; • ` σM : M1 and also t1[σM] =βι t.

We assume this here; in the next section we will prove that this always holds for well-typed patterns.

Theorem C.7 (Preservation) If •; •; Σ; • ` e : τ, •; •; Σ; • ` µ and µ,e−→ µ′,e′ then there exists Σ′ ⊇ Σ

such that •; •; Σ′; • ` e′ : τ and •; •; Σ′; • ` µ′.

We proceed by structural induction on the derivation µ,e −→ µ′,e′. Here we will only give the cases for
the new constructs; the other cases follow standard practice (e.g. Pierce [2002]).

Case µ,(λX : T.e) T ′ −→ µ,e[T ′/X] �

By typing inversion for e = (λX : T.e′) T ′ we get •; •; Σ; • ` λX : T.e′ : ΠX : T.τ′, •; • ` T ′ : T and
τ = τ′[T ′/X]. By typing inversion for λX : T.e′ we get •; X : T ; Σ; • ` e′ : τ′. By theorem C.3, substituting
T ′ for X in e′ we get: •; •; Σ; • ` e′[T/X] : τ′[T/X], which is our desired result. (Σ[T/X] = Σ because Σ is
well-formed under a context that does not include X and thus cannot contain it).

Case µ, let
〈
X ′, x

〉
= 〈T, v〉 in e′ −→ µ,e′[T/X ′][v/x] �

By typing inversion for e = let 〈X , x〉 = 〈T, v〉 in e′ we get: •; •; Σ; • ` 〈T, v〉 : ΣX : T ′.τ′ and •; X ′ :
T ′; Σ; x : τ′[X ′/X] ` e′ : τ with X ′ 6∈ fv(τ). Again by typing inversion for 〈T, v〉 we get: •; • ` T : T ′

and •; •; Σ; • ` v : τ′[T/X]. By C.3 for substituting T for X ′ in e′ we get •; •; Σ; x : τ′[X ′/X][T/X ′] `
e′[T/X ′] : τ[T/X ′]. We have τ[T/X ′] = τ since X ′ 6∈ fv(τ), and also τ′[X ′/X][T/X ′] = τ′[T/X]. Thus the
above judgement is equal to •; •; Σ; x : τ′[T/X] ` e′[T/X ′] : τ. From substitution of v for x in e′ we directly
get •; •; Σ; • ` e′[T/X ′][v/x] : τ, which is our desired result.

44

Case µ,(λφ : ctx.e) Φ−→ µ,e[Φ/φ] �

By typing inversion for e = (λφ : ctx.e) Φ get •; •; Σ; • ` λφ : ctx.e : Πφ : ctx.τ′, •; • ` Φ wf and τ =
τ′[Φ/φ]. By typing inversion for λφ : ctx.e get φ : ctx; •; Σ; • ` e : τ′. By C.5 for substituting Φ for φ in e
get •; •; Σ; • ` e[Φ/φ] : τ′[Φ/φ].

Case µ, let
〈
φ
′, x
〉

= 〈Φ, v〉 in e′ −→ µ,e′[Φ/φ
′][v/x] �

By typing inversion for e = let 〈φ′, x〉 = 〈Φ, v〉 in e′ we get •; •; Σ; • ` 〈Φ, v〉 : Σφ : ctx.τ′ and φ′ :
ctx; •; Σ; x : τ′[φ′/φ]` e′ : τ with φ′ 6∈ fv(τ). Again by typing inversion for 〈Φ, v〉 get ; `Φ wf and •; •; Σ; • `
v : τ′[Φ/φ]. By C.5 for substituting Φ for φ′ in e′ we get •; •; Σ; x : τ′[φ′/φ][Φ/φ′] ` e′[Φ/φ′] : τ[Φ/φ], which
as above is equal to •; •; Σ; x : τ′[Φ/φ] ` e′[Φ/φ′] : τ. By substitution of expression v for x in e′[Φ/φ′] this
case is proved.

