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Abstract
Recent ground-breaking efforts such as CompCert have made a
convincing case that mechanized verification of the compiler cor-
rectness for realistic C programs is both viable and practical.
Unfortunately, existing verified compilers can only handle whole
programs—this severely limits their applicability and prevents the
linking of verified C programs with verified external libraries. In
this paper, we present a novel compositional semantics for reason-
ing about open modules and for supporting verified separate compi-
lation and linking. More specifically, we replace external function
calls with explicit events in the behavioral semantics. We then de-
velop a verified linking operator that makes lazy substitutions on
(potentially reacting) behaviors by replacing each external func-
tion call event with a behavior simulating the requested function.
Finally, we show how our new semantics can be applied to build
a refinement infrastructure that supports both vertical composition
and horizontal composition.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Correctness proofs, for-
mal methods; D.3.4 [Programming Languages]: Processors—
Compilers; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

Keywords Compositional Semantics; Vertical and Horizontal
Composition; Verified Compilation and Linking.

1. Introduction
Compiler verification has long been considered as a theoretically
deep and practically important research subject. It addresses the
very question of program equivalence (or simulation), a primary
reason that we need to define formal semantics for programming
languages. It is important for practical software developers since
compiler bugs can lead to the silent generation of incorrect pro-
grams, which could lead to unexpected crashes and security holes.

Recent work on CompCert [13, 12] has shown that mechanized
verification of the compiler correctness for C is both viable and
practical, and the resulting compiler is indeed empirically much
more reliable than traditional (unverified) ones [23]. The success of
CompCert can be partly attributed to its uses of simple (small-step
and/or big-step) operational semantics [15], a shared behavioral
specification language (capable of describing terminating, stuck,
silently diverging, and reacting behaviors), and a unified C mem-
ory model [14] for all of its compiler intermediate languages. The
simplicity of the CompCert semantics made it possible and prac-
tical to mechanically verify the correctness of many compilation
phases under a reasonable amount of effort.

One important weakness of CompCert is that it can only handle
whole programs. This severely limits its applicability. A computer
program is often not just a single piece of code written and com-

piled at once, but is instead obtained by compiling and linking dif-
ferent modules, or compilation units, that can be originally written
in different programming languages, independently of each other.
From the compilation point of view, the final program is obtained
by linking different object files, each of which is either written di-
rectly or obtained by compiling a source compilation unit. Different
compilers can be used for different modules.

From the program-verification point of view, a computer pro-
gram is almost never verified as a whole, but for each compilation
unit, its source code (or object file, if written directly) is verified in-
dependently from the implementation of the other modules. With-
out support for separate compilation and linking, verified C pro-
grams, even if correctly compiled by CompCert, cannot be linked
with verified external libraries.

An open problem for supporting verified separate compilation
and linking is to find a simple compositional semantics for open
modules and to specify and reason about such semantic behaviors
in a language-independent way. Following Hur et al [10, 11], we
want to achieve compositionality in the two dimensions:

• vertical composition corresponds to successive compilation
passes on a given compilation unit. Each compilation pass can
be an optimization to make a program more efficient while
staying at the same representation level, or a compilation phase
from one intermediate representation to another: how to de-
fine compositional semantics of intermediate programs in a
language-independent format so that we can show that each
compilation pass does not introduce unwanted behaviors?
• horizontal composition corresponds to the linking of different

modules at the same level (i.e. at the level of object files, or
at the same intermediate level). It corresponds to the notion of
program composition: local reasoning shall allow studying the
behavior of program components when placed in an abstractly
specified context. But conversely, when linking them together,
compilation units will play the role of contexts for other mod-
ules. More generally, this notion becomes symmetric when they
can mutually call functions in each other.

In this paper, we present a novel compositional semantics (for
open modules) that supports both vertical composition and hori-
zontal composition for C-like languages. Traditionally, operational
semantics focuses on reasoning about the behaviors of a whole pro-
gram. This partly explains why CompCert does not handle open
modules. A significant attempt toward developing compositional
semantics has been denotational semantics, and the underlying do-
main theory has led to a wide body of research; however, denota-
tional models become difficult to extend as we add more language
features and they are harder to mechanize in a proof assistant.

Our paper makes the following contributions:
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• We develop a compositional semantics (denoted as J·Kcomp, see
Sec. 4) to help reason about open modules. Our key idea is to
model external function calls in a similar way as how composi-
tional semantics for concurrent languages [5] models environ-
mental transitions. The behavior of a call to an external func-
tion f is modeled as an event Extcall( f ,m,m′), with m and
m′ denoting memory states before and after the call. A function
body that makes n consecutive external calls can be modeled as
a sequence of event traces of the form Extcall( f1,m1,m′1) ::
Extcall( f2,m2,m′2) :: . . . :: Extcall( fn,mn,m′n), with the
assumption that segments between two external call events, e.g.,
(m′1,m2) and (m′n−1,mn), are transitions made by the function
body itself. We show how to extend the CompCert-style behav-
ioral semantics with these new external call events and how to
use a shared behavioral specification language (as in CompCert)
to support vertical compositionality.
• We develop a linking operator directly at the semantic level (de-

noted as ./, see Sec. 5), based on a resolution operator which
makes a lazy substitution on behaviors by replacing each exter-
nal function call event with a behavior simulating the requested
function. We show that applying the linking operator to the
compositional semantic objects (ψ1 and ψ2 for open modules
u1 and u2) will yield the same compositional semantic object
(ψ1 ./ ψ2) for the linked module (u1 ] u2). Since linking is
directly done on semantic objects, our approach can also be ap-
plied to components compiled from different source languages;
for example, a module uα (in language A) can be compiled by
compiler Cα and linked with another module uβ compiled by
compiler Cβ, yielding a resulting binary with the semantic ob-
ject JCα(uα)Kcomp ./ JCβ(uβ)Kcomp.
• Thanks to this new compositional semantics and semantic link-

ing, we develop a refinement infrastructure (denoted as v, see
Sec. 6) that unifies program verification and verified separate
compilation: each verification step, as well as each compilation
step, is actually a refinement step. The transitivity property of
our refinement relation implies vertical composition; and the
congruence property (a.k.a. monotonicity, see Theorem 2) im-
plies horizontal composition.
• Unlike the CompCert whole program semantics, which does not

expose memory states in its event traces, compositional seman-
tics for open modules may make part of the memory state ob-
servable (e.g., as in an external call event Extcall( f ,m,m′)).
This creates challenges for verifying compilation phases that
alter memory states. We introduce α-refinement (denoted as
vα, see Sec. 7), a generalization of v with a bijection α be-
tween the source and the target memory states. We show how α-
refinement can be used to verify the correctness of the memory-
changing phases in CompCert, and we have successfully reim-
plemented (and verified in Coq) the Clight-to-Cminor phase—
the CompCert pass that uses the most sophisticated memory
injection relation—using α-like memory bijection.

All our proofs have been carried out in Coq [21] and can be
found at the companion web site [19]. The implementation includes
the generic compositional semantics and linking framework, an in-
stantiation of the framework for the common subexpression elim-
ination pass, and a new implementation of the CompCert memory
model with block tags and the Clight-to-Cminor compilation phase
using memory bijection.

2. Preliminary: small-step and big-step semantics
In this section, we define the general notion of small-step seman-
tics, or transition systems, and explain how to automatically con-
struct big-step semantics based on them. Throughout the paper,

when we define a small-step semantics, we always construct the
corresponding big-step semantics based on this section.

Small-step semantics illustrates how to execute programs with
minimal steps. Big-step semantics gives us the meaning of pro-
grams as a whole. When studying the meaning of a program, we
focus not only on whether it terminates or diverges, but also on its
interaction with the outside environment through events like input
and output, network communications, etc. We borrow all these def-
initions from the CompCert verified compiler [12].

Before diving into semantics, we first go through some notations
on sets, (finite) lists, and (infinite) streams. We use X? to denote the
set of all subsets of X with 0 or 1 element. For any subset Y ⊆ X?,
we liberally write x ∈ Y instead of {x} ∈ Y . The standard notation
for power set P(X) is also used.

For any set X, X∗ denotes the set of finite lists of elements of
X. Such lists can be either empty (ε) or nonempty (x :: l). For two
lists l1, l2 ∈ X∗, l1 q− l2 is their concatenation. X∞ denotes the set
of infinite streams of X, which are defined coinductively such that
all elements are of the form x :::: l where x ∈ X and l ∈ X∞.
The coinductive definition allows (actually, requires) streams to be
infinite, in contrast to lists, which are defined inductively and must
be finite. Prepending a list l of X in front of a stream l of X is
written l qq− l. We write l1 ∼ l2 meaning two streams are bisimilar
(coinductively, ∃x,∀i = 1, 2,∃l′i , li = x :::: l′i and l′1 ∼ l

′
2).

