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Abstract

Modular monadic semantics is a high-level and modular form of denotational semantics.
It is capable of capturing individual programming language features as small building
blocks which can be combined to form a programming language of arbitrary complexity.
Interactions between features are isolated in such a way that the building blocks are in-
variant. This paper explores the theory and application of modular monadic semantics,
including the building blocks for individual programming language features, equational
reasoning with laws and axioms, modular proofs, program transformation, modular in-
terpreters, and semantics-directed compilation. We demonstrate that modular monadic
semantics makes programming languages easier to specify, reason about, and implement
than the alternative of using conventional denotational semantics.

Our contributions include: (a) the design of a fully modular interpreter based on monad
transformers, including important features missing from several earlier efforts, (b) a method
to lift monad operations through monad transformers, including difficult cases not achieved
in earlier work, (c) a study of the semantic implications of the order of monad transformer
composition, (d) a formal theory of modular monadic semantics that justifies our choice
of liftings based on a notion of naturality, and (e) an implementation of our interpreter in
Gofer, whose constructor classes provide just the added power over Haskell type classes
to allow precise and convenient expression of our ideas.

A note to reviewers: this paper is rather long. Short of resorting to “Part I / Part II”,
the one way we see to shorten it would be to remove Section 4 and its Appendix B, which
would amount to eliminating contribution (e) above. This would shorten the paper by
about 12 pages.

1 Introduction

1.1 Overview

Denotational semantics (Stoy, 1977) is among the most important developments in pro-
gramming language theory. It gives a precise mathematical description of programming
languages, useful in designing and implementing languages as well as reasoning about
programs. For example, advances in denotational semantics have led to clarifications of
features, to more consistent programming language design, and to new programming con-
structs.

It has long been recognized, however, that traditional denotational semantics lacks
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modularity and extensibility (Mosses, 1984) (Lee, 1989). This is regarded as a major
obstacle in applying denotational semantics to realistic programming languages.

In this paper, we take advantage of a new development in programming language
theory—a monadic approach (Moggi, 1990) to structured denotational semantics. The
resulting modular monadic semantics achieves a high level of modularity and extensibil-
ity. It is able to capture individual programming language features in reusable building
blocks, and to specify programming languages by composing the necessary features.

Because modular monadic semantics is no more than a structured denotational se-
mantics, standard equational reasoning methods still apply. In addition, we show that
modular monadic semantics further facilitates reasoning by allowing us to specify axioms
of programming language features and to construct reusable modular proofs.

Modular monadic semantics can be implemented using modern programming languages
such as Haskell (Hudak et al., 1992), ML (Milner et al., 1990), or Scheme (Clinger & Rees,
1991). The result is a modular interpreter. We have discovered, however, that the relatively
new idea of constructor classes in Gofer (and Haskell 1.3) are particularly suitable for
representing some rather complex typing relationships in modular interpreters, and thus we
choose Gofer for the interpreter described in Section 4. Our work is also directly applicable
to semantics-directed compiler construction, and we present a compilation method based
on monadic semantics and monadic program transformations.

Before introducing modular monadic semantics, in the next section we give an example
to demonstrate the lack of modularity in traditional denotational semantics. The pre-
sentation follows the traditional denotational semantics style, augmented with a types
declaration syntax similar to that of Haskell or ML. We assume the reader has basic
knowledge of denotational semantics and functional programming.

1.2 The Lack of Modularity in Denotational Semantics

Let us first look at the denotational semantics of a simple arithmetic language:

E : Term→ Value
E[[n]] = n
E[[e1 + e2]] = E[[e1]] + E[[e2]]

Denotational semantics maps terms in the source language into values in the meta
language. The source language terms are enclosed in “[[ ]]”. The n and + symbols on
the right hand side correspond to the meta language concepts of a number and the add
arithmetic operation.

An important measure of modularity is how a semantic description can be extended
to incorporate new programming language features. For example, if we extend the source
language with variables and functions, we need to introduce an environment—a mapping
from variable names to values:

E : Term→ Env→ Value

E[[n]] = λρ.n
E[[e1 + e2]] = λρ.E[[e1]]ρ + E[[e2]]ρ
E[[v]] = λρ.ρ[[v]]

Note that even though numbers are independent of the environment, we must change
the semantics of numbers to accommodate the newly introduced environment argument.
Similarly, the environment argument must be passed recursively to the subexpressions of
e1 + e2, even though the arithmetic operation itself is independent of the environment.

If we further add continuations to our semantics (for supporting, for example, the
sequencing operator “;”), we must change the semantics of numbers once again:
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E : Term→ Env→ (Value→ Ans)→ Ans

E[[n]] = λρ.λk.kn
E[[e1 + e2]] = λρ.λk.E[[e1]]ρ(λi.E[[e2]]ρ(λj.k(i + j)))
E[[e1; e2]] = λρ.λk.E[[e1]]ρ(λx.E[[e2]]ρk)

In summary, we must make global changes to the traditional denotational semantics in
order to add new features into the source language. This lack of modularity of denotational
semantics has long been recognized (Mosses, 1984) (Lee, 1989), and is regarded by many as
the most significant obstacle in applying denotational semantics to realistic programming
languages.

1.3 Monads to the Rescue

Consider now a type constructor M and two functions:

return : a→M a
bind : M a→ (a→M b)→M b

The intuitive meanings of these operations are as follows:

• M a is a computation returning a value of type a.
• bind c1 (λv.c2) is a computation that first computes c1, binds the result to v, and then

computes c2.
• return v is a trivial computation that simply returns v as result.

With these operations we can rewrite the semantics for arithmetic expressions as follows:

E : Term→M Value

E[[n]] = return n
E[[e1 + e2]] = bind (E[[e1]])

(λi. bind (E[[e2]])
(λj. return (i + j)))

Note now that the semantic function E maps terms to computations (of type M Value).
The above equations can be read: “the semantics of E[[n]] is a trivial computation that
returns n as result; the semantics of E[[e1 + e2]] is a computation that computes E[[e1]],
binds the result to i, computes E[[e2]], binds the result to j, and finally returns i + j.”

We call this a parameterized semantics because, depending on how we instantiate M ,
return and bind, we get different concrete semantics. For example, Figure 1 shows how the
arithmetic semantics can be instantiated to the trivial and environment-based semantics
described earlier. To give meaning to variables in the context of the environment-based
semantics, we simply add the equation:

E[[v]] = bind (rdEnv)
(λρ. return(ρ[[v]]))

where rdEnv (defined in a later section) is a computation that reifies the environment. The
key point here is that the previous equations did not need to be altered. In a similar way, we
show later that appropriate definitions of M , return and bind can yield the continuation-
based semantics discussed earlier, as well as several other important semantics to support
other programming language features.

The type constructor M , together with the two functions return and bind, are called
a monad, and a parameterized semantics using monads is called a monadic semantics. A
monadic semantics can be instantiated using different underlying monads. In general, to
add a new feature to a monadic semantics, we only need to add a semantic description
of the new feature and change the underlying monad, but no changes are required of the
semantic descriptions of the existing features.
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E : Term→M Value

E[[e1 + e2]] = bind (E[[e1]])
(λi. bind (E[[e2]])

(λj. return (i + j)))
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type M a = a
return x = x
bind e k = k e

type M a = Env→ a
return x = λρ.x
bind e k = λρ.k (e ρ) ρ
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E : Term→ Value

E[[e1 + e2]] = E[[e1]] + E[[e2]]

E : Term→ Env→ Value

E[[e1 + e2]] = λρ.E[[e1]]ρ + E[[e2]]ρ

Fig. 1. A parameterized arithmetic semantics

1.4 Background and Organization of the Paper

This paper explores the theory and practical applications of monads and monadic seman-
tics, building on previous work in this area. The concept of monads originates in category
theory (Mac Lane, 1971). The formulation of monads using a triple (bind, return, and the
type constructor) is due to Kleisli. Moggi (Moggi, 1990) first proposed that monads pro-
vided a useful tool for structuring denotational semantics. Early work by Wadler (Wadler,
1990) showed the relationships between monads and functional programming. Recently,
there has been a great deal of interest in using monads to construct modular semantics
and modular interpreters (Wadler, 1992) (Jones & Duponcheel, 1993) (Espinosa, 1993)
(Steele Jr., 1994).

In Section 2, we present the modular monadic semantics for a wide range of program-
ming language features. We demonstrate how monad transformers capture individual fea-
tures, and how liftings capture the interactions between different features.

In Section 3, we investigate the theory of monads and monad transformers. This in-
cludes, for example, the formal properties of monad transformers and liftings. We use
monad laws and axioms to perform equational reasoning at a higher level than in tradi-
tional denotational semantics.

In Section 4, we demonstrate how the formal concepts of monads and monad transform-
ers fit nicely into the Gofer (Jones, 1991) type system. By implementing modular monadic
semantics in Gofer, we obtain a modular interpreter.

Finally, in Section 5, we apply monadic semantics to semantics-directed compilation.
We show how an effective and provably correct complication scheme can be derived, taking
advantage of the modularity and reasoning power of the monadic framework. We put some
of our ideas to test by building a retargeted Haskell compiler.