Case
T = [Φ] t Φ ` unify(t1, t) = σM

µ,holcase T of ([M1].[Φ] t1 7→ e1) · · ·([Mn].[Φ] tn 7→ en)−→ µ,e1[σM]
�

By typing inversion for e we get: •; • ` T : T ′, •; • `M1 wf, •; M1 ` [Φ] t1 : T ′, ; M1; Σ; ` e1 :
τ′[[Φ] t1/X], •; X : T ′; • ` τ′ : ∗ and τ = τ′[T/X]. From C.6 we get that •; • ` σM : M1, and thus by
using theorem C.4 for e1 we get: •; •; Σ; • ` e1[σM] : τ′[[Φ] t1/X][σM]. Since τ′ is well-formed under
a context that does not include M1, we have that τ′[σM] = τ′. For similar reasons Φ[σM] = Φ. Thus
the above is equal to: •; •; Σ; • ` e1[σM] : τ′[[Φ] (t1[σM])/X]. From C.6 we get that t1[σM] =βι t thus
τ′[[Φ] (t1[σM])/X] =βι τ′[[Φ] t/X] = τ.

Case
T = [Φ] t Φ ` unify(t1, t) =⊥

µ,holcase T of ([M1].[Φ] t1 7→ e1) · · ·([Mn].[Φ] tn 7→ en)−→
µ,holcase T of ([M2].[Φ] t2 7→ e2) · · ·([Mn].[Φ] tn 7→ en)

�

Immediate by typing inversion and use of the typing rule for holcase · of .

Case µ,holcase T of • −→ µ,error �

Immediate by the fact that for every τ, •; •; Σ; • ` error : τ.

Theorem C.8 (Canonical forms) If •;•;Σ;• ` v : τ then:
If τ = ΠX : T.τ′, then v = λX : T.e.
If τ = ΣX : T.τ′, then v = 〈T ′, v′〉 and •;• ` T ′ : T .
If τ = Πφ : ctx.τ′, then v = λφ : ctx.e.
If τ = Σφ : ctx.τ′, then v = 〈Φ′, v′〉 and •;• `Φ′ wf.
If τ = unit, then v = ().
If τ = int, then v = n.
If τ = bool, then v = true or v = false.
If τ = τ1→ τ2, then v = λx : τ1.e.
If τ = τ1 + τ2 then v = inji v′.
If τ = τ1× τ2 then v = (v1, v2). If τ = µα : K.τ′ then v = fold v′.
If τ = ∀α : K.τ′ then v = Λα : K.e.
If τ = array τ′ then v = l.

Simple structural induction on v.

45

Theorem C.9 (Progress) If •; •; Σ; • ` e : τ then either e is a value, or, for every µ such that •; •; Σ; • ` µ,
µ,e−→ error, or there exists e′ and µ′ such that µ,e−→ µ′,e′.

Proof by structural induction on the typing derivation for e. Again most cases are standard; we will see
the ones for the new constructs here. Also note that we are only interested in cases where e cannot be written
as e = E[e′], but only as e = E[v] (where of course e is not a value, since otherwise the proof is trivial) – that
is because the general µ,E[e]−→ µ′,E[e′] directly applies after use of the induction hypothesis.

Case
W;M;Σ;Γ ` v : ΠX : T.τ W;M ` T ′ : T

W;M;Σ;Γ ` v T ′ : τ[T ′/X]
�

From canonical forms lemma, get that v = λX : T.e. Then µ,(λX : T.e) T ′ −→ µ,e[T ′/X] directly applies.

Case
W;M;Σ;Γ ` v : ΣX : T.τ W;M, X ′ : T ;Σ;Γ, x : τ[X ′/X] ` e′ : τ

′ X ′ 6∈ fv(τ′)
W;M;Σ;Γ ` let

〈
X ′, x

〉
= v in e′ : τ

′ �

From canonical forms lemma, get v = 〈T, v′〉. The relevant small-step rule for let 〈·, ·〉 = · in directly
applies.

Case
W;M;Σ;Γ ` v : Πφ : ctx.τ W;M `Φ wf

W;M;Σ;Γ ` v Φ : τ[Φ/φ]
�

From canonical forms lemma, get v = λφ : ctx.e. The relevant small-step rule for (λφ : ctx.e) Φ directly
applies.

Case
W;M;Σ;Γ ` v : Σφ : ctx.τ W,φ′ : ctx;M;Σ;Γ, x : τ[φ′/φ] ` e′ : τ

′
φ
′ 6∈ fv(τ′)

W;M;Σ;Γ ` let
〈
φ
′, x
〉

= v in e′ : τ
′ �

Again, directly from canonical forms lemma we get v = 〈Φ, v′〉 and the appropriate small-step rule ap-
plies.