Definition 1 (Small-step semantics). A small-step semantics (or a
transition system) is a tuple S = (E,S,→,R,F ) where:

• E is the set of events.
• S is the set of configurations (or states).
• (→) ⊆ S × E? × S is the transition relation, usually written in

infix forms s
e
→s′ and s→s′. We say that s makes one step (or

transition) to s′, producing an event e (if any). A step producing
no event is silent.
• R is the set of results.
• F ⊆ (S × R) is a relation associating final states with results.

A configuration s is said to be final with result r if, and only if,
(s, r) ∈ F .

The transition relation may be nondeterministic: for a given
configuration s, there can be several possible configurations s′ such
that s→s′ (or s

e
→s′ for some event e).

Then, a configuration s can make several transitions to s′ pro-
ducing a finite listσ of events in E, which we write s

σ
−→∗s′ (or s

σ
−→+s′

if there is at least one step) and define as the reflexive-transitive
(resp. transitive) closure of the transition step relation:

s→s′

s
ε
−→+s′

s
e
→s′

s
e::ε
−−→+s′

s
σ1
−−→+s1 s1

σ2
−−→+s2

s
σ1 q−σ2
−−−−−→+s2 s

ε
−→∗s

s
σ
−→+s′

s
σ
−→∗s′

We can then define the behavior of a transition system from an
initial state s0 ∈ S.

• It can perform finitely many transition steps to some final con-
figuration s′ such that (s′, r′) ∈ F for some r′. In this case, we
say that it is a terminating behavior. For such a behavior, we
record the result r′ and its trace of events, a finite list, produced
to go from s0 to s′.
• It can perform finitely many transition steps to some non-final

configuration s′ but from which no step is possible. In this
case, we say that it is a going-wrong (or stuck) behavior, for
which we record the trace produced from s0 to s′. In practice, s′
corresponds to a configuration requesting an invalid operation
such as out-of-bounds array access or division by zero.
• It can perform infinitely many transition steps. For such cases,

we need to distinguish whether a finite or infinite list of events
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is produced during these transition steps. (1) In the finite event
case, finitely many steps are performed to some state s′ from
which infinitely many silent transitions are performed. (2) In
the infinite event case, starting from any state, a non-silent
transition can always be reached within finitely many steps; we
record the trace as an infinite stream of events.

The bullets above are formally defined as follows.

Definition 2 (Behaviors). Given a set of events E and a set of
results R, we define the set of behaviors B as follows:

b ∈ B Behavior
::= σ ↓ (r) (σ ∈ E∗, r ∈ R) Terminating behavior
| σ (σ ∈ E∗) Going-wrong behavior
| σ↗ (σ ∈ E∗) Diverging behavior

(finitely many events, then silently diverges)
| ςt (ς ∈ E∞) Reacting behavior

(diverging with infinitely many events)

The concatenation of an event e (resp. of an event list σ) and a
behavior b is written e · b (resp. σ • b) and defined in a straightfor-
ward way:

e · (σ ↓ (r)) = (e :: σ) ↓ (r) ε • b = b
e · (σ ) = (e :: σ) (e :: σ) • b = e · (σ • b)

e · (σ↗) = (e :: σ)↗
e · (ςt) = (e :::: ς)t

Definition 3 (Stuck, silently diverging, reacting states). Given a
small-step semantics S = (E,S,→,R,F ), a configuration s is:

• stuck (written s ) if, and only if, there is no s′ (resp. and there
is no e ∈ E) such that s→s′ (resp. s

e
→s′)

• silently diverging (written s ↗) if, and only if, coinductively,
there is a configuration s′ such that s→s′ and s′↗.
• reacting with the infinite event stream ς (written st ς) if, and

only if, coinductively, there is a nonempty finite event list σ and
a configuration s′ such that s

σ
−→+s′, and an infinite event stream

ς′ such that s′ t ς′ and ς ∼ σ qq− ς′.

If the transition relation is nondeterministic, the transition sys-
tem may have several behaviors from a single initial state. We want
to describe 1 the set of all the possible behaviors of the transition
system from a given configuration.

Definition 4 (Big-step semantics). Given a small-step semantics
S = (E,S,→,R,F ), the big-step semantics LSM of S is a function
from S to P(B) such that, for each configuration s0, LSM(s0) is the
set of all possible behaviors from s0, defined as follows:

LSM(s0) = {σ ↓ (r) : s0
σ
−→∗s ∧ (s, r) ∈ F }

∪ {σ : s0
σ
−→∗s ∧ s }

∪ {σ↗: s0
σ
−→∗s ∧ s↗}

∪ {ςt: s0 t ς}

Below are some C examples showing the use of behaviors. The
command printf(’a’);, printing the character “a” on screen,
produces an observable event OUT(a). The results are int values.

int main () { printf(’a’); return 2; }
has the behavior OUT(a) :: ε ↓ (2).

int main () { printf(’a’); 3/0; return 4;}
has the behavior OUT(a) :: ε .

1 It would be tempting to compute the set of all behaviors. We can argue
that the cases described above are exhaustive. However, we do not intend to
actually enumerate all possible behaviors of the transition system. In other
words, we do not intend to decide whether a transition system terminates or
diverges. Instead, we describe the set LSM(s0) by defining the meaning of
the predicate b ∈ LSM(s0). This is what happens inside CompCert, and we
follow this approach as well in our Coq formalization.

int main () { printf(’a’); while (1) {} }
has the behavior OUT(a) :: ε↗.

int main () { while (1) printf(’b’); }
has the behavior OUT(b) :::: . . . :::: OUT(b) :::: . . .t

Lemma 1. For any configuration s0 ∈ S, the transition system has
at least one behavior from s0: LSM(s0) , ∅.

Proof. Done in CompCert [12]. Requires the excluded middle to
distinguish whether the program has finite or infinite sequence
of steps, and an axiom of constructive indefinite description to
construct the infinite event sequence in the reacting case. �

3. Starting point: a language with function calls
Our work studies a semantic notion of linking two compilation
units at the level of their behaviors, independently of the languages
in which they are defined. We first show how to derive a set of
behaviors for an open module from a language with function calls.

In this section, we first describe our starting point, the semantics
of a language with function calls. For now, we consider only whole
programs. Then we will show in Sec. 4 how to make its semantics
compositional and suitable for open modules.

Our starting point language makes a memory state evolve
throughout the whole program execution across function calls, and
a local state (e.g. local variables) evolve within each function call.
When a function returns, we consider that its result is the new mem-
ory state obtained at the end of the execution of the function, just
before it hands over to its caller. Our Coq development also features
argument passing and return value, but for the sake of presentation,
we do not mention them here. See Sec. 6.5 for more details about
our Coq implementation.

The key point of the semantics of our language is that the local
state of a function call cannot be changed by other function calls
2: when a function is called, the local state of the caller is “frozen”
until the callee returns.

In this section, we consider the semantics of a whole program,
which does not contain external function calls. A program consists
of several functions. We are interested in the behaviors of each
function in the program for all memory states under which the
function is called.

A program is modeled as a partial function from function names
to code. Let p be a program and f be a function name, p( f ) is
then the body of f . When f is called under a memory state m, an
initial local state Init(p( f ),m) is first created from the code p( f ).
The local state and the memory state evolve together by performing
local transition steps which can produce some events. Eventually,
the local state may correspond to a return state, meaning that the
execution of the function has reached termination. The memory
state is the result of the function call.

But a local state l can also correspond to calling some other
function f ′: in that case, l is first saved into a continuation frame
k = Backup(m, l) that is put on top of a continuation stack, then the
function f ′ is called and run. If the execution of this callee reaches
a return state, with a new memory state m′, then the execution goes
back to the caller by retrieving, from the stack, the frame k and
constructing a new local state Restore(m′, k).

So, to obtain the behaviors of a function f under a memory state
m, we just have to big-step such a small-step semantics. Note that
when an execution reaches a configuration where the local state is

2 Stack-allocated variables that can have their addresses taken do not belong
to the local state. They are allocated in the memory state allowing their
addresses to be passed to other functions and their contents to be modified.
By contrast, the local state will only store the addresses of such variables.
Those addresses shall not be changed by other functions. This is how
CompCert models the C stack [4].
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a return state and the stack is empty, it means that the function is
done executing and there is no caller function to return to, hence it
is the final configuration for a function execution. The result of the
execution is the memory state of such a configuration.

Definition 5 (Language with function calls). A language with
function calls is a tuple:

L = (F,C,MS,LS, Init,Kind,E,→,K,Backup,Restore)

• F is the set of function names.
• C is the set of pieces of code corresponding to the bodies of

functions (i.e., the syntax of the language).
• MS is the set of memory states.
• LS is the set of local states.
• Init : (C ×MS) −→ LS is a total function that gives the initial

local state when starting to execute a function body.
• Kind is a total function such that, for any local state l ∈ LS,

Kind(l) may be either:
Call( f ) to say that l corresponds to calling a function f ∈
F. Then we define LSCall = {l : ∃ f ,Kind(l) = Call( f )}.
Return to say that l is a return state.
Normal: none of the above. Then, we define LSNormal =
{l : Kind(l) = Normal}.