Throughout the paper, we use a common source language to address various issues
in monadic semantics, modular interpreters, and compilation. This source language is
introduced in the next section.
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1.5 The Source Language

The source language we consider has a variety of features, including different function call
mechanisms, imperative features, first-class continuations, tracing (for debugging), and
nondeterminism.

e ::= n | e1 + e2 (arithmetic operations)
| v | λv.e (variables and functions)
| (e1 e2)n (call-by-name)
| (e1 e2)v (call-by-value)
| (e1 e2)l (lazy evaluation)
| callcc (first-class continuations)
| e1 := e2 | ref e | deref e (imperative features)
| label @ e (trace labels)
| {e0, e1, . . .} (nondeterminism)

To simplify the presentation, we use one form of function abstraction that can be ap-
plied using any of the three function application mechanisms: call-by-name, call-by-value,
and lazy evaluation. We can observe the differences with the help of trace messages. For
example, evaluating:

((λx.x + x)(l @ 1))n

results in 2 after printing the trace message “l” twice, whereas

((λx.x + x)(l @ 1))v

prints “l” only once. Nondeterminism is captured by returning all possible results. For
example:

{1, 3}+ {2, 5}
results in {3, 6, 5, 8}.

Although there is no single programming language that has all of the features of our
source language—indeed, one could argue that this would not be a very good language
design—it is nevertheless an excellent test of our methodology.

1.6 A Notation

For clarity, we adopt the following short-hand for monadic sequencing:

E : Term→M Value

E[[e1 + e2]] = bind (E[[e1]])
(λi. bind (E[[e2]])

(λj. return (i + j)))

⇓

E : Term→M Value

E[[e1 + e2]] = { i← E[[e1]];
j ← E[[e2]];
return (i + j)}

This notation is similar to the “do” syntax in Haskell 1.3 (Peterson & Hammond, 1996),
and is also somewhat similar to monad comprehensions (Wadler, 1990). It is important
to remember that, despite the imperative feel, the monadic semantics is still made up
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of lambda abstractions and applications. We use bind and its short-hand notation inter-
changeably, depending on whichever is more convenient in a given context.

2 Modular Monadic Semantics

In this section, we present the modular monadic semantics of our source language. Com-
pared with traditional denotational semantics, our approach captures individual program-
ming language features using modular building blocks.

Figure 2 shows how our modular monadic semantics is organized. High-level features are
defined based on a set of “kernel-level” operations. The expression e1 := e2, for example,
is interpreted by the low-level primitive operation update.

While it is a well-known practice to base programming language semantics on a kernel
language, the novelty of our approach lies in how the kernel-level primitive operations
are organized. In our framework, depending on how much support the upper layers need,
any set of primitive operations can be put together in a modular way using an abstrac-
tion mechanism called monad transformers (Moggi, 1990) (Liang et al., 1995). Monad
transformers provide the power needed to represent the abstract notion of programming
language features, but still allow us to access low-level semantic details. However, monad
transformers are defined as higher-order functions and our monadic semantics is no more
than a structured version of denotational semantics, so conventional reasoning methods
(such as β conversion) apply.

The modular monadic semantics is composed of two parts:

Modular Semantic Building Blocks Semantic building blocks (represented by rect-
angular blocks in Figure 2) define the monadic semantics of individual source language
features. Semantic building blocks are independent of each other, although they are
based on a common set of kernel-level operations. Two building blocks may be sup-
ported by the same kernel-level operation. For example, both assignments and lazy
evaluation may use the same store.

Monad Transformers Monad transformers define the kernel-level operations in a mod-
ular way. Multiple monad transformers can be composed to form the underlying monad
used by all semantic building blocks. In Figure 2, monad transformers that support
environment, continuations, store, etc. are used to construct the underlying monad.

Modular semantic building blocks and monad transformers are the topics of the follow-
ing sections.

2.1 Modular Semantic Building Blocks

Each modular semantic building block defines the monadic semantics for a particular
source language feature. Traditional denotational semantics maps, say, a term, an envi-
ronment and a continuation to an answer. In contrast, monadic semantics maps terms to
computations, where the details of the environment, store, etc. are hidden. Specifically,
our semantic evaluation function E has type:

E : Term→M Value

where M is a monad equipped with two basic operations:

bind : M a→ (a→M b)→M b
return : a→M a

Value is the domain sum of basic values and functions; and M Value represents com-
putations that return Value as result. Functions map computations to computations:
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callcc

nondeterminism

Functions

Assignments

Continuations

:=

lambda

nondeterminism

continuations
store

environment
Modular construction
of the kernel

callcc
update

err

inEnv rdEnv

error reporting
I/O

write

merge Arithmetic Ops

Lazy evaluation

Tracing
label @

(f x)
l

{e1, e2, ...}

e + 1

Fig. 2. The organization of modular monadic semantics

type Fun = M Value→M Value
type Value = Int + Bool + Addr + Fun + . . .

As will be seen, this generality allows us to model call-by-name, call-by-value and lazy
evaluation with only one kind of lambda abstraction (but 3 kinds of function application)
in the source language.

In this section, we present the semantic building blocks needed for our source language.
The monad operations return and bind are the basic operations used by every building
block. In addition, each semantic building block depends on several other kernel-level
operations that are specific to its purpose.

2.1.1 The Arithmetic Building Block

The semantics for arithmetic expressions is as follows:

E[[n]] = return (inInt n)
E[[e1 + e2]] = { v1 ← E[[e1]];

v2 ← E[[e2]];
if (isInt v1 and isInt v2) then

return (inInt (outInt v1 + outInt v2))
else

err “type error′′ }
inInt is the injection function from Int to the Value domain, whereas outInt is the pro-
jection function from the Value domain to Int. The kernel-level function (to be defined
later):

err : String→M a

reports error conditions (which, in this case, are type errors). In other words, err is an
operation supported by the underlying monad M . For clarity, from now on we omit domain
injection/projection and type checking.

E[[n]] returns the number n (injected into the Value domain) as the result of a trivial
computation. To evaluate e1 +e2, we evaluate e1 and e2 in turn, and then sum the results.
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2.1.2 The Function Building Block

In denotational semantics, functions are supported using an environment—a mapping
from variable names to their denotation. We introduce an environment Env which maps
variable names to computations,† and two kernel-level operations that retrieve the current
environment and perform a computation in a given environment, respectively:

type Env = Name→M Value
rdEnv : M Env
inEnv : Env→M Value→M Value

The definitions of rdEnv and inEnv are given later. The semantics for variables, function
abstraction, call-by-name and call-by-value are as follows:

E[[v]] = {ρ← rdEnv; ρ [[v]]}
E[[λv.e]] = {ρ← rdEnv; return(λc.inEnv ρ[c/[[v]]] E[[e]])}
E[[(e1 e2)n]] = {f ← E[[e1]]; ρ← rdEnv; f(inEnv ρ E[[e2]])}
E[[(e1 e2)v]] = {f ← E[[e1]]; v ← E[[e2]]; f(return v)}
Because there is no risk of confusion, we drop the parentheses around ρ[c/v] and E[[e]]

in the application of inEnv.
The difference between call-by-value and call-by-name is clear: the former reduces the

argument before invoking the function,‡ whereas the latter packages the argument with
the current environment to form a closure.

2.1.3 The References and Assignment Building Block

Imperative features can be supported using a store—a mapping from locations (of type
Loc) to computations. Three functions allocate, read from and write to the memory cells
in the store:

alloc : M Loc
read : Loc→M Value
write : (Loc, M Value)→M ()

The monadic semantics for references and assignment is as follows:

E[[ref e]] = {v ← E[[e]]; l← alloc;write (l, return v); return l}
E[[deref e]] = {l← E[[e]]; read l}
E[[e1 := e2]] = {l← E[[e1]]; v ← E[[e2]];write (l, return v)}
To create a reference, we evaluate the expression, allocate a new memory cell, and store

in the location of the memory cell a trivial computation that returns the value of the
expression. The argument of deref evaluates to a location, at which the stored value can
be read. To assign an expression to a location, we evaluate the expression, and update the
location with a trivial computation that returns the value of the expression.

Note that we only store trivial computations. We could alternatively give the semantics
for references and assignment using a store that maps locations to values, rather than
locations to computations. The reason we store computations is to simplify the overall

† We do not need an environment that maps names to computations in order to support
call-by-value. However, we need such an environment to support call-by-name and lazy
evaluation. We discuss this issue in more detail in Section 2.1.8.

‡ To be precise, the call-by-value semantics is only preserved when the underlying monad
enforces an evaluation order dependency. This is true of the continuation, state, and
error monads. However, the identity and environment monads do not actually force the
evaluation of c1 before c2 in {x← c1; c2}.
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presentation; in particular, it allows us to avoid introducing a separate kernel-level store
operation for our next feature: lazy evaluation.

2.1.4 The Lazy Evaluation Building Block

Using the same store for references and assignments, we can implement lazy evaluation
whose operational semantics implies caching of results.

E[[(e1 e2)l]] = { f ← E[[e1]];
l← alloc;
ρ← rdEnv;
let thunk = { v ← inEnv ρ E[[e2]];

← write (l, return v);
return v }

in { ← write (l, thunk);
f (read l) } }

Before entering the function, we allocate a memory cell and store a thunk (a computation
that updates itself) in it. After the argument is first evaluated, the result is stored back
to the memory cell, overwriting the thunk itself.