Case
W;M ` T : T ′ T ′ = [Φ] t ′ W; M; Φ ` t ′ : Type

W; M, X : T ′; Γ ` τ : ∗ ∀i,
(
W;M `Mi wf W;M,Mi ` Ti : T ′ W;M, Mi;Σ;Γ ` ei : τ[Ti/X]

)
W;M;Σ;Γ ` holcase T of ([M1].T1 7→ e1) · · ·([Mn].Tn 7→ en) : τ[T/X]

�

From typing inversions from W;M,Mi ` Ti : T ′ we get that Ti = [Φ] ti so the relevant small-step rules
directly applies. If n = 0 then we have µ,e −→ µ,error. Otherwise we split cases on Φ ` unify(t1, t) =
σM or ⊥; in the former case we have e′ = e1[σM], in the latter we have e′ = holcase T of ([M2].T2 7→
e2) · · ·([Mn].Tn 7→ en).

D Typing and unification for patterns

Typing for patterns

We change the syntax of patterns into the equivalent (collapsed) syntax that follows, in order to match the
pseudoterm-style treatment of logical terms that we’ve seen above.

p ::= c | Prop | ∀sx : p1.p2 | λsx : p1.p2 | p1 p2 | x | X/σ | elim(c, t)

46

Since p is a subset of t, we abuse notation and use patterns p in positions where logical terms t are
expected.

∆ ` c : t

W; M; Φ `∆ (c⇐ t)⇒• W; M; Φ ` (Prop⇐ Type)⇒•

W; M; Φ ` (p1⇐ s)⇒M1 W; M, M1; Φ, x : p1 ` (p2⇐ Prop)⇒M2 M′ = M1]M2

W; M; Φ ` (∀sx : p1.p2⇐ Prop)⇒M′

W; M; Φ ` (p1⇐ s)⇒M1 W; M, M1; Φ, x : p1 ` (p2⇐ t2)⇒M2 M′ = M1]M2

W; M; Φ ` (λsx : p1.p2⇐∀sx : t1.t2)⇒M′

W; M; Φ ` (p1⇐∀Typex : t1.t2)⇒M1
W; M; Φ ` (p2⇐ t1)⇒M2 M′ = M1]M2 (x 6∈ fv(t2))

W; M; Φ ` (p1 p2⇐ t2)⇒M′
W; M; Φ ` elim(c, t) : t ′

W; M; Φ ` (elim(c, t)⇐ t ′)⇒•

x : t ∈Φ

W; M; Φ ` (x⇐ t)⇒•
X : T ∈M T = [Φ′] t W; M; Φ ` σ : Φ

′

W; M; Φ ` (X/σ⇐ t[σ/Φ
′])⇒•

X 6∈M σ = idsubst(Φ)
W; M; Φ ` (X/σ⇐ t)⇒ X : [Φ] t

The X 6∈M premise should be enforced by having distinct variable names for unification variables, so
that weakening still holds.

Pattern unification

The unify operation is defined as follows. Note that all contextual variables that show up inside the pattern
are actually unification variables, since unification happens in an empty contextual variable environment

47

(for closed programs). Thus matching a contextual variable with a term always succeeds.

t =βι c

Φ ` unify(c, t) = •
t =βι ∀sx : t1.t2 Φ ` unify(p1, t1) = σ

1
M Φ,x : t1 ` unify(p2[σ1

M], t2) = σ
2
M

Φ ` unify(∀sx : p1.p2, t) = σ
1
M, σ

2
M

t =βι λsx : t1.t2 Φ ` unify(p1, t1) = σ
1
M Φ, x : t1 ` unify(p2[σ1

M], t2) = σ
2
M

Φ ` unify(λsx : p1.p2, t) = σ
1
M, σ

2
M

t =βι t1 t2 Φ ` unify(p1, t1) = σ
1
M Φ ` unify(p2, t2) = σ

2
M

Φ ` unify(p1 p2, t) = σ
1
M, σ

2
M

t =βι elim(c, t ′)
Φ ` unify(elim(c, t ′), t) = •

t =βι x

Φ ` unify(x, t) = • Φ ` unify(Prop,Prop) = • Φ ` unify(X/σ, t) = X 7→ [Φ] t

(otherwise)

Φ ` unify(p, t) =⊥

Metatheory

Theorem D.1 If W; M; Φ ` (p⇐ t)⇒M′ then W; M `M′ wf and W; M, M′ ` [Φ] p : [Φ] t.