• E is the set of events.
• (→) ⊆ ((MS × LSNormal) × E? × (MS × LS)) is the internal

step relation, usually written in infix forms (m, l)
e
→(m′, l′) and

(m, l)→(m′, l′).
• K is the set of continuation stack frames.
• Backup : (MS × LSCall) −→ K is a total function that saves

the current local state into a stack frame upon function call.
• Restore : (MS × K) −→ LS is a total function that restores a

new local state from a stack frame upon callee return.

Definition 6. Let L be a language with function calls. A program
is a partial function from function names to code.

Definition 7 (Procedural semantics). Let L be a language with
function calls and p be a program in L, the procedural small-step
semantics Proc

[
L, p

]
is defined as follows:

• The set of events is E.
• The set of configurations is MS × LS ×K∗.
• The transition relation (L, p) ` · → · is defined as follows:

Kind(l) = Normal (m, l)→(m′, l′)
(L, p) ` (m, l, κ)→(m′, l′, κ)

Kind(l) = Normal (m, l)
e
→(m′, l′) e ∈ E

(L, p) ` (m, l, κ)
e
→(m′, l′, κ)

Kind(l) = Call( f ) p( f ) = c
l′ = Init(c,m) k = Backup(m, l)

(L, p) ` (m, l, κ)→(m, l′, k :: κ)

Kind(l) = Return l′ = Restore(m, k)
(L, p) ` (m, l, k :: κ)→(m, l′, κ)

• The set of results is MS.
• The final configurations with result m are the configurations

(m, l, ε) where Kind(l) = Return.

Let B be the set of behaviors on events E. The procedural big-
step semantics of p is the function JpK : dom(p) −→MS −→ P(B)
obtained from big-stepping the procedural small-step semantics:

JpK( f )(m) = LProc
[
L, p

]
M(m, Init(p( f ),m), ε)

Note that a function call is only triggered and the function name
resolved when Kind returns Call( f ), which depends solely on
local states. It does not matter how the calling request gets put
into the local state. Whether it originates from the code, that is,
a direct call, or prepared by the caller in the memory state only
to be moved to the local state now, which indicates an indirect
call, the procedural semantics handles them the same. This means
that our setting transparently handles C-style higher-order function
pointers, without having to provide a special case for them.

4. Compositional semantics
The procedural semantics given so far can only describe the behav-
iors of a closed program p. What if p calls a function outside of its
domain? By definition, the execution goes wrong. As such, the pro-
cedural semantics alone is not compositional, and it is not enough
to describe the behaviors of open modules (or compilation units).

In this section, we are going to make our procedural semantics
compositional by extending it with a rule to handle external func-
tion calls, i.e. calls to functions that are not defined in the module.

This compositional semantics represents external function calls
as events. We will later link two compilation units at the behavior
level by replacing each external function call event with the behav-
iors of the callee (see Sec. 5).

The key idea of our compositional semantics is not to get stuck
whenever a module calls an external function; instead, it produces
a new form of event to record the external function call. This is
consistent with the idea that events represent the interaction of a
compilation unit with the outside environment: for an open module,
external functions remain part of the outside environment until their
implementation is provided by linking. These external call events
are the minimal amount of syntax necessary to model external
function calls at the level of behaviors.

For each external function call event, we record (1) the function
name; (2) the memory state before the call, because the external
call shall depend on the memory state under which it will be called;
and (3) the memory state after function call. The external function
may change the memory state arbitrarily, which the caller cannot
control; but the behavior of the caller depends on how the callee
changed the memory state.

For regular input, CompCert produces an ordinary event con-
taining the value read from the environment. CompCert cannot
predict the value, so it provides a behavior for every possible in-
put. Which behavior appears at runtime will depend on the actual
value read. More precisely, when a configuration requests an input,
it must resort to nondeterminism and provide transition steps pro-
ducing events for all possible values. Letting the event carry the
value makes it possible to have different follow-up events or even
termination status depending on the actual value read. For instance,
in C, the command scanf("%d", &i) reads a value j from the
keyboard and stores it into the variable i. CompCert models it as
follows: for every integer j, there is a transition producing the event
IN( j) asserting that j is the value read. The following C code:

int main () {
int i=0;
scanf("%d", &i);
printf("%d", (i%2));
return 0;

}

will produce the set of behaviors 3:

{IN( j) :: OUT( j mod 2) :: ε ↓ (0) : j ∈ [INT MIN, INT MAX]}

3 INT MIN and INT MAX are the least and the greatest values of type int.
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We apply the same technique on external function calls. As the
caller cannot predict how the callee will modify the memory state,
the new memory state upon return of the function call is considered
as an external input from the environment. This is why an external
function call event stores both the new and old memory states.

Then, when an external function f is called under some mem-
ory state m1, for any possible memory state m2 representing the
memory state after returning from the external function, the com-
positional semantics will allow a transition (see rule EXTCALL
in Def. 10 below) to produce the external function call event
Extcall( f ,m1,m2). Consequently, the caller will be able to pro-
vide a behavior for each possible memory state m2.

This leads us to extending the events and transition rules.

Definition 8 (Extended events). Let L be a language with function
calls. We write E for the set of extended events, defined as follows:

e ∈ E Extended event
::= e (e ∈ E) Regular event
| Extcall( f ,m1,m2) ( f ∈ F, External

m1,m2 ∈MS) function call

In Extcall( f ,m1,m2), m1 and m2 are the memory states before
and after the call, respectively. We write B for the set of behaviors
on events E, which we call extended behaviors.

If F ⊆ F is a set of function names, then we write EF for
the set of extended events where all external function call events
Extcall( f ,m1,m2) have f ∈ F, and BF the set of behaviors on
such events.

Definition 9 (Module or compilation unit). Let L be a language
with function calls. A module, or compilation unit, is a partial
function from function names to code4.

Definition 10 (Compositional semantics). The compositional
small-step semantics Comp [L, u] of a compilation unit u is the
small-step semantics defined as follows:

• The set of events is E.
• The set of configurations is MS×LS×K∗ (as in the procedural

small-step semantics).
• The transition relation (L, u) `comp · → · is defined as follows:

(L, u) ` (m, l, κ)
e
→(m′, l′, κ′) e ∈ E

(L, u) `comp (m, l, κ)
e
→(m′, l′, κ′)

(L, u) ` (m, l, κ)→(m′, l′, κ′)
(L, u) `comp (m, l, κ)→(m′, l′, κ′)

Kind(l) = Call( f ) f < dom(u)
e = Extcall( f ,m,m′)

l′ = Restore(m′,Backup(m, l))
(L, u) `comp (m, l, κ)

e

→(m′, l′, κ)

(EXTCALL)

• As in the procedural semantics, the set of results is MS and the
final configurations with result m are the configurations (m, l, ε)
where Kind(l) = Return.

The compositional big-step semantics of u is the function
JuKcomp : dom(u) −→ MS −→ P(BF\dom(u)) obtained from big-
stepping the compositional small-step semantics.

JuKcomp( f )(m) = LComp [L, u]M(m, Init(u( f ),m), ε)

4 Mathematically, modules and programs in L are the same. But conceptu-
ally, a program is intended to be stand-alone, and is not expected to call
functions that are not defined within itself, contrary to a compilation unit,
which we view as an open module.

(a) 44444
↓
e ����� → 44444 e

↓
�����

(b) 44444
↓
Extcall( f ,m1,m2) �����

→ 44444 Extcall( f ,m1,m2)
↓
�����

(c) 44444
↓
Extcall( f ,m1,m2) �����

→ 44444
↓
◦ ◦ ◦ ◦ ◦ �����

Figure 1. Three cases in behavior simulation: (a) regular event; (b)
f < dom(ψ); (c) ◦ ◦ ◦ ◦ ◦ ∈ ψ( f ).

5. Linking
In this section, we are going to define a linking operator ./ between
two partial functions from F to (MS −→ P(B)). This linking opera-
tor will be defined directly at the level of the behaviors, independent
of the underlying languages that the modules are written in.

Intuitively, each event corresponding to an external function call
will be replaced with the behavior of the callee. However, plain
straightforward substitution is not enough, as the behaviors of a
compilation unit u1 can involve external calls to functions defined
in the other compilation unit u2 that can again involve external
calls to functions back in u1. So, we have to resolve those formerly
external calls that are now internal, namely the cross-calls between
the two compilation units u1 and u2.

Let F ⊆ F be a set of function names. We are going to consider
the functions in Ψ(F) = F −→ (MS −→ P(B)) that describe
the behaviors of functions of F. These functions may call some
“external” functions which might still be in F. We call the elements
of Ψ(F) open observations, which we usually get by taking disjoint
unions of multiple compilation unit semantics.