2.1.5 The Program Tracing Building Block

Given a kernel-level function:

output : String→M ()

that prints out a string, we can support tracing. Labels attached to expressions cause a
“trace record” to be invoked whenever that expression is evaluated:

E[[l @ e]] = { ← output (“enter ” ++ l);
v ← E[[e]];
← output (“leave ” ++ l);

return v }
Here we see that some of the features of monitoring semantics (Kishon et al., 1991) are

easily incorporated into our framework.

2.1.6 The Continuation Building Block

The continuation is a powerful mechanism for modeling control flow in denotational se-
mantics (Stoy, 1977). In addition, callcc (“call with current continuation”) is a useful pro-
gramming language construct, popularized by its use in Scheme (Clinger & Rees, 1991).
Here is a simple example to show how callcc works:

callcc (λk.(k 100)v) =⇒ 100

When applied to a function, callcc captures the current continuation, and passes the
continuation as the argument k. The continuation itself is captured as a function. When
captured continuation is later applied to the value 100, the control flow is transferred back
to the point where the continuation was initially captured. The value (100) passed to the
continuation is the result returned from callcc.

The power of callcc lies in that the captured continuation does not have to be invoked
immediately. We may store the continuation into data structures, perform other compu-
tations, and then invoke the stored continuation to transfer the control back to where we
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issued callcc. For this reason, callcc can be used to model a wide variety of non-local control
flow, including, for example, catch/throw, error handling, coroutines, and thread context
switches. Scheme (Clinger & Rees, 1991) and SML (Milner et al., 1990) incorporate callcc
as a language feature.

As expected, the kernel-level operation callcc takes a function argument that in turn
takes a continuation:

callcc : ((Value→M Value)→M Value)→M Value

We define the semantics of source-level callcc as a function expecting another function
as an argument, to which the current continuation is passed:

E[[callcc]] = return (λf.{f ′ ← f ; callcc(λk.f ′(λa.{x← a; kx}))})
The result of E[[callcc]] is a trivial computation that returns a function. The argument

of the function, f , evaluates to the current continuation (f ′).

2.1.7 The Nondeterminism Building Block

Given a kernel-level function:

merge : List (M a)→M a

that merges a list of computations into a single (nondeterministic) computation, nonde-
terminism semantics can be expressed as:

E[[{e0, e1, . . .}]] = merge [E[[e0]], E[[e1]], . . .]

E[[e0]], E[[e1]], etc. are a list of computations denoting the nondeterministic behavior.

2.1.8 Alternative Definitions of the Environment and Store

In the building blocks presented so far, we have used one environment that maps variable
names to computations, and used one store that maps locations to computations. As
we have pointed out, this generality is not necessary for some of the building blocks. For
example, the call-by-value semantics only needs an environment that maps variable names
to values, whereas the reference and assignment semantics only needs a store for values.

Modular monadic semantics is flexible enough that we can easily introduce multiple
environments and stores, so that each building block is supported by exactly the right set
of operations. To specify call-by-value functions, for example, we can use an environment
that maps variable names to values. If we later add call-by-name functions, we simply add
a new environment that maps variable names to computations. Similarly for the reference
and assignment building block, we can introduce a store that maps locations to values,
separate from the requirements of lazy evaluation.

If we were to store variables in two separate environments, we would then need to dis-
tinguish, at the source language level, call-by-value functions from call-by-name functions.
Thus instead of using one syntax for all three kinds of function abstractions (as in Sec-
tion 1.5), we would need to have two separate syntactic constructs: one for call-by-value,
the other for call-by-name and lazy evaluation. Variables would then be stored in either
of the two environments, depending on what kind of function abstraction the variable is
introduced in.

We do not present the details of designing a modular semantics with multiple envi-
ronments and stores. Instead, we emphasize that the simplifications we made in previous
sections to ease the presentation do not fundamentally limit the modularity of our ap-
proach.



Modular Monadic Semantics 11

Feature Function

Error reporting err : String→M a

Environment rdEnv : M Env
inEnv : Env→M a→M a

Store alloc : M Loc
read : Loc→M Value
write : (Loc, M Value)→M ()

Output output : String→M ()

Continuations callcc : ((a→M b)→M a)→M a

Nondeterminism merge : List (M a)→M a

Table 1. Monad operations used in the semantics

2.2 Monads With Operations

Semantic building blocks depend on other kernel-level operations in addition to unit and
bind. From the last section, it is clear that the operations listed in Table 1 must be
supported.

If we were writing the semantics in the traditional way, now would be the time to set
up the domains and define the functions listed in the table. The major drawback of such
a monolithic approach is that we have to take into account all other features when we
define an operation for one specific feature. When we define callcc, for example, we have
to decide how it interacts with the store and environment etc. And, if we later want to
add more features, the semantic domains and all kernel-level functions may have to be
redefined.

Monad transformers, on the other hand, allow us to capture individual language fea-
tures. Furthermore, the concept of lifting allows us to account for the interactions between
various features. Monad transformers and lifting are the topics of the next two sections.

To simplify the set of operations, we note that both the store and output (used by
the program tracing building block) have to do with some notion of state. Thus we could
define alloc, read, write, and output in terms of the function:

update : (s→ s)→M s

for some suitably chosen state type s. We can read the state by passing update the identity
function, and update the state by passing it a state transformer. For example, we can model
output by using String as the state type:

output : String → m ()
output msg = { ← update (λ sofar.sofar ++ msg);

return ()}

The underscore ( ) indicates that the return value of update is ignored.
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2.3 Monad Transformers

For an intuitive understanding of monad transformers, consider the merging of a state
monad with an arbitrary monad, an example which originally appeared in Moggi’s note
(Moggi, 1990):

type StateT s m a = s→ m (s, a)

The type variable m represents a type constructor. We later show that, if m is a monad,
then so is StateT s m. Therefore StateT s is a monad transformer. For example, if we
substitute the identity monad:

type Id a = a

for m in the above monad transformer, then we arrive at:

StateT s Id a = s→ Id (s, a)
= s→ (s, a)

which is the standard state monad found, for example, in Wadler’s work (Wadler, 1992).
We formally define monad transformers in Section 3.1.2. For now we note that a monad

transformer t has a number of capabilities:
First, it transforms any monad m to monad t m. Functions returnt m and bindt m are

naturally defined in terms of returnm and bindm.
Second, it can embed any computation in monad m as a computation in monad t m.

Every monad transformer is equipped with a function:

liftt : m a→ t m a

which maps any computation in monad m to a computation in monad t m.
Third, it adds operations (i.e., introduces new features) to a monad. The StateT monad

transformer, for example, adds state s to the monad it is applied to, and the resulting
monad accepts update as a legitimate operation.

Lastly, monad transformers compose easily. For example, applying both StateT s1 and
StateT s2 to the identity monad, we get:

StateT s1 (StateT s2 Id) a = s1 → (StateT s2 Id) (s1, a)
= s1 → s2 → (s2, (s1, a)),

which is the expected type signature for transforming both states s1 and s2. The observant
reader will note, however, an immediate problem: in the resulting monad, which state
does update act upon? In general, this is the problem of lifting monad operations through
transformers, and is addressed in the next section.

The remainder of this section introduces the monad transformers that cover all the
features listed in Table 1. Some of these (StateT, ContT, and ErrorT) appear in an abstract
form in Moggi’s note (Moggi, 1990). The environment monad is similar to the state reader
by Wadler (Wadler, 1990). The state and environment monad transformers are related to
ideas found in Jones and Duponcheel’s work (Jones, 1993) (Jones & Duponcheel, 1993).

We attach subscripts to monadic operations to distinguish between the different monads
they operate on. Some monad transformers use two additional functions: map and join.
These functions, which can be used in any monad, are easily defined in terms of return
and bind:

mapm : (a→ b)→ m a→ m b
mapm f e = bindm e (λa. returnm (f a))

joinm z : m (m a)→ m a
joinm z = bindm z (λa.a)
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2.3.1 The State Monad Transformer

The state monad transformer introduces an updatable state into an existing monad. The
resulting monad accepts an additional operation update, and is called a state monad.

Previously, we described the state monad transformer with a type definition:

type StateT s m a = s→ m (s, a)

To complete the definition, we must also provide the return and bind functions for
StateT s m:

returnStateT s m = λs. returnm (s, x)
bindStateT s m m k = λs0.bindm (m s0) (λ(s1, a).k a s1)

Given these definitions, if returnm, bindm, and m form a monad, then so do returnStateT s m,
bindStateT s m and StateT s m. A more formal characterization of the relationships be-
tween m and StateT s m is given in Section 3.