Proof by simple structural induction on the derivation for p. All cases are trivial (possibly by use of
induction hypothesis), using the equivalent rules for logical term typing.

From this theorem it is obvious that if a pattern is well-typed under the above rules, it can be used in the
typing rules presented in the previous section.

Theorem D.2 If •; • ` (p⇐ t ′)⇒M′, •; • ` [Φ] t : [Φ] t ′, and Φ ` unify(t1, t) = σM, then •; • ` σM : M′

and also p[σM] =βι t.

Proof by structural induction on the derivation Φ ` unify(p, t) = σM.

Case
t =βι c

Φ ` unify(c, t) = •
�

From typing inversion for (c⇐ t ′)⇒M′ we get that M′ = •. Since •; • ` • : •, σM obviously has the
correct type, and also c[σM] = c =βι t.

Case
t =βι x

Φ ` unify(x, t) = •
�

Case
t =βι elim(c, t ′)

Φ ` unify(elim(c, t ′), t) = •
�

Case
Φ ` unify(Prop,Prop) = •

�

48

All three are similar to the above case.

Case
t =βι ∀sx : t1.t2 Φ ` unify(p1, t1) = σ

1
M Φ,x : t1 ` unify(p2[σ1

M], t2) = σ
2
M

Φ ` unify(∀sx : p1.p2, t) = σ
1
M, σ

2
M

�

By typing inversion for ∀sx : p1.p2 we get •; •; Φ` (p1⇐ s)⇒M1 and •; M1; Φ,x : p1 ` (p2⇐Prop)⇒
M2. By induction hypothesis for p1 we have that •; • ` σ1

M : M1 and p1[σ1
M] = t1. By substituting σ1

M for
M1 in p2 we get: •; •; Φ,x : p1[σ1

M] ` (p2[σ1
M]⇐ Prop)⇒M2[σ1

M]. By induction hypothesis for p2[σ1
M]

we have that •; • ` σ2
M : M2[σ1

M] and p2[σ1
M][σ2

M] = t2. From the above we get that •;• ` σ1
M, σ2

M : M1, M2
and also that (∀sx : p1.p2)[σ1

M,σ2
M] = ∀sx : p1[σ1

M,σ2
M].(p2[σ1

M,σ2
M]). But p1 does not contain variables in

σ2
M; also p2[σ1

M,σ2
M] = p2[σ1

M][σ2
M]. Thus (∀sx : p1.p2)[σ1

M,σ2
M] = ∀sx : p1[σ1

M].p2[σ1
M][σ2

M] =βι ∀sx : t1.t2.

Case
t =βι λsx : t1.t2 Φ ` unify(p1, t1) = σ

1
M Φ, x : t1 ` unify(p2, t2) = σ

2
M

Φ ` unify(λsx : p1.p2, t) = σ
1
M, σ

2
M

�

Similar to the above case.

Case
t =βι t1 t2 Φ ` unify(p1, t1) = σ

1
M Φ ` unify(p2, t2) = σ

2
M

Φ ` unify(p1 p2, t) = σ
1
M, σ

2
M

�

By typing inversion we get •; • ` (p1⇐∀Typex : t.t ′)⇒M1 and •; • ` (p2⇐ t)⇒M2. From induction
hypothesis we get: •; • ` σ1

M : M1 and •; • ` σ2
M : M2. Since M1 and M2 have distinct variables, it follows

that •; • ` σ1
M,σ2

M : M1,M2. Also we get that p1[σ1
M] =βι t1 and p2[σ2

M] =βι t2. Thus (p1 p2)[σ1
M,σ2

M] =
p1[σ1

M] p2[σ2
M] =βι t1 t2 =βι t, where we have used the fact that p1 cannot depend on variables out of M2

plus the inverse for p2.

Case
Φ ` unify(X/σ, t) = X 7→ [Φ] t

�

From typing inversion we get that •; • ` (X/σ⇐ t ′)⇒ X : [Φ] t ′, and also that σ = idsubst(Φ). We
also have that •; •;Φ ` t : t ′. From these we have that •; • ` (X 7→ [Φ] t) : (X : [Φ] t ′. Also, we have that
(X/idsubst(Φ))[[Φ] t/X] = t[idsubst(Φ)/Φ] = t.

49