Let ψ be such an open observation. We resolve the external
calls (in ψ) to functions of F by recursively supplying ψ to do
the substitution, yielding an observation R(ψ) in the set Φ(F) =
F −→ (MS −→ P(BF\F)) of closed observations, where there are
no remaining external function call events to functions in F. We
shall formally define R in definition 12.

Finally, if ψ1 and ψ2 are observations with disjoint domains,
then we define the linking operator as ψ1 ./ ψ2 = R(ψ1 ] ψ2).

5.1 Internal call resolution by behavior simulation
Let ψ ∈ Ψ(F) be an open observation. To resolve its internal
function calls, we are going to define a semantics that will actually
simulate the behaviors of ψ.

This resolution cancels out matching external call events by
inlining each’s behavior. We define this resolution by simulating
the local behaviors of each module through a small-step semantics,
treating each “external call” event through one “computation” step.

The simulation process is shown Fig. 1. In each case, ↓ can be
seen as a cursor behind which lies the next event to be simulated.
Each step (· → ·) of the behavior simulation progresses based on
the next event. All regular events are echoed as in (a), as well as
all external function call events that correspond to functions not in
ψ (b). By contrast, each external function call event corresponding
to a function defined in ψ is replaced with the callee’s events (c)
where the cursor remains in the same spot ready to simulate the
newly inserted events. Each step only performs one replacement at
a time; the external function calls of the inlined behavior are not
replaced yet until the cursor actually reaches them.
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f

g g : ε ↓
f : Extcall(g) :: ε ↓
( f ] g)( f ) : ε ↓

f

g g : ε↗
f : Extcall(g) · b
( f ] g)( f ) : ε↗

f

g
e e e g : e :: ε ↓

f : Extcall(g) :::: Extcall(g) :::: . . .t
( f ] g)( f ) : e :::: e :::: . . .t

f

g g : ε ↓
f : Extcall(g) :::: Extcall(g) :::: . . .t
( f ] g)( f ) : ε↗

f

g

f

g g : Extcall( f ) · b′
f : Extcall(g) · b
( f ] g)( f ) : ε↗

Figure 2. Examples of behaviors with external function calls be-
tween two compilation units, one defining f , another defining g, ob-
tained by big-stepping the behavior simulation semantics. To sim-
plify, we assume that f and g do not use any memory state.

Then, we obtain the resulting linked semantics by big-stepping
this small-step semantics (see examples in Fig. 2).

Consider a function f0 and a behavior σ • Extcall( f ,m1,m2) ·b
being simulated. Assume that the prefix event sequence σ has
already been simulated so the Extcall is the first encounter of an
external function call event where f ∈ F. Then m1 is the memory
state under which f is to be called, and m2 is the expected memory
state upon return of f . Now, a behavior b2 is chosen in ψ( f )(m1),
and is to be simulated, whereas the expected return memory state
m2 as well as the remaining behavior of the caller b to be simulated
are pushed on top of a continuation stack. There are three cases:

• The simulation of this chosen behavior b2 terminates with the
expected return memory state m2. In this case, the remaining
behavior b of the caller f0 after the external call, popped from
the continuation stack along with m2, can be simulated.
• The simulation of this chosen behavior b2 goes wrong, diverges

or reacts. In such cases, the simulation result of b2 takes over
and never returns; the remaining behavior b of the caller after
the external call event is discarded.
• The simulation of this chosen behavior b2 terminates, but with

a return memory state that is not m2. In this case, the remain-
ing behavior of the caller is discarded, too, because it was rele-
vant only in the case of termination with m2. Actually, it means
that the simulation of the caller behavior is spurious. This is
because the set of behaviors of the caller f0 has a behavior
σ • Extcall( f ,m1,m′2) · b′ for every m′2, but most of the
guesses are wrong. However, even though the simulation of the
particular behavior does not make sense, the rule (EXTCALL)
guarantees to have all possibilities covered, hence there will al-
ways be at least one behavior that is not spurious, it is OK to
tag this irrelevant behavior as spurious. Formally, the simula-
tion will not go wrong, but abruptly terminate with a special re-
sult Spurious. In the end, when big-stepping the small-step
semantics, those spurious behaviors can be easily removed.

Definition 11 (Behavior simulation). We define the behavior sim-
ulation small-step semantics B[ψ] as follows:

• The set of events is E.

• The set of configurations is defined as follows:

s ∈ S
::= Spurious Spurious state
| (b, χ) (b ∈ B, Regular

χ ∈ (MS × B)∗) configuration

That is, either a special state for spurious executions, or a nor-
mal configuration with the current behavior b being simulated,
paired with χ, the stack of the remaining expected outcomes (if
the current behavior simulations terminate) and the remaining
behaviors to simulate.
• The transition relation ψ ` ·→· is defined as follows:

e = e ∈ E
ψ ` (e · b, χ)

e

→(b, χ)

f < dom(ψ) e = Extcall( f ,m1,m2)
ψ ` (e · b, χ)

e

→(b, χ)

b′ ∈ ψ( f )(m1)
ψ ` (Extcall( f ,m1,m2) · b, χ)→(b′, ((m2,b) :: χ))

ψ ` (ε ↓ (m), ((m,b) :: χ))→(b, χ) (RETURN)

ψ ` (ε↗, χ)→(ε↗, χ)

m′ , m
ψ ` (ε ↓ (m′), ((m,b) :: χ))→Spurious

(RETURN-SPURIOUS)
• The set of results is defined as follows:

r ∈ R
::= Spurious Spurious behavior
| m (m ∈MS) Regular termination

• The behavior sequence ((ε ↓ (m)), ε) is the only final state with
result m ∈ MS. Spurious is the only final state with result
Spurious.

Definition 12 (Resolution). Let BSpurious = {σ ↓ Spurious :
σ ∈ E∗} be the set of all spurious behaviors.

Then, the resolution of an open observation ψ ∈ Ψ(F) is the
closed observation R(ψ) ∈ Φ(F) defined using the big-step seman-
tics of the behavior simulation small-step semantics, excluding spu-
rious behaviors:

R(ψ)( f )(m) =
⋃

b∈ψ( f )(m)

LB[ψ]M(b, ε)\BSpurious

5.2 Semantic linking
Thanks to the resolution operator, we can simply define the linking
of two observations:

Definition 13 (Linking). Let ψ1, ψ2 be two observations with dis-
joint domains. Then, their linking ψ1 ./ ψ2 is defined as:

ψ1 ./ ψ2 = R(ψ1 ] ψ2)

With the definition of linking at the level of behaviors, we can
show that the compositional semantics of a compilation unit is
indeed compositional. In other words, in the special case where the
two modules are in the same language, linking their compositional
semantics at the level of their behaviors exactly corresponds to the
compositional semantics of the syntactic concatenation of the two
compilation units, which conforms to the intuition of linking:

Theorem 1. If u0, u1 are two compilation units with disjoint do-
mains in the same language with function calls, then:

Ju0 ] u1Kcomp = Ju0Kcomp ./ Ju1Kcomp
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(a)
u1

u0

(b)
u1

u0
No Extcall from here on

(c)
u1

u0

Figure 3. Illustrations of the three cases in the ⊆ branch of the
proof of theorem 1: (a) one of the call to u0 never returns; (b) all
external calls return with finitely many of them; (c) all external
calls return with infinitely many of them. Dotted arrows denote co-
induction hypothesis.

Proof (in Coq). • ⊇: We introduce a simulation diagram: an ex-
ecution step in Ju0Kcomp ./ Ju1Kcomp matches at least one ex-
ecution step in Ju0 ] u1Kcomp. In this simulation diagram, we
maintain an invariant between the configuration state (b, χ)
in Ju0Kcomp ./ Ju1Kcomp and the configuration state (m, l, κ) in
Ju0 ] u1Kcomp such that κ can be decomposed in κ′ q− κ′′ with b
being a valid behavior in JuiKcomp from (m, l, κ′) and κ′′ match-
ing the stack χ.
• ⊆: the result for terminating and stuck behaviors is proven by

induction on the length of the execution. On the other hand,
diverging and reacting behaviors are dealt with in the following
way. Starting from such a behavior b in Ju0 ] u1Kcomp, we
first isolate an infinite step sequence corresponding to b by
definition. Given i ∈ {0, 1}, we build a behavior b′ in JuiKcomp by
replacing the calls to functions in u1−i with external calls, and
we prove that simulating b′ in B[Ju0Kcomp ] Ju1Kcomp] yields b,
i.e. b ∈ LB[Ju0Kcomp ] Ju1Kcomp]M(b′, ε). There are three cases
(each of which is illustrated in Fig. 3):
(a) There is a call to a function in u1−i that never terminates.

So, before the first such external call, we can build the finite
prefix of a behavior in JuiKcomp, and deal with this external
function call by coinduction replacing i with 1 − i.