Next, we define the lift function, which simply performs the computation in the new
context and preserves the state.

liftStateT s : m a→ StateT s m a
liftStateT s c = λs.{x← c; returnm (s, x)}m
Finally, a state monad must support the update operation, which transforms the state

using the given f, and returns the old state:

updateStateT s m : (s→ s)→ StateT s m s
updateStateT s m f = λs. returnm (f s, s)

2.3.2 The Environment Monad Transformer

EnvT r transforms any monad into an environment monad that supports inEnv and rdEnv.
The definition of bind shows that two subsequent computation steps run under the same
environment ρ (of type r). (Compare this with the state monad, where the second com-
putation is run in the state returned by the first computation.)

type EnvT r m a = r → m a

returnEnvT r m a = λρ. returnm a
bindEnvT r m m k = λρ.bindm (m ρ) (λa.k a ρ)

The result of lifting a computation through the environment monad is a computation
that ignores its environment.

liftEnvT r : m a→ EnvT r m a
liftEnvT r c = λρ.c

InEnv ignores the environment carried inside the monad, and performs the computation
in the given environment.

inEnvEnvT r m : r → EnvT r m a→ EnvT r m a
inEnvEnvT r m ρ m = λρ′.m ρ

rdEnvEnvT r m : EnvT r m r
rdEnvEnvT r m = λρ. returnm ρ
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2.3.3 The Error Monad Transformer

Monad Err completes a series of computations if all succeed, or aborts as soon as an
error occurs. The monad transformer ErrT transforms a monad into an error monad that
supports err as a valid operation.

data Err a = Ok a | Err String
type ErrT m a = m (Err a)

returnErrT m a = returnm (Ok a)
bindErrT m m k = bindm m (λa.case a of

(Ok x) → k x
(Err msg) → returnm (Err msg))

To lift a computation across ErrT, we tag the result with Ok:

liftErrT : m a→ ErrT m a
liftErrT = mapm Ok

The semantic function err throws away any intermediate result, and returns the error
value Err.

err : String→ ErrT m a
err = returnm · Err

2.3.4 The Continuation Monad Transformer

We define the continuation monad transformer as:

type ContT c m a = (a→ m c)→ m c

returnContT c m x = λk.k x
bindContT c m m f = λk.m (λa.f a k)

ContT introduces an additional continuation argument (of type a → m c), where c is
the answer type. By the above definitions of return and bind, all computations in monad
ContT c m are carried out in the continuation passing style.

Lift for ContT c m turns out to be the same as bindm. (Indeed they have the same type
signature.)

liftContT c : m a→ ContT c m a
liftContT c = bindm

ContT transforms any monads to a continuation monad, which supports an additional
operation callcc. Callcc f invokes the computation in f , passing it a continuation that, once
applied, throws away the current continuation k′ and invokes the captured continuation
k.

callccContT c m : ((a→ ContT c m b)→ ContT c m a)→ ContT c m a
callccContT c m f = λk.f (λa.λk′.k a) k
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2.3.5 The List Monad

In denotational semantics, nondeterminism is usually captured by a list of all possible
results. It is known that lists compose with a special kind of monads called commutative
monads (Jones & Duponcheel, 1993). It is not clear, however, if lists compose with arbitrary
monads. Since many useful monads (e.g. state, error and continuation monads) are not
commutative, we cannot define a list monad transformer—one which adds the operation
merge to any monad.

Fortunately, every other monad transformer we have considered in this paper properly
transforms arbitrary monads. We thus can use lists as the base monad, to which other
transformers can be applied. We recall the definition of the well-known list type and its
monadic operations:

data List a = a : List a - - Cons cell
| [ ] - - Nil

returnList x = [x]
bindList m k = case m of

[ ] → [ ]
(x : xs) → k x ++ (bindList xs k)

The merge function of the List monad is the well-known list concatenation operation:

mergeList : List (List a)→ List a
mergeList [ ] = [ ]
mergeList (x : xs) = x ++ mergeList xs

2.4 Liftings

We have introduced monad transformers that add useful operations to a given monad,
but we have not addressed how these operations can be carried through other layers of
monad transformers. This process is called the lifting of operations.

Lifting an operation f in monad m through a monad transformer t results in an opera-
tion whose type signature can be derived by substituting all occurrences of m in the type
of f with t m. For example, lifting:

inEnv : r → m a→ m a

through t results in an operation with type:

inEnv : r → t m a→ t m a

Moggi (Moggi, 1990) studied the problem of lifting under a categorical context. The
objective was to identify liftable operations from their type signatures. Unfortunately,
many useful operations such as merge, inEnv and callcc failed to meet Moggi’s criteria,
and were left unsolved.

Instead, we consider how to lift these difficult cases individually. This allows us to make
use of their definitions (rather than just their types), and to find ways to lift them through
all of the monad transformers studied so far.

This is exactly where monad transformers provide us with an opportunity to study
how various programming language features interact. The easy-to-lift cases correspond to
features that are independent in nature, while the more involved cases require a deeper
analysis of monad structures to clarify the semantics.

An unfortunate consequence of our approach is that, as we consider more monad trans-
formers, the number of possible liftings grows quadratically. It seems, however, that there
are not too many different kinds of monad transformers (although there may be many in-
stances of the same monad transformer such as StateT). The monad transformers that we
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have introduced so far are able to model almost all commonly known features of sequential
languages. §

Some operations are more difficult to lift than others. In particular, inEnv and callcc
require special attention. We first list the easy cases, followed by the rest. Although we
present a number of liftings in this section, we defer a formal explanation of why they are
the desirable ones to Section 3.

2.4.1 The Easy Cases

RdEnv, err and update take a non-monadic type, and return a computation. They are
handled by lift. For any monad transformer t applied to monad m, we have:

rdEnvt m = liftt rdEnvm

errt m = liftt · errm

updatet m = liftt · updatem

Because List always is the base monad, we only have to consider cases when (possibly
a sequence of) monad transformers are applied to List:

merge(t1...(tn List)...) = join(t1...(tn List)...) · liftt1 · . . . · lifttn

2.4.2 Lifting Callcc

The crucial issue in lifting callcc through a monad transformer, for example, EnvT r,
is to specify how it interacts with the newly introduced environment r. The following
lifting discards the current environment ρ′ upon invoking the captured continuation k.
The execution will continue in the environment ρ captured when callcc was first invoked.
This is indeed how SML’s callcc normally interacts with the environment.

callccEnvT r m : ((a→ r → m b)→ r → m a)→ r → m a
callccEnvT r m = λρ.callccm(λk.f(λa.λρ′.ka)ρ)

In lifting callcc through StateT, we have a choice of passing either the current state s1

or the captured state s0. The former is the usual semantics for callcc, and the latter is
useful in Tolmach and Appel’s approach to debugging (Tolmach & Appel, 1990).

callccStateT s m : ((a→ s→ m(s, b))→ s→ m(s, a))→ s→ m(s, a)
callccStateT s m f = λs0.callccm (λk.f (λa.λs1.k (s1, a)) s0)

§ An example of the features we cannot model is concurrent computation in multi-
threaded programs. In addition, the state monad transformer is more general than
what is needed to model output. The output monad transformer (Moggi, 1990) is also
able to support the output operation:

type OutputT m a = m (String, a)

returnOutputT m x = returnm (” ”, x)
bindOutputT m m k = {(o1, a)← m; (o2, b)← k a; returnm (o1 ++ o2, b)}m
liftOutputT : m a→ OutputT m a
liftOutputT c = {x← c; returnm (” ”, x)}m
outputOutputT m : String→ OutputT m
outputOutputT m s = returnm (s, ())

Investigating the properties of OutputT and its relationship with StateT is a topic for
future research.
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The above shows the usual callcc semantics, and can be changed to the “debugging”
version by instead passing (s0, a) to k:

callccStateT s m f = λs0.callccm (λk.f (λa.λs1.k (s0, a)) s0)

callcc can be lifted through ErrT as follows:

callccErrT m : ((a→ m(Err b))→ m(Err a))→ m(Err a)
callccErrT m f = callccm(λk.f(λa.k(Ok a)))

2.4.3 Lifting InEnv

The liftings of inEnv through EnvT and StateT are similar:

inEnvEnvT r′ m : r → (r′ → m a)→ r′ → m a
inEnvEnvT r′ m ρ e = λρ′.inEnvm ρ (e ρ′)

inEnvStateT s m : r → (s→ m (s, a))→ s→ m (s, a)
inEnvStateT s m ρ e = λs.inEnvm ρ (e s)

A function of type:

m a→ m a

maps m (Err a) to m (Err a), thus inEnv stays the same after being lifted through ErrT.
We do not know of a desirable way to lift inEnv through ContT. This means that we

always have to apply the continuation monad transformer before we apply environment
monad transformers. In the following lifting, for example, the environment is not restored
when c invokes k, and would thus reflect the history of dynamic execution.

inEnvContT c m ρ c = λk.inEnvm ρ (c k)
rdEnvContT c m = lift rdEnvm

2.5 Summary

Monad transformers and lifting are summarized in Figures 3 and 4. The most problematic
case is the continuation monad transformer ContT. Not only are operations relatively hard
to lift though ContT, the callcc operation also requires more work to lift through other
monad transformers.

Equipped with the monad transformers, we can construct the underlying monad M to
support all of the semantic building blocks in Section 2.1:

type M a = EnvT Env (environment)
(ContT Answer (continuation)

(StateT Store (store)
(StateT IO (input/output)

(ErrT (error reporting)
List)))) a (nondeterminism)

Env, Answer, Store, and IO are the types of environment, answer, store, and I/O channels,
respectively. The order of some monad transformers can be changed. However, because
of the limitations in lifting inEnv through ContT, we cannot exchange the order of EnvT
and ContT.