(b) All calls to functions in u1−i terminate and there are finitely
many of them. So, until the last such external function call,
we can build the finite prefix of a behavior in JuiKcomp. Then,
we prove that the remaining behavior of Ju0 ] u1Kcomp that
calls no functions of u1−i is actually a behavior in JuiKcomp.

(c) All calls to functions in u1−i terminate but there are infinitely
many of them. So, we have to build a reacting behavior in
JuiKcomp with infinitely many external function calls to u1−i,
each one replacing each call to a function in u1−i.

�

We could have used behavior trees to model external function
calls. Behavior trees are well-known to be used in denotational se-
mantics to model input. They would have turned events for exter-
nal function calls Extcall( f ,m1,m2) into branching nodes, with
each branch labeled with the memory state m2. Using behavior trees
instead of plain behaviors would have helped remove spurious be-
haviors, as the two rules (RETURN) and (RETURN-SPURIOUS)
would have been replaced by a single rule actually choosing the
right branch in the behavior tree. However, this would require
adopting behavior trees as the semantic object for the composi-
tional semantics. Then, the process of making the procedural se-
mantics into a compositional semantics would bring deep changes
to the procedural small-step semantics, and the current compiler
correctness proofs of CompCert based on simulation diagrams over
those small-step semantics would require deep changes as well.

We believe that our current per-behavior setting, where behav-
iors are represented as first-order objects, shall require less intru-

sive changes in the current CompCert proofs. From the compiler’s
point of view, the external function call events introduced by our
semantics need not be treated differently from ordinary events.

The relationship between the compositional semantics and the
procedural semantics of a module viewed as a whole program
is rather obvious: it suffices to link the compilation unit with an
observation that makes every external function call stuck.

Lemma 2 (Compositional and procedural semantics). Let u be a
compilation unit in some language with function calls. Define ψ 
the constant stuck observation:

∀ f < dom(u),∀m : ψ ( f )(m) = {ε }

Then, ∀ f ∈ dom(u) : JuK( f ) = (JuKcomp ./ ψ )( f ).

6. Refinement and compiler correctness
The term “refinement” in program development dates back to the
early 70s proposed by Dijkstra [6] and Wirth [22]. It quickly grows
in various fields [16]. Refinement also plays a heavy role in com-
piler verification as shown in CompCert [13] and Müller-Olm [17].

In this work, we use refinement to define and prove correctness
of separate compilation. We first state the necessary conditions
for a relation to be a refinement relation. Then we show how our
refinement framework applies to compiler correctness. Finally, we
show that the behavior refinement relation defined in CompCert
extends well to the setting of our compositional semantics.

6.1 Refinement relations
Instead of defining on pairs of programs or specifications, we define
our refinement relations on sets of extended behaviors. One reason
for this choice is to support refinement between multiple languages
and program logics. Another reason is to better handle interactions
between refinement relations and the linking operator — or, more
generally, between refinement relations and the resolution operator,
which we will discuss at the end of this subsection.

To generalize refinement to the compositional semantics instead
of sticking to the procedural semantics of a whole program, we
define refinement relations on sets of extended behaviors instead of
plain behaviors.

Let v be a binary relation on P(B). Then, we lift it to observa-
tions in a straightforward way: we define ψ1 v ψ2 if, and only if,
dom(ψ1) = dom(ψ2) and:

∀ f ∈ dom(ψ1),∀m : ψ1( f )(m) v ψ2( f )(m)

Definition 14 (Refinement relations). A binary relation v on P(B)
is a refinement on observable behaviors if all these hold:

• reflexivity: ∀B0 ∈ P(B),B0 v B0
• transitivity: ∀B1,B2,B3 ∈ P(B) :

B1 v B2 ∧ B2 v B3 =⇒ B1 v B3

• congruence: for any observations ψ1, ψ2 such that ψ1 is never
empty (∀ f ∈ dom(ψ1),∀m, ψ1( f )(m) , ∅):

ψ1 v ψ2 =⇒ R(ψ1) v R(ψ2)

On top of a preorder, we add the congruence property, thanks to
which we can easily show that refinement is compositional:

Theorem 2 (Compositionality of refinement). Let ψ1, ψ2 two ob-
servations such that ψ1 v ψ2 and ψ1 is never empty. Then, for any
never-empty observation ψ with a domain disjoint from ψ1, we have
ψ ./ ψ1 v ψ ./ ψ2.

We will see in Sec. 6.4 that the CompCert improvement relation
is actually a refinement relation meeting all those requirements.
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6.2 Compositional program verification
Refinement is expressed at the level of extended behaviors. So, we
can consider that a specification is an open observation, so that
a compilation unit u1 in some language with function calls can
be said to make a specification ψ1 hold if Ju1Kcomp v ψ1. (The
specification ψ1 can still contain external function call events to
functions outside of dom(u1).)

Thanks to refinement compositionality, and to the fact that the
linking operator is defined at the semantic level of extended behav-
iors, this program verification scheme is compositional and suitable
for open modules. Indeed, a compilation unit u2 with a domain dis-
joint from ψ1 can be proven to make some specification ψ hold un-
der assumptions that it is linked with an unknown library verifying
ψ1 independently of the actual implementation of the library: we
can directly link the compilation unit u2 with the specification ψ1
and prove that ψ1 ./ Ju2Kcompvψ. Then, if Ju1Kcompvψ1, refinement
compositionality gives us the refinement proof on the linked pro-
gram: Ju1Kcomp ./ Ju2Kcomp v ψ; finally, in the special case where u1
and u2 are written in the same language, we have Ju1 ] u2Kcompvψ.

6.3 Verified separate compilation
In this work, we follow the common notion of compiler correct-
ness that a compiler is correct if all possible behaviors of the target
program are valid behaviors of the source program. Since language
specifications often leave some decisions to compilers for flexibil-
ity, a compiler is allowed to remove behaviors. In other words, com-
pilation is a refinement step.

Our compiler correctness definition is fairly standard except for
the abstract refinement relation instead of a plain subset relation.
As it uses a refinement relation on extended behaviors, compiler
correctness generalizes to compiling open modules by considering
their compositional semantics.

Definition 15 (Compiler (optimizer) correctness). Let L,L′ be two
languages with function calls.

Under a refinement relation v, a compiler C from L to L′
is said to be correct if and only if, for any compilation unit u,
JC(u)Kcomp v JuKcomp.

Theorem 3. Under a refinement relation, multiple correct com-
pilers are compatible with separate compilation. If u1, . . . , un are
compilation units with disjoint domains and C1, . . . ,Cn are all cor-
rect compilers, then: JC1(u1) ] · · · ]Cn(un)K v Ju1 ] · · · ] unK

Proof. By definition of compiler correctness, ∀i, JCi(ui)Kcomp v

JuiKcomp. By transitivity and multiple applications of refinement
compositionality (Theorem 2), we obtain

JC1(u1)Kcomp ./ . . . ./ JCn(un)Kcomp v Ju1Kcomp ./ . . . ./ JunKcomp

which leads to JC1(u1) ] · · · ]Cn(un)KcompvJu1 ] · · · ] unKcomp be-
cause of Theorem 1 (linking in the same language). Finally, to
go from the compositional to the procedural semantics, refinement
compositionality with ψ and Lemma 2 give the result. �

The theorem tells us that we can link several object files which
are compiled independently with potentially different compilers.
As long as all the compilers are correct, the linked executable will
behave as an instance of the program linked at the source level.

With a single correct compiler C, Theorem 3 ensures the cor-
rectness of separate compilation even though we may not have
C(u1) ] · · · ] C(un) = C(u1 ] · · · ] un) (e.g. if C performs some
function inlining).

6.4 Example: the CompCert refinement relation
When developing a compiler, it is usually hard or even impossible
to retain one kind of behavior – the stuck behaviors. Imagine a C

program that takes the address of a local variable, adds a constant to
it, and then uses the result as the address to write to. If the arithmetic
operation brings the address out of bound, the C semantics will get
stuck. While in the target assembly code, the program is likely to
continue running and crash at a much later point, or even keep
going normally as the place the program writes to might be an
unused stack space.

In CompCert [12], all behaviors with the event sequence before
crashing as a prefix are considered “improvements” of the crash-
ing behavior. The refinement relation it uses, initially proposed by
Dockins [7] and integrated into CompCert, incorporates improve-
ments and is an extension of a subset relation. In this section, we
extend it to extended behaviors with external function call events.

Definition 16 (Behavior improvement). Let b1,b2 be two extended
behaviors. b1 improves b2 (b1 v b2) if and only if:

• either b1 = b2, or
• b2 is a “stuck prefix” of b1: there exists an event sequence σ

and a behavior b such that b2 = σ and b1 = σ • b.

Definition 17 (CompCert improvement relation). Let B1,B2 be two
sets of extended behaviors. B1 improves B2 (B1 vB2) if, and only if
∀b1 ∈ B1,∃b2 ∈ B2 : b1 v b2.

Theorem 4. The CompCert improvement relation is a refinement
relation.

Proof (in Coq). Congruence is proven by a lock-step backwards
simulation, where the invariant between two configurations of the
semantics uses behavior improvement for the behavior being simu-
lated as well as every frame of the continuation stack. �

This theorem shows that the CompCert improvement relation
defined on behaviors extends well to extended behaviors and ver-
ified separate compilation. Consequently, a correct compiler can
compile an open module as if it were a whole program, by con-
sidering an external call event in no different way than a regular
event. By the way, it also shows that a correct compiler necessarily
preserves external function calls: in no way can it optimize them
away before linking with an actual implementation for them. This
is understandable because a compiler processing an open module
has no hypotheses about external functions.

6.5 Coq implementation
Our Coq implementation provides the following enhancements,
which we did not mention for the sake of presentation.

Functions can be passed arguments, and they can return a value.
Then, the arguments are additional parameters to the semantics of a
module, and they appear in the external function call events as well
as the return values. Similar to the resulting memory state upon re-
turn of an external function call, the caller has to provide a behavior
for each possible return value as well: given an external function
f called with arguments arg and the memory state m1, the exter-
nal function call rule (EXTCALL in Def. 10) of the compositional
semantics produces an event Extcall( f , arg,m1, ret,m2) for any
result ret and any memory state m2.

Throughout the execution of a language with function calls, we
added the ability of maintaining some invariant on the memory
state. We equip the set of memory states with some preorder �, such
that, whenever an internal step is performed from a memory state m,
the new memory state m′ is such that m � m′. Consequently, the se-
mantics of a compilation unit provides no behavior for those exter-
nal function calls that do not respect �: in the compositional seman-
tics, the rule for external function calls (EXTCALL in Def. 10) pro-
ducing an external call event Extcall( f , arg,m1, ret,m2) requires
the additional premise m1 � m2. This enhancement is important
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for CompCert, where the memory model requires that the memory
evolve monotonically to prevent a deallocated memory block from
being reused. The proofs of compilation passes in CompCert make
critical use of this assumption.

In a language with function calls, the functions Backup and
Restore which respectively save the local state into a continua-
tion stack frame and retrieve a new one from such a frame, can
change the memory state: instead of only returning a frame or lo-
cal state, they return a new memory state as well. We make those
functions compatible with the preorder � over memory states. This
enhancement allows us to model the allocation and deallocation of
a concrete stack frame in the memory upon function call and return.

We also provide a Coq implementation to instantiate our frame-
work with the CompCert common subexpression elimination pass
to turn it from whole-program compilation to separate compilation.

This pass is carried over CompCert RTL (“register transfer
language”) as both source and target languages. It is a 3-address
language with infinitely many per-function-call pseudo-registers.
The body of a function is a control-flow graph.

The common subexpression elimination actually replaces nodes
of the control-flow graph with no-ops, if those nodes are taking
part to expressions that were already computed before. This pass
actually does not alter function calls and does not modify the
memory between source and target programs.

We took a subset of RTL eliminating floating-point operations
(due to typing constraints). Then, we added our external function
call event to the CompCert so-called “external functions” (namely
primitives such as volatile load and store, memory copy, or I/O,
some of which generate events) to enable their support by RTL.
Then, we rewrote RTL into the setting of our framework and proved
that the corresponding compositional semantics and the CompCert
RTL language with those new events produce the same big-step
semantics. Thus, there were no changes to the proof of the compi-
lation pass (except the removal of floating-point operations) and the
correctness of separate compilation were stated directly in terms of
the original RTL semantics and proved using our framework.

7. Languages with different memory state models
Our new approach is close to the way how CompCert [13] handles
I/O events. Actually, we generalize it to arbitrary external function
calls, and we give the formal argument why this approach is cor-
rect by enabling those external functions to be implemented and
their behaviors inlined. This means that the compiler correctness
techniques used for CompCert and restricted to whole programs
can be easily applied to open modules.

The main difference introduced by considering the behaviors
of open modules is that now part of the memory state becomes
observable. There still remains a problem: a compilation pass can
alter the observable memory state.

But alterations can deeply involve the structure of the memory
state so that the relation between the memory states of the source
programs and the compiled ones can itself change during execution.
Such relations are called Kripke worlds [2, 11] in the setting of
Kripke logical relations. But it becomes necessary to define the
refinement relation as a “binary” simulation diagram deprecating
the notion of the “unary” semantics.

In this section, we show that such Kripke logical relations are
not necessary to deal with critical memory-changing passes of
CompCert. To this purpose, we introduce a lightweight infrastruc-
ture to deal with memory-changing relations, α-refinement, that
can directly cope with our unary semantics for open modules with
traces of external function call events.

7.1 α-refinement
In practice, a separate compiler does make some assumptions on
the behaviors of external functions. If these assumptions are also
preserved as an invariant by the execution of functions defined in
u, the compilation of u can take advantage of this invariant.

Consider a module u written in a procedural language L. Let
MS be the set of memory states of L. Let I ⊆ MS be an invariant
in L, i.e. such that for any local transition (m, l)→(m′, l′), if m ∈ I
then m′ ∈ I. Then we can restrict the set of memory states of L to
I, yielding a procedural language L|I such that the corresponding
compositional semantics mandates all external function calls to
return with memory states also satisfying the invariant. In other
words, for any external function call event Extcall( f ,m1,m2)
produced by the compositional semantics of L|I , we always have
m1,m2 ∈ I.

Now consider a target procedural language L′ having an invari-
ant I′. Let C be a compiler from L to L′. Then, we say that C(u)
α-refines u (C(u) vα u) if, and only if there exists a bijection α be-
tween I and I′ such that JC(u)Kcomp|I′ v α(JuKcomp|I).

In practice, it means that the separate compiler C is correct
when the modules are linked with other modules also satisfying
the same invariants (I in the source, I′ in the target). Indeed, in
the case when such a bijection α exists, then we can define the
procedural language α(L|I) isomorphic to L|I where the set of
memory states is α(I) = I′, and then we can use the usual non-
memory-changing refinement relation between α(L|I) and L′|I′ .
Then, separate compilation is correct provided that, when building
the whole program by linking with a module containing a main
entry point, the initial memory state passed to main also satisfies
the invariant (I in the source, I′ in the target).

Then, Theorem 3 can be rephrased as follows: if u1, . . . , un are
compilation units in languages L1, . . . ,Ln with disjoint domains
and C1, . . . ,Cn are all compilers to the same target language L′ such
that, for each i, Ci is correct with respect to an αi-refinement, then:

JC1(u1) ] · · · ]Cn(un)K v α1(Ju1K) ./ . . . ./ αn(JunK)

In the rest of this section, we show how to systematically turn
CompCert-style memory injection into α-bijection by using a crit-
ical memory-changing pass of CompCert as an example. The same
technique can also be used to support translation of calling con-
ventions (e.g., mapping local variables or temporaries in the source
into stack entries in the target).

7.2 Case study: memory injection for local variable layout
One of the most critical memory-changing compilation phases in
CompCert is the phase that lays out local variables into a stack
frame. Indeed, CompCert does not represent memory as a unique
byte array, but as a collection of byte arrays called memory blocks.
The purpose of this memory model is to allow pointer arithmetic
only within the same block. In this setting, CompCert defines the
semantics of a subset of C by allocating one block for each local
variable, so that the following code example indeed gets stuck
(has no valid semantics, which corresponds to undefined behavior
according to the C standard):

void f (void)
{ int a[2] = {18, 42}, b[2] = {1729, 6};
register int *pa = &a[2], *pb = &b[0];
*pa = 3; /* undefined behavior,

NOT equivalent to *pb = 3 */ }

In this example, upon function entry, CompCert allocates two
different memory blocks, one (say with identifier 2) of size 8 for a
and one (say with identifier 3) of size 4 for b. Then, the pointer pa
contains an address which is, in CompCert, not a plain integer, but
a pair Vptr(b, o) of the block identifier b and the byte offset o within
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Figure 4. Injecting two arrays into the stack

this block. So, the value of pa is actually Vptr(2, 8) whereas pb is
Vptr(3, 0). So, the two pointers are not equal, and in fact, pa is not
a valid pointer to store to, because the size of the block identifier
corresponding to a is 8. In other words, the boundary of one block
is in no way related to other blocks. This instrumented semantics
can help in tracking out-of-bounds array accesses in a C program
(for instance using the reference interpreter included in CompCert
to “animate” the formal semantics of CompCert C).