By using a series of abstractions, modular monadic semantics turns the monolithic
structure of traditional denotational semantics into reusable components. The modular-
ity is manifested at two levels, high-level monadic building blocks and low-level monad
transformers.
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State:

type StateT s m a = s→ m (s, a)

returnStateT s m a = λs. returnm(s, a)
bindStateT s m e k =

λs.{(s′, a)← es; kas′}m
update f = λs. returnm(fs, s)

liftStateT se = λs.{a← e; returnm(s, a)}m

Environment:

type EnvT r m a = r → m a

returnEnvT r m a = λρ. returnm a
bindEnvT r m e k =

λρ.{a← eρ; kaρ}m
rdEnv = λρ. returnm ρ
inEnv ρ c = λρ′.c ρ

liftEnvT re = λρ.e

Errors:

type Err a = Ok a | Err String
type ErrT m a = m (Err a)

returnErrT m = returnm ·Ok
bindErrT me k =

{ a← e;
case a of
Ok x → kx
Err s → returnm(Err s)}

err = returnm ·Err

liftErrT = mapmOk

Continuation:

type ContT c m a = (a→ m c)→ m c

returnContT c m a = λk.ka
bindContT c m e f = λk.e(λa.fak)

callcc f = λk.f(λa.λk′.ka)k

liftContT c = bindm

Fig. 3. Monad transformers

We have, however, only achieved part of our goal. Without a theory of monads and
monad transformers, we would have to unfold the definitions of all kernel-level monadic
operations (such as bind and inEnv) to reason about semantic building blocks and the
source language. In the next section, we present a theory that enables us to perform
equational reasoning at a higher level with a set of laws and axioms.

3 A Theory of Monads and Monad Transformers

The purpose of developing a theory for monads and monad transformers is to reason about
the monadic semantics without having to unfold the definitions of kernel-level monadic
operations such as bind, inEnv, etc. Unfolding the monadic operations would defeat the
purpose of the modular abstraction mechanism. Instead, we make it possible to perform
equational reasoning at a high level by providing a set of properties directly associated with
various monadic operations. An example in Section 5 further demonstrates that reasoning
in the monadic framework offers modular proofs and more general results. In this section,
we concentrate on the fundamental properties of monads and monad transformers.

We begin with the formal definition of monads and monad transformers, based on
Moggi’s and Walder’s earlier work. The main topics of this section are how monadic
axioms capture the properties of individual programming language features, and how
natural liftings preserve existing features and capture the interactions between the newly
added feature and existing features. The section ends with a discussion of the order of
composing monad transformers.
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Functions err, update and rdEnv are easily lifted using lift:
errt m = liftt m · errm

updatet m = liftt m · updatem

rdEnvt ) = liftt mrdEnvm

List can only be the base monad:

merge(t1...(tn List)...) = join(t1...(tn List)...) · liftt1 · . . . · lifttn

Liftings of callcc and inEnv:

callcct m f inEnvt m ρ e

EnvT r m λρ.callccm(λk.f(λa.λρ′.ka)ρ) λρ′.inEnvmρ(eρ′)

StateT s m λs0.callccm(λk.f(λa.λs1.k(s0, a))s0) λs.inEnvmρ(es)

ErrT m callccm (λk.f(λa.k(Ok a))) inEnvm ρ e

Fig. 4. Liftings

3.1 Monad and Monad Transformers

In this section we give a formal definition of monads and monad transformers.

3.1.1 Monads

Definition 3.1
A monad is a triple (m, returnm, bindm) consisting of a type constructor and two functions
that satisfy the following laws (Moggi, 1990):

{b← return a; k b} = k a (left unit)
{a← e; return a} = e (right unit)

{v1 ← e1; {v2 ← e2; e3}} = {v2 ← {v1 ← e1; e2}; e3} (associativity)

Intuitively, the (left and right) unit laws say that trivial computations can be skipped in
certain contexts; and the associativity law captures the very basic property of sequencing,
one that we usually take for granted in imperative programming languages.

Note that in the associativity law, e1 is in the scope of v2 on the right hand side but
not so on the left hand side. In applying this law, we must make sure that there is no
unwanted name capture.

The type constructors Id and List introduced in Section 2 are well-known monads
(presented in, for example, (Wadler, 1990)):

Proposition 3.1
Id and List are monads.

3.1.2 Monad Transformers

To capture monad transformers formally, we first introduce monad morphisms (Moggi,
1990):

Definition 3.2
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A monad morphism f between monads m and m′ is a function of type:

f : m a→ m′ a

satisfying:

f. returnm = returnm′

f (bindm m k) = bindm′ (f m) (f · k)

Note that f is polymorphic in a. We can now define monad transformers as follows:

Definition 3.3
A monad transformer consists of a type constructor t and an associated function liftt,
where t maps any given monad (m, returnm, bindm) to a new monad (t m, returnt m,
bindt m). Furthermore, liftt is a monad morphism between m and t m:

liftt : m a→ t m a

Therefore lifting a trivial computation results in a trivial computation; lifting a sequence
of computations is equivalent to first lifting them individually, and then combining them
in the lifted monad.
The type constructors listed in Figure 3 satisfy the above definition.

Proposition 3.2
EnvT r, StateT s, ErrT, and ContT c are monad transformers.

It is well known that these type constructors transform monads to monads. “EnvT r”
is the composable reader monad presented in (Jones & Duponcheel, 1993). The remaining
three were discovered by Moggi (Moggi, 1990). Appendix A contains detailed proofs that
the corresponding lift functions are indeed monad morphisms.

Monad transformers compose with each other (a property that follows immediately
from the definition of monad morphisms):

Proposition 3.3
Given monad transformers t1 and t2, t1 · t2 is a monad transformer with:

type (t1 · t2) m a = t1 (t2 m) a
lift(t1·t2) = liftt1 · liftt2

3.2 Environment Axioms

Environments have a profound impact on programming language semantics and compi-
lation. For example, lexically scoped languages fit well into the environment model. The
monadic framework provides us a way to capture the essential properties of environments
as follows:

Proposition 3.4
The environment operations, rdEnv and inEnv satisfy the following axioms:

(inEnv ρ) · return = return (unit)
inEnv ρ {v ← e1; e2} = {v ← inEnv ρ e1; inEnv ρ e2} (distribution)

inEnv ρ rdEnv = return ρ (cancellation)
inEnv ρ′ (inEnv ρ e) = inEnv ρ e (overriding)

Intuitively, a trivial computation cannot depend on the environment (the unit law); the
environment stays the same across a sequence of computations (the distribution law); the
environment does not change between a set and a read if there are no intervening com-
putations (the cancellation law); and an inner environment supersedes an outer one (the
overriding law). The distribution law, for example, is what distinguishes the environment
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from a store. A store does not distribute across a sequence of computations. It is updated
as the computation progresses.

We can prove the environment axioms by first verifying that they hold after the envi-
ronment monad transformer is applied, and then by making sure that they are preserved
through the liftings of rdEnv and inEnv. A detailed proof of these results is included in
Appendix A.

In Section 5, we will present an example that uses the environment axioms to prove a
property about compiling the source language.

The environment axioms provide an answer to the question: “what constitutes an en-
vironment?” We expect that useful monadic axioms can be derived for other features,
following the earlier efforts on state (Hudak & Bloss, 1985) (Peyton Jones & Wadler,
1993) (Chen & Hudak, 1997), continuations (Felleisen et al., 1986) (Felleisen & Hieb,
1992) and exceptions (Spivey, 1990).

3.3 Natural Liftings

In this section, we investigate what conditions a desirable lifting must satisfy. First we
will formalize how types are transformed in the lifting process. We will then introduce
the natural lifting condition and verify that the liftings we constructed in Section 2.4 are
indeed natural.

3.3.1 Lifting Types

How does its type change when an operation is lifted? The set of operations we consider
has the following types in monad m:

τ ::= A (type constants)
| a (type variables)
| τ → τ (functions)
| (τ, τ) (products)
| List τ (lists)
| m τ (computations)

When an operation is lifted through the monad transformer t, its new type can be derived
by substituting all occurrences of m in the type with t m. Formally, �·�t is the mapping
of types across the monad transformer t:

�A�t = A
�a�t = a
�τ1 → τ2�t = �τ1�t → �τ2�t
�(τ1, τ2)�t = (�τ1�t, �τ2�t)
�List τ�t = List �τ�t
�m τ�t = t m �τ�t

3.3.2 Natural Lifting Condition

What properties should a particular lifting satisfy? Recall that in Section 2.4.3, we noted
that the following was not a desirable lifting of inEnv through ContT:

inEnvContT c m r c = λk.inEnvm r (c k)

The problem is that the environment is not restored when c invokes k, which is equiv-
alent to, for example, not popping off the arguments after a function returns. This lifting
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is not desirable because a new feature (a continuation) has disrupted an existing feature
(the environment).

Intuitively, any programs not using the added feature should behave in the same way
after a monad transformer is applied. The monad morphism property of lift ensures that
single computations are properly lifted. But some operations, such as callcc, have more
complex types—they take computations as arguments. Thus we extend Moggi’s original
definition and define natural liftings as a family of relations Lτ , indexed by type τ :

Definition 3.4

Lτ is a natural lifting of operations of type τ along the monad transformer t if it satisfies:

Lτ : τ → �τ�t

LA = id (1)
La = id (2)
Lτ1→τ2 = λf.f ′ satisfying:

∀Lτ1 , ∃Lτ2 , such that: f ′ · Lτ1 = Lτ2 · f (3)
L(τ1,τ2) = λ(a, b).(Lτ1 a,Lτ2 b) (4)
LList τ = mapList Lτ (5)
Lm τ = liftt · (mapm Lτ ) (6)

Despite the similarity between cases 5 and 6, case 5 is in fact more similar to case 4.
Both cases 4 and 5 map τ across the some basic data type. In case 6, m is the monad on
which the monad transformer t is applied.

Constant types (such as integer) and polymorphic types do not depend on any particular
monad. (See cases 1 and 2.) On the other hand, we expect a lifted function, when applied
to a value lifted from the domain of the original function, to return a lifting of the result of
applying the original function to the unlifted value. This relationship is precisely captured
by equation 3, which corresponds to the following commuting diagram:

�τ1�t �τ2�t

τ1 τ2

�f ′

�
f

�

Lτ1

�

Lτ2

The liftings of tuples and lists are straightforward. Finally, the lift operator that comes
with the monad transformer m lifts computations in m. Note that Lτ is mapped to the
result of the computation, which may involve other computations.

The above does not provide a constructive definition for a type-parametric lifting func-
tion L. The “satisfying” clause in the third equation specifies a constraint, rather than a
definition of f ′. That is why we define L as a relation rather than a function. In practice,
we first find out by hand how to lift an operation through particular monad transformers,
and then use the above equations to verify that such a lifting is indeed natural.

3.3.3 Verifying Natural Liftings

We now verify the natural lifting condition for the liftings in Section 2.4. The easy cases
(update, err and rdEnv) are covered by the following theorem by Moggi (Moggi, 1990):

Proposition 3.5
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If function f ’s domain does not involve any monadic type, then:

liftt · f
is a natural lifting of f through any monad transformer t.

Proof: Since the domain type (call it τ) does not involve the monad, the lifting of τ is τ
itself. The above theorem follows from the commutativity of the following diagram:

τ �τ ′�t

τ τ ′

�liftt · f

�
f

�

id

�

liftt

�

We address the remaining cases (merge, inEnv and callcc) separately.

Proposition 3.6

merge(t1...(tn List)...) = join(t1...(tn List)...) · liftt1 · · · lifttn

is a natural lifting of mergeList.

To prove that the lifting for merge is natural, we need the following property of map
and join:

Lemma 3.1

If t is a monad transformer, m a monad, then:

liftt · joinm = joint m · liftt · (mapm liftt)

Proof:

liftt (joinme) = liftt {a← e; a}m (join)
= {a← liftte; liftta}t m (monad morphism)
= {a← liftte; b← returnt m(liftta); b}t m (left unit)
= joint m {a← liftte; returnt m(liftta)}t m (join)
= joint m {a← liftte; liftt(returnm(liftta))}t m (monad morphism)
= joint m (liftt {a← e; returnm(liftta)}m) (monad morphism)
= joint m (liftt (mapm liftt e)) (map)

�

We can now prove Proposition 3.6 by verifying that the following diagram commutes:

List ((t1 . . . (tn List) . . .) a) (t1 . . . (tn List) . . .) a

List (List a) List a

�merge(t1...(tn List)...)

�
mergeList

�

mapList (liftt1 · · · lifttn
)

�

liftt1 · · · lifttn

Indeed we have:
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merge(t1...(tn List)...) ·mapList (liftt1 · · · lifttn
)

= merge(t1···tn) List ·mapList liftt1···tn
(3.3)

= liftt1···tn
·mergeList (3.1)

= liftt1 · · · lifttn
·mergeList (3.3)

�

Proposition 3.7

inEnvEnvT r′ mρ e = λρ′.inEnvm ρ (e ρ′)
inEnvStateT s mρ e = λs.inEnvm ρ (e s)
inEnvErrT mρ e = inEnvm ρ e

are natural liftings of inEnvm.

Proof: For inEnvt m to be a natural lifting, we need to prove that:

inEnvt mρ · liftt = liftt · inEnvmρ

Indeed we have:

inEnvEnvT r′ mρ (liftEnvT r′ me) = λρ′.inEnvmρ(liftEnvT r′ meρ′) (inEnvEnvT r′ m)
= λρ′.inEnvmρe (liftEnvT r′ m)
= liftEnvT r′ m(inEnvmρe) (liftEnvT r′ m)

inEnvStateT s mρ (liftStateT s me)
= λs.inEnvmρ(liftStateT s mes) (inEnvStateT s m)
= λs.inEnvmρ{a← e; returnm(s, a)}m (liftStateT s m)
= λs.{a← inEnvmρe; returnm(s, a)}m (Prop. 3.4)
= liftStateT s m(inEnvmρe) (liftStateT s m)

inEnvErrT mρ (liftErrT me) = inEnvmρ(liftErrT me) (inEnvErrT m)
= inEnvmρ{a← e; returnm(Ok a)}m (liftErrT m, mapm)
= {a← inEnvmρe; returnm(Ok a)}m (Prop. 3.4)
= liftErrT m(inEnvmρe) (liftErrT m)

�

Proposition 3.8

(a) callccEnvT r m = λρ.callccm(λk.f(λa.λρ′.ka)ρ)
(b) callccErrT m f = callccm(λk.f(λa.k(Ok a)))
(c) callccStateT s m f = λs0.callccm (λk.f (λa.λs1.k (s0, a)) s0)

are natural liftings of callccm.

Proof: To prove Proposition 3.8a, we apply Definition 3.4 to the type of callcc, and arrive
at the following lemma:

Lemma 3.2

callcct m is a natural lifting of callccm

iff:
∀f, f ′.(∀k.f ′(liftt · k) = liftt(fk)) ⇒ callcct mf ′ = liftt(callccmf)

Using Lemma 3.2, it is easy to show that callccEnvT r m is a natural lifting of callccm:

callccEnvT r mf ′ = λρ.callccm(λk.f ′(λa.λρ′.ka)ρ) (callccEnvT r m)
= λρ.callccm(λk.f ′(λa.liftEnvT r(ka))ρ) (liftEnvT r)
= λρ.callccm(λk.liftEnvT r(fk)ρ) (prerequisite of 3.2)
= λρ.callccm(λk.fk) (liftEnvT r)
= liftEnvT r(callccmf) (liftEnvT r)
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Paterson (Paterson, 1995) showed a simple proof for the naturalness of callccErrT m

using the free theorem (Wadler, 1989) for callcc:

∀g, h, f, f ′.
(∀k, k′.k′ · g = map h · k ⇒ f ′k′ = map g (fk))⇒

callccf ′ = map g (callccf)

By specializing f ′ to λk.f ′′(k · g), we can transform the free theorem to:

Lemma 3.3

∀g, h, f, f ′′.
(∀k, f ′′(map h · k) = map g (fk))⇒

callcc(λk.f ′′(k · g)) = map g (callccf)

We now use Lemma 3.3 to prove callccErrT m is a natural lifting. Letting:

g = h = Ok

we have:

callccErrT mf ′′ = callccm(λk.f(k ·Ok)) (callccErrT m)
= mapmOk (callccm f) (free theorem and prerequisite in 3.2)
= liftErrT (callccm f) (liftErrT)

Thus callccErrT m is a natural lifting, following Lemma 3.2.

The free theorem, however, is not powerful enough to prove the naturalness of callccStateT s m.
Instead, we introduce the following lemma, which is a slight variation of the free theorem:

Lemma 3.4

∀g, h, f, f ′, s0.
(∀k, f ′(λx.λs.map (λx.h(s, x)) (kx))s0 = map g (fk)⇒

callcc (λk.f ′(λx.λs.k(gx))s0) = map g (callcc f)

The proof of the lemma is in Appendix A. We will apply Lemma 3.4 with the following
specialized definitions to prove callccStateT s m is a natural lifting:

g = λx.(s0, x)
h = λx.x

The proof is carried out in two steps. First, we verify the prerequisite of Lemma 3.4, using
the prerequisite of Lemma 3.2.

f ′(λx.λs.mapm (λx.h(s, x)) (kx))s0

= f ′(λx.λs.mapm (λx.(s, x)) (kx))s0 (h)
= f ′(λx.liftStateT s (kx))s0 (liftStateT s)
= liftStateT s (fk)s0 (prerequisite of 3.2)
= mapm g (fk) (liftStateT s)

Second, we use the result of Lemma 3.4 to establish the the sufficient and necessary
condition in Lemma 3.2:

callccStateT s m f ′ s0 = callccm(λk.f ′(λa.λs1.k(s0, a))s0) (callccStateT s m)
= mapm(λa.(s0, a)) (callccm f) (3.4)
= liftStateT s (callccm f) (liftStateT s)

Apply the above to Lemma 3.2, we have proved that callccStateT s m is a natural lifting.
�
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So far we have established that all the liftings in Figure 4 are natural. Note that the
following lifting of callccStateT s m:

callccStateT s m f = λs0.callccm (λk.f (λa.λs1.k (s1, a)) s0)

which passes the current state to the continuation, is not natural. Here is a counter-example
discovered by Paterson (Paterson, 1995). Let:

f ′k = liftStateT s(f(λx.bind(kxs1)(λ(s′, x). returnx)))

For any state s1, f’ and f meet the condition:

∀k.f ′(liftStateT s · k) = liftStateT s(fk))

However:

callccStateT s (ContT c Id)f
′ s0 k = f(λx.λk′.k(s1, x))(λx.k(s0, x))

liftStateT s(callccContT c Idf) s0 k = f(λx.λk′.k(s0, x))(λx.k(s0, x))

are different.