But in practice, this C code is actually compiled by CompCert
to an intermediate language called Cminor, which performs pointer
arithmetic and memory operations for stack-allocated variables of
a given function call in one single memory block, called the stack
frame. The compiled Cminor code looks like the following C code:

void f (void)
{ char* stk[16];

*(int*)(&stk[0]) = 18; *(int*)(&stk[4]) = 42;
*(int*)(&stk[8]) = 1729; *(int*)(&stk[12]) = 6;
{ register int* pa = (int*)(&stk[8]);

register int* pb = (int*)(&stk[8]);
*pa = 3; }}

The proof of the Cminor code generation, from the Csharpminor
5 intermediate language still having one memory block for each
local variable, is based on a memory transformation called memory
injection [14]. An injection is a partial function ι : BlockID →
(BlockID × Z) mapping a source memory block to an offset within
a target memory block. In our example, the target memory block
allocates a stack frame (say with block-id 2) of size 16 bytes; the
source memory block for a is mapped to offset 0 within this stack
block, and b is mapped to offset 8: ι(2) = (2, 0) and ι(3) = (2, 8).

7.3 Issues
Although the CompCert memory injection is the most critical mem-
ory transformation used in CompCert and makes formal proofs of
whole-program compilation fairly understandable (but by no means
straightforward), it has several issues that make it difficult to turn
those proofs into separate compilation (in the sense that it is diffi-
cult to turn the memory injection into a bijective memory transfor-
mation amenable to α-refinement).

Granularity of preservation by memory operations In the current
correctness proof of the Csharpminor-to-Cminor pass, the memory
injection is kept as an invariant, but the preservation properties
make the memory injection hold even during the allocation of
memory blocks corresponding to the source local variables. More
precisely, assume that main is called from source memory m0
related to target memory m′0 by a memory injection ι0. Then:

1. First, the stack frame block b′ is created in the target memory
which becomes m′1. Memory injection ι0 still holds between m0
and m′1.

5 This language is a C-like language only keeping simple types: unions and
structures are removed and compiled to casts

2. Then, the memory block for the local variable a, say b2, is
created in the source memory which becomes m2. Memory
injection between m2 and m′1 becomes ι2 = ι0 ] (b2 7→ (b′, 0)).

3. Then, the memory block for the local variable b, say b3 is
created in the source memory which becomes m3, injected into
m′1 through ι3 = ι2 ] (b3 7→ (b′, 8))

The current memory injection invariant is too fine-grained because
it also holds in the middle of allocating the memory blocks for the
source local variables. It actually means that the target memory m′1
is related to any source memory that can be obtained in the middle
of the allocation of such source blocks, which prevents the injectiv-
ity of the memory transformation. Conversely, the allocation of the
target stack frame block is performed without changing the source
memory, so that the memory injection is not even functional.

To remedy this problem, we make the preservation lemma for
memory injection more coarse-grained: instead of specifying a per-
allocation preservation property, we specify an all-in-one preserva-
tion property to reestablish injection only after all the blocks corre-
sponding to source local variables are allocated.

Dynamic memory changes The proofs of compilation passes in-
volving memory injections build the block mapping on the fly dur-
ing the execution of the program: whenever a block is allocated, the
mapping is modified accordingly. But the mapping is not yet known
for those source memory blocks that are not allocated yet, e.g. in
future function calls, or heap allocations (malloc and free library
functions). It means that the mapping dynamically changes during
the execution of a program. This is why Kripke logical relations are
used to handle memory-changing compilation passes.

To solve those issues, we propose to define a stronger notion
of memory injection in two steps. First, the block mapping is
computed from the source memory using additional information
contained in block tags. Then, the target memory is computed from
both the source memory and the computed block mapping.

7.4 Our approach
In fact, the memory transformation for the Csharpminor-to-Cminor
is actually systematic and can be defined directly depending on the
shape of the memory itself rather than specified by an invariant
preserved by memory operations such as allocating a new block.
To this purpose, we need to add more information into the mem-
ory under the form of tags attached to each memory block. Such
information is provided by the language semantics when allocating
a new memory block, and no longer changes during the execution
of the program. It plays little active role in the execution of the
program, as it is only used during the compilation proof.

Block identifiers To make proofs simpler, we modify the seman-
tics of Csharpminor and Cminor to keep the block identifiers syn-
chronized so that as many blocks are “allocated” in the source as in
the target. In the source, an empty block (within which no operation
or pointer arithmetic is valid) is first allocated, then the blocks for
local variables are allocated; whereas in the target, the stack frame
block is first allocated with its size, then many empty blocks are
allocated, one for each variable.

This has no incidence on performance: such empty blocks can
be considered as logical information, which correspond to no mem-
ory in practice. They are not even reachable in the program.

Tags A block has a tag of one of the following forms:

t ∈ T ::= Heap
global variable or free store

| Stack(Main( f , sz))
Stack frame for function f of size sz bytes

| Stack(Var( f , id, b, sz, of ))
Local variable id in f of size sz injected into b at offset of
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Information defined in the tags is provided either by the seman-
tics of Csharpminor (e.g. the identifier b′ of the corresponding Main
block in the tags of Var blocks) or by a previous compilation phase
(e.g. offsets) within Csharpminor without changing the actual con-
tents of memory blocks.

Specification of injection We can now replace CompCert mem-
ory injection with a stronger injection INJ(ι,m,m′) between a
source memory m and a target memory m′ axiomatized as follows:

• The empty memory injects into itself with ι = ∅.
• If INJ(ι,m,m′), then INJ(ι ] (b 7→ (b, 0),m ] {b},m′ ] {b})) for

any allocation of a new block b with tag Heap
• If INJ(ι,m,m′), then, if the source allocates one empty block

b with tag Stack(Main( f , sz)) and several blocks corresponding
to the local variables of f with tags Stack(Var( f , idi, szi, of i))
so that

[
of i, of i + szi

)
are a partition of [0, sz), then the target

memory allocating one block b of size sz and as many empty
blocks is related to the resulting source memory by INJ with
(ι ] {(b + i 7→ (b, of i)) : 1 ≤ i ≤ n}).
• Load, store and free operations are preserved with respect to ι
• If INJ(ι,m,m1) and INJ(ι,m,m2), then m1 = m2

• If INJ(ι1,m1,m) and INJ(ι2,m2,m), then (ι1,m1) = (ι2,m2)
• The block tags of the source and target memories are the same

Then, the memory transformation is defined as the partial injec-
tive function α(m) = {m′ : ∃ι, INJ(ι,m,m′)}. Then, we change the
forward simulation proof of the CompCert Csharpminor-to-Cminor
pass by replacing the injection with INJ, which incidentally proves
that, actually, Csharpminor makes the invariant dom(α) hold.

Implementation To realize those axioms, we use information
contained in tags to first compute the block mapping ι from the
source memory m. For any block identifier b, if the tag of b in
m is Stack(Main(. . . )), then ι(b) is undefined; if the tag of b in
m is Stack(Var( f , id, b′, sz, of )), then ι(b) = (b′, of ); otherwise,
ι(b) = (b, 0).

Then, we must assume that the memory m is well-formed: for
any block b of m of tag Stack(Main(. . . )), this block is empty, there
are no pointer to it anywhere in the memory, and it is followed by
exactly the right number of blocks of tag Stack(Var( f , id, b, sz, of ))
corresponding to the local variables of f and whose valid offsets are
located at offsets between 0 and sz. This well-formedness condition
is actually an invariant satisfied by the source language, and it will
be the domain of α.

From such a memory, we can now construct the target memory
m′ from the memory m as follows, by scanning it from the first
block. Assuming we treated all blocks between 1 and b − 1, we
treat block b and following as follows:

• if b is the identifier of the next block available for allocation6,
then we are done.
• Otherwise, the block b is well-defined. If b is a heap block, then

copy its contents (transforming pointers by ι) to the target block
with the same identifier b, and move to next block b + 1
• Otherwise, the block b is necessarily of tag Stack(Main( f , sz)),

and is empty, and its next blocks correspond to the local vari-
ables of f (say that there are n of those). Then, in the target
memory m′, b will have size sz and receive the contents (ac-

6 A memory always has finitely many blocks, and the number of blocks
always increases because freed locations are never reused, so that a freed
block is never actually deleted (only its locations are turned into unusable
ones) and any newly allocated block is always fresh.

cordingly transforming pointers by ι) of the following blocks of
m at the offsets specified by their tags; but in m′, those blocks
will be left empty. Then move to the next block b + n + 1.

Contrary to CompCert memory injections, there are no additional
memory locations in the target that do not correspond to any source
memory locations. This is enabled by the fact that we also add
alignment constraints along with block tags to prevent alignment
padding. For the sake of brevity, we do not explain this issue here.

7.5 Stack layout for spilling locations
Starting from Cminor, local variables are laid out together in a sin-
gle stack frame. However, Cminor and further languages such as
RTL still assume that there is an unbounded number of pseudo-
registers for temporary variables whose addresses are not taken. To
address this issue, CompCert performs register allocation in two
stages by sorting out pseudo-registers into two classes of abstract
locations, one for machine registers, another for stack slots corre-
sponding to spilling locations. Then, those stack slots are integrated
into memory by extending the stack frame through a stack layout
compilation pass between two languages, Linear and Mach.