3.4 Ordering of Monad Transformers

The ordering of monad transformers has an impact on the resulting semantics. For exam-
ple, we have seen that lifting callcc through StateT results in a “debugging” semantics.
On the other hand, if we apply ContT to a state monad, then we get the usual semantics
for callcc. To demonstrate, we construct two monads:

type M1 a = ContT c (StateT Int Id) a
type M2 a = StateT Int (ContT c Id) a

The program segment:

callcc(λk.{ ← update(λx.x + 1); k0})
expands to:

λk.λs0.k 0 (s0 + 1)

in M1, but to:

λs0.λk.k (s0, 0)

in M2.
The key difference is that one combination captures the state in the continuation,

whereas the other combination does not.
In general we can swap the ordering of some monad transformers (such as between

StateT and EnvT), but doing so to others (such as ContT) may effect semantics. This is
consistent with earlier experience in combining monads (King & Wadler, 1993), and, in
practice, provides us with an opportunity to fine tune the resulting semantics.

4 Modular Monadic Interpreters

We can transform a denotational semantics description into an executable interpreter
by translating the mathematical notations into corresponding programming constructs.
Modern functional languages such as Haskell (Hudak et al., 1992) or SML (Milner et al.,
1990) are particularly suitable because these languages offer features such as algebraic
data types and higher-order functions that match well with the mathematical notations
used in denotational semantics.

While the static type system in Haskell or SML is capable of implementing traditional
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type Term = OR TermA -- arithmetic

( OR TermF -- functions

( OR TermR -- assignment

( OR TermL -- lazy evaluation

( OR TermT -- tracing

( OR TermC -- callcc

TermN -- nondeterminism

)))))

type M = EnvT Env -- environment

( ContT Answer -- continuations

( StateT Store -- memory cells

( StateT String -- trace output

( ErrT -- error reporting

List -- multiple results

))))

type Value = OR Int -- integers

( OR Loc -- memory locations

( OR Fun -- functions

()))

Fig. 5. Gofer specification of a modular interpreter

denotational semantics, implementing monadic modular semantics in a strongly typed
language has proved to be a challenge. For example, Steele (Steele Jr., 1994) reported
numerous difficulties when he built a modular monadic interpreter in Haskell. Although
the Haskell type system can implement individual monads and monad transformers as type
constructors, modular monadic semantics requires the type system to capture relationships
among different monads and monad transformers.

We have successfully implemented a modular monadic interpreter in Gofer (Jones,
1991), whose constructor classes and multi-parameter type classes provide just the added
power over Haskell’s type classes¶ to allow precise and convenient expression of the typ-
ing relationships. Figure 5 gives the high-level definition of the interpreter for our source
language. The rest of the section will explain how the type declarations expand into a full
interpreter. For now just note that OR is equivalent to the domain sum operator, and that
Term, Value and M denote the abstract syntax, runtime values, and the interpreter monad,
respectively.

4.1 Extensible Union Types

We begin with a discussion of a key idea in our implementation: how values and terms
may be expressed as extensible union types. This facility has nothing to do with monads.

The disjoint union of two types is implemented by the data type OR:

data OR a b = L a

| R b

¶ The newly defined Haskell 1.3 (Peterson & Hammond, 1996) supports constructor
classes (but not multi-parameter type classes).
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where L and R are used to perform the conventional injection of a summand type into the
union; conventional pattern-matching is used for projection. However, such injections and
projections only work if we know the exact structure of the union. When building modular
interpreters, an extensible union may be arbitrarily nested or extended. We would like a
single pair of injection and projection functions to work on all such constructions.

To achieve this, we define a multi-parameter type class to implement the summand/union
type relationship, which we refer to as a “subtype” relationship:

class SubType sub sup where

inj :: sub -> sup -- injection

prj :: sup -> Maybe sub -- projection

data Maybe a = Just a

| Nothing

The Maybe data type is used because the projection function may fail. We can now express
the relationships between the summand and union types:

instance SubType a (OR a b) where

inj = L

prj (L x) = Just x

prj _ = Nothing

instance SubType a b => SubType a (OR c b) where

inj = R . inj

prj (R a) = prj a

prj _ = Nothing

It would appear that we could have a more symmetric instance declaration in place of the
second declaration above:

instance SubType a (OR b a) where

inj = R

prj (R x) = Just x

prj _ = Nothing

With this declaration, however, the Gofer type system complains that (OR a a) is an over-
lapping instance. The type system cannot determine which of the two injection/projection
pairs are applicable if the programmer supplies, for example, (OR Int Int) as the union
type.

Now we can see how the Value domain used in Figure 5, for example, is actually
constructed:

type Value = OR Int (OR Loc (OR Fun ()))

type Fun = M Value -> M Value

With these definitions the Gofer type system will infer that Int, Loc, and Fun are all “sub-
types” of Value, and the coercion functions inj and prj will be generated automatically.‖

‖ Most of the typing problems Steele (Steele Jr., 1994) encountered disappear with the
use of our extensible union types; in particular, there is no need for Steele’s “towers”
of data types.
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4.2 Interpreter Building Blocks

As seen in Figure 5, the Term type is also constructed as an extensible union (of subterm
types). We define additionally a class InterpC to characterize the term types that we wish
to interpret:

class InterpC t where

interp :: t -> M Value

The behavior of the evaluation function interp on unions of terms is given in the obvious
way:

instance (InterpC t1, InterpC t2) =>

InterpC (OR t1 t2) where

interp (L t) = interp t

interp (R t) = interp t

The interpreter is just the method associated with the top-level type Term:

interp :: Term -> M Value

The interpreter building blocks are straightforward translations of the semantic building
blocks in Section 2.1 into instance declarations. For example, the arithmetic building block
can be implemented as follows:

data TermA = Num Int

| Add Term Term

instance InterpC TermA where

interp (Num x) = returnInj x

interp (Add x y) = interp x ‘bindPrj‘ \i ->

interp y ‘bindPrj‘ \j ->

returnInj ((i + j) :: Int)

returnInj = return . inj

m ‘bindPrj‘ k = m ‘bind‘ \a ->

case (prj a) of

Just x -> k x

Nothing -> err "type error"

Note the simple use of inj and prj to inject/project the integer result into/out of the
Value domain, regardless of how Value is eventually defined (returnInj and bindPrj

make this a tad easier). The err function is the error reporting function implemented by
the underlying monad.

Appendix B lists Gofer implementation of other interpreter building blocks. They can
be similarly translated from the corresponding monadic semantics.

Before discussing how to implement the monad transformers needed to construct the
interpreter monad M, we introduce Gofer’s constructor classes through a motivating ex-
ample.

4.3 Constructor Classes

Constructor classes (Jones, 1993) support abstraction of common features among type
constructors. Haskell, for example, provides the standard map function to apply a function
to each element of a given list:
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map :: (a -> b) -> List a -> List b

Meanwhile, we can define similar functions for a wide range of other data types. For
example:

data Tree a = Leaf a

| Node (Tree a) (Tree a)

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Leaf x) = Leaf (f x)

mapTree f (Node l r) = Node (mapTree f l) (mapTree f r)

The mapTree function has similar type and functionality to those of map. With this in
mind, it seems a shame that we have to use different names for each of these variants.
Indeed, Gofer allows type variables to stand for type constructors, on which the Haskell
type class system has been extended to support overloading. To solve the problem with
map, we can introduce a new constructor class Functor (in a categorical sense):

class Functor f where

map :: (a -> b) -> f a -> f b

Now the standard list (List) and the user-defined type constructor Tree can be defined
as instances of Functor:

instance Functor List where

map f [] = []

map f (x:xs) = f x : map f xs

instance Functor Tree where

map f (Leaf x) = Leaf (f x)

map f (Node l r) = Node (map f l) (map f r)

Constructor classes are extremely useful for dealing with multiple instances of monads
and monad transformers (which are all type constructors).

4.4 Monads

We follow a well known approach (Jones, 1993) to define monads using a constructor class:

class Monad m where

return :: a -> m a

bind :: m a -> (a -> m b) -> m b

map :: (a -> b) -> (m a -> m b)

join :: m (m a) -> m a

map f m = m ‘bind‘ \a -> return (f a)

join m = m ‘bind‘ id

Map and join are conveniently defined as default methods in terms of bind and return.
A specific monad, such as List, is an instance of the Monad class:

instance Monad List where

return x = [x]
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[] ‘bind‘ k = []

(x:xs) ‘bind‘ k = k x ++ (xs ‘bind‘ k)

The interesting properties of a monad are the additional operations it supports. We can
further define subclasses of Monad, each containing an additional set of operations. For
example, ListMonad has one extra operation merge:

class Monad m => ListMonad m where

merge :: List (m a) -> m a

The standard list monad List implements merge as follows:

instance ListMonad List where

--merge :: List (List a) -> List a

merge [] = []

merge (x:xs) = x ++ (merge xs)

Other classes of monads, such as StateMonad, EnvMonad, ContMonad and ErrMonad, can be
similarly defined. (See Appendix C for details.)