Linear and Mach are two assembly-like 3-address languages
having similar instructions: memory load/store through pointers,
conditionals, arithmetic operations, function calls, and access to
the current stack frame. The main difference between the two lan-
guages is that instructions in Linear operate on abstract locations,
whereas Mach operates on machine registers only. In particular, ac-
cess to the stack frame do not perform memory load/store in Linear,
but do in Mach; moreover, additional such instructions (reloading)
have to be added into Mach code for each Linear instruction oper-
ating on a stack slot.

Conceptually, this pass adds new reachable locations into mem-
ory. To adapt this pass to α-refinement, we thus have to take these
additional spilling locations. However, it is not possible to pre-
dict their values in the semantics of Linear. In fact, in the origi-
nal CompCert proof, those spilling locations are fixed by the re-
lation between the source and target memory states. They must
not change through function call, and in particular through exter-
nal function call.

Our solution is to include the “spilling fragment” of the memory
into external function call events. In Linear, they become of the
form Extcall( f ,m1, S ,m2) where m1 (resp. m2) is the Linear
memory state before (resp. after) the call to f , and S is the fragment
of memory corresponding to the spilling locations and that is to be
added in Mach. Then, we develop an operation / such that the Mach
memory state m′1 = m1 / S is obtained by “adding” the spilling
locations into the Linear memory state. Then, for a Mach module
obtained by compiling a Linear module, the Mach memory state is
always of this form.

Because the spilling locations cannot be predicted in the Linear
semantics, S is arbitrary in Linear: the compositional semantics of
a module says nothing about the spilling locations. By contrast,
in Mach, S can be fixed by explicitly declaring, at the level of a
function call, where are the spilling locations of the current function
(which are added to the spilling locations of the callers). So S is
chosen through the Linear-to-Mach refinement process, and those
Linear traces where S does not correspond to any Mach stack
layout are simply dropped out.

To refactor the refinement, we split the current CompCert
Linear-to-Mach proof into two simulation diagrams. We introduce
a Linear’ intermediate language as a reinterpretation of Linear per-
forming stack operations into memory: there is no code transfor-
mation between Linear and Linear’, but the spilling locations are
already introduced in Linear’. So we can transform the Linear-to-
Mach forward simulation proof into a Linear-to-Linear’ lock-step
backward simulation proof. Then, from Linear’ to Mach, the code

11 2014/12/7



transformation remains the same as in CompCert (introduction of
explicit spilling/reloading code), and its proof is a more straight-
forward forward simulation where the memory states are the same
in Linear’ as in Mach. The implementation and proof are currently
in progress.

8. Related work and conclusions
Our compositional semantics is designed primarily for C-like lan-
guages, so it is not directly applicable to ML-like functional lan-
guages which have more sophisticated semantic models. C-like lan-
guages support first-class function pointers, but they do not allow
function terms (e.g., λx.e) as first-class values. C-like languages
also support intensional operations such as equality test on func-
tion pointers, so it is unsound to replace one function pointer with
another even if they point to functions with same observable be-
haviors. This allows us to use much simpler semantic objects (e.g.,
memory blocks with code pointers as in CompCert [14]) than so-
phisticated models developed for functional languages [2, 11, 1].

Compositional trace/game semantics Our idea of modeling the
behavior of each external function call as an Extcall( f ,m,m′)
event (see Sec. 4) resembles similar treatments in compositional
trace or game semantics [5, 9]. Brookes’s transition-trace seman-
tics [5] models environment transitions for shared memory con-
current languages. Under Brookes’s semantics, a thread’s behavior
is described as a set of transition traces, with each consisting of
a sequence of state transition steps (m1,m′1) :: (m2,m′2) :: . . . ::
(mn,m′n). The gaps between consecutive steps (e.g., m′1 and m2, or
m′n−1 and mn) signal those state transitions made by other threads
in the environment. Composing two threads involves calculating all
the interleavings of pairs of transition traces (one from each thread)
and their stuttering and mumbling closures.

Our Extcall( f ,m,m′) event also uses a pair of memory states
(m,m′) to signal state transitions made by the environment (i.e., ex-
ternal calls). Our semantic linking operation (see Sec. 5) also does
the “merging” of multiple event traces, but it requires more sophis-
ticated substitutions (on behaviors) since we must also support di-
vergence, I/O events, and reacting behaviors. It does not require
stuttering and mumbling closure since we are only dealing with se-
quential languages. The proximity between these two approaches
shows great promise toward combining these two techniques to
build compositional models for concurrent C-like languages.

Ghica and Tzevelekos [9] developed a system-level semantics
for composing C-like program modules. They also used external
call and return events and used them to model open C-like modules
and their environments. Our work can be viewed as an adaptation
of their idea to the setting of compositional compiler correctness,
with the goal of addressing language-independent behavior speci-
fications that include divergence, I/O and reactive events.

Compositional CompCert Concurrently with our work, Stewart
et al [20, 3] have recently completed the development of a for-
mally verified separate compiler for CompCert C. This is a very
impressive achievement since their Coq implementation includes
all 8 translation phases from CompCert Clight to CompCert x86
plus many of the optimization phases. They developed interaction
semantics which is a protocol-oriented operational semantics of in-
termodule (or thread) interaction: an open module would take nor-
mal unobservable steps or make internal function calls (defined in
the same module), but would “block” when calling external func-
tions; each such “block” point is considered as an interaction point;
the program will resume execution when the external function call
returns. To support both vertical and horizontal composition, they
have also developed a new form of “structured simulations” which
extends CompCert-style memory injections with fine-grained sub-
jective invariants and a leakage protocol.

While our Extcall-event-based semantics (EES) shares many
similarities to Stewart et al’s interaction semantics (IS), they also
have some significant differences. EES does not rely on any new
“protocol-oriented” operational semantics, instead, it just treats ex-
ternal function calls as regular events, thus it can use the same
trace-based behavior specifications as semantic objects. When link-
ing two modules u0 and u1, our semantic linking operator ./ (under
EES) would automatically calculate the resulting semantic objects
for the linked module (u0]u1), replacing all cross-module calls be-
tween u0 and u1 with their corresponding behavior specifications.
This leads to a very nice linking theorem (see Theorem 1 in Sec. 5):
if u0 and u1 are two modules in the same language, linking their
compositional semantics at the level of their behaviors exactly cor-
responds to the compositional semantics of their syntactic concate-
nation of the two modules. The interaction semantics (IS), on the
other hand, does not attempt to “big-step” the cross-module calls
between u0 and u1 during linking, thus it has not been able to prove
the same linking theorem as we have done.

Kripke logical relations Kripke Logical Relations (KLRs) [18]
are designed to support horizontal composition for functional lan-
guages. They define equivalence between terms (and values) in
such a way that two functions f1 and f2 (of same type) are equiva-
lent if, and only if, for any two equivalent values v1, v2 of the same
type, ( f1 v1) and ( f2 v2) are equivalent. Ahmed et al [1, 8] showed
how to generalize KLRs to reason about higher-order states. Hur
and Dreyer [10] rely on step-indexed logical relations to show how
to support horizontal composition; they prove correctness of a one-
pass compiler but they do not support vertical composition since
step-indexed logical relations are known to be not transitive.

C-like languages support both first-class function pointers and
states but they do not support first-class function terms as in most
functional languages. Because C function pointers can be tested for
equality, a function pointer can not be replaced by another, even if
they point to functions that have same observable behaviors. This is
why we can build much simpler semantic models and how our new
compositional semantics can still establish the monotonicity (con-
gruence) result of our refinement relation (Section 6, Theorem 2).

Parametric bisimulations Hur et al. [11] recently proposed a
promising approach that combines KLRs with bisimulations. The
main idea is to abandon step-indexing but rely, instead, on coinduc-
tive simulation-based techniques (which are closer to CompCert-
style simulation relations). More specifically, they propose to pa-
rameterize the local knowledge of functions with the global knowl-
edge of external functions, and to define equivalence for open mod-
ules based on a simulation diagram over the small-step semantics
of the two underlying languages of the programs. A simulation di-
agram can make two equivalent programs perform several steps
from two equivalent states to two states corresponding to an ex-
ternal function call, then resume simulation upon return of such a
call. This “disruption” in the flow of the simulation is analogous to
our way of making the external function call explicit as a specific
event in the behavior. Thus, our work can be seen as a unary ver-
sion of their parametric bisimulations by defining a unary seman-
tics for open modules but at the level of behaviors (independently
of the small-step semantics of the underlying languages). Our way
of defining the linking operator at the semantic level of behaviors
avoids the need of strong typing, which makes our approach more
amenable to support weakly typed C-like languages.

Conclusions In this paper, we have presented a novel composi-
tional semantics for reasoning about open modules and for sup-
porting verified separate compilation and linking. To build compo-
sitional semantics for open concurrent programs, we plan to split
our single Extcall event into separate call and return events. Se-
mantics for open concurrent programs can then have interleaving
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external call and return events. Semantic substitutions in our link-
ing will be replaced by some form of “zipping” operations.
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