4.5 Monad Transformers

We implement monad transformers in the following constructor class definition:

class MonadT t where

lift :: (Monad m, Monad (t m)) => m a -> t m a

To illustrate how individual instances are defined, we use the state monad transformer
(StateT) as an example. The Gofer implementation of EnvT, ContT, and ErrT can be
found in Appendix C.

From Section 2.3 we know that applying monad transformer StateT s to monad m

results in a monad StateT s m. Because Gofer only allows us to partially apply a data
type, not a type synonym, we introduce a dummy data constructor and define StateT as
an algebraic data type∗∗:

data StateT s m a = StateM (s -> m (s,a))

unStateM (StateM x) = x

instance Monad m => Monad (StateT s m) where

return x = StateM (\s -> return (s,x))

(StateM m) ‘bind‘ k =

StateM (\s0 -> m s0 ‘bind‘ \(s1, a) ->

unStateM (k a) s1)

The definition follows exactly from Figure 3, except for dealing with the StateM data
constructor. Note that bind and return are not recursive functions; the constructor class
system automatically infers that the functions appearing on the right are for monad m.

Next, we define StateT s as a monad transformer:

instance MonadT (StateT s) where

-- lift :: m a -> StateT s m a

lift m = StateM (\s -> m ‘bind‘ \x -> return (s,x))

∗∗ Haskell 1.3(Peterson & Hammond, 1996) introduces a newtype construct that can be
used to avoid the run-time penalty of dummy data constructors such as StateM.
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We introduce StateMonad as a subclass of Monad with an additional operation update:

class Monad m => StateMonad s m where

update :: (s -> s) -> m s

Monad transformer StateT s adds the update function on s to any monad m:

instance Monad m => StateMonad s (StateT s m) where

update f = StateM (\s -> return (f s, s))

Finally, we can lift update through any monad transformer by composing it with lift

(see Proposition 3.5):

instance (StateMonad s m, MonadT t) =>

StateMonad s (t m) where

update = lift . update

As another example of lifting, we can apply any monad transformer to List and obtain a
ListMonad (see Proposition 3.6):

instance (MonadT t, Monad m) => ListMonad (t m) where

merge = join . lift

4.6 Summary

We have shown that modular interpreter building blocks and monad transformers can
be implemented using two key features in Gofer type system: constructor classes and
multi-parameter type classes. Our approach offers several benefits. First, it allows us to
experiment with and debug our ideas. Second, the overloading mechanism greatly facili-
tates representing multiple instances of monads and monad transformers, eliminating the
need for subscripts. Third, type checking guarantees that we have enough features in the
underlying monad to support the set of building blocks needed for our source language.
For example, if we had instead constructed the monad M in figure 5 without the StateT

String monad transformer:

type M = EnvT Env -- environment

( ContT Answer -- continuations

( StateT Store -- memory cells

-- missing state component for IO

( ErrT -- error reporting

List -- multiple results

)))

then the Gofer type system would complain that StateMonad String M cannot be inferred
from the definition of M.

5 Compilation

In this section we investigate how to compile the source language from its monadic seman-
tics specification. The target language we consider is fairly high-level, providing support
for closures, tagged data structures, basic control-flow (such as conditionals) and garbage
collection. How to implement a back-end that efficiently supports such target languages
has been investigated by a number of compiler research efforts (e.g., the techniques de-
veloped for T (Kranz et al., 1986), SML/NJ (Appel, 1992), and Haskell (Peyton Jones,
1992)).
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Even though we do not tackle the problem of building compiler back-ends, our work
provides insights into how we may build a common back-end capable of supporting a
variety of source languages. Writing separate back-ends for different source languages
leads to duplication of efforts. On the other hand, a common back-end has the following
benefits:

• It simplifies the task of constructing compilers.
• It allows multiple source languages to interoperate by freely exchanging compatible

runtime data.

Modular monadic semantics fits well with a common back-end, because it is suitable
for specifying multiple source languages, and, as will be seen, it leads to an efficient and
provably correct compilation scheme. This is achieved in several steps. First, we require
that our semantics be compositional: the arguments in recursive calls to E are substruc-
tures of the argument received on the left-hand side. From a theoretical point of view,
it makes inductive proofs on programs possible. In practice, this guarantees that, given
any abstract syntax tree, we can recursively unfold all calls to the interpreter, effectively
removing runtime dispatch on the abstract syntax tree.

Our second step is to simplify the resulting monadic style code composed out of various
monadic operations (such as bind and inEnv). As will be seen in Section 5.1, monad laws
are useful in simplifying code; and environment axioms can be used to eliminate the costly
interpretive overhead of environment lookups. In Section 5.2, we formally prove that all
environment lookups can be removed.

The final step (Section 5.3) is to map monadic-style intermediate code to the target
language. The main focus is on how to utilize the built-in target language features.

5.1 Using Monad Laws to Transform Programs

Following the monadic semantics presented in Section 2, by unfolding all calls to the
semantic function E, we can transform source-level programs into monadic-style code. For
example, “((λx.x + 1) 2)v” is transformed to:

E[[((λv.v + 1) 2)v]] =

{ f ← { ρ← rdEnv;
return (λx.inEnv ρ[x/[[v]]] { i← { ρ← rdEnv;

ρ[[v]] };
j ← return 1;
return (i + j) }) };

v ← return 2;
f(return v) }

Even without any further simplifications, the above code is clear enough to describe the
computation. By applying monad laws we can simplify it to:

{ ρ← rdEnv;
(λx.inEnv ρ[x/[[v]]] { ρ← rdEnv;

i← ρ[[v]];
return (i + 1) }) (return 2) }

By applying the distribution, unit and cancellation environment axioms, followed by
the unit monad law, we can further transform the example code to:

{ ρ← rdEnv;
(λx.{i← inEnv ρ[x/[[v]]] x; return (i + 1)}) (return 2) }
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Note that explicit environment accesses have disappeared. Instead, the meta-language
environment is directly used to support function calls. This is exactly what good partial
evaluators achieve when they transform interpreters to compilers.

Note that the true computation in the original expression “((λx.x + 1) 2)v” is left
unreduced. With traditional denotational semantics, it is harder to distinguish the redexes
introduced by the compilation process from computations in the source program. In the
above example, we could safely further reduce the intermediate code:

(λx.{i← x; return (i + 1)})(return 2)
⇒ {i← return 2; return (v + 1)} (β)
⇒ return 3 (left unit)

However, in general, unrestricted reductions for arbitrary source programs could result
in unwanted compile-time exceptions, such as in “((λx.10/x) 0)v.”

5.2 A Natural Semantics

We successfully transformed away the explicit environment in the above example, but can
we do the same for arbitrary source programs? If that is possible, we will have an effective
compilation scheme that uses the target language environment for the source language,
without any interpretive overhead.

It turns out that we can indeed prove such a general result by using monad laws and
environment axioms. Following Wand (Wand, 1990), we define a “natural semantics” that
translates source language variables to lexical variables in the meta-language, and we prove
that it is equivalent to the standard semantics.

5.2.1 Definition of a Natural Semantics

We adopt Wand’s definition of a natural semantics (which differs from Kahn’s notion
(Clément et al., 1986)) to our functional sub-language. For any source language variable
name v, we assume there is a corresponding variable name v in the meta-language, and ρ
is an environment that maps variable name v to v.

Definition 5.1

The natural semantics for the source language is defined as follows:

N [[v]] = v
N [[λv.e]] = return(λv.inEnv ρ N [[e]])
N [[(e1 e2)n]] = {f ← N [[e1]]; f(inEnv ρ N [[e2]])}
N [[(e1 e2)v]] = {f ← N [[e1]]; v ← N [[e2]]; f(return v)}
N [[(e1 e2)l]] = { f ← N [[e1]];

l← alloc;
let thunk = { v ← inEnv ρ N [[e2]];

← write (l, return v);
return v }

in { ← write (l, thunk);
f (read l) } }

Other source-level constructs, such as +, :=, and callcc, do not explicitly deal with the
environment, and have the same natural semantics as the standard semantics.

The natural semantics uses the environment of the meta-language for variables in the
source language.
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5.2.2 Correspondence between Natural and Standard Semantics

The next theorem, a variation of Wand’s (Wand, 1990), states that the standard semantics
and natural semantics are equivalent, and thus guarantees that it is safe to implement
function calls in the source language using the meta-language environment.

Theorem 5.1

For any source language program e, we have:

inEnv ρ E[[e]] = inEnv ρ N [[e]]

The detailed proof is in Appendix A. The basic technique is equational reasoning based
on the rules of lambda calculus (e.g., β reduction), monad laws, and environment axioms.
We establish the theorem for each semantic building block, independent of:

• the existence of other building blocks, and
• the organization of the underlying monad.

Therefore the result holds for each building block as long as the underlying monad provides
the necessary kernel-level support so that the monad laws and environment axioms hold.
The proof can be reused, even after other features are added into the source language.

The proof is possible because both the source language and meta language are lexically
scoped. If the source language supported dynamically scoped functions:

E[[λv.e]] = return(λc.{ρ← rdEnv; inEnv ρ[c/[[v]]] E[[e]]}),

where the caller-site environment is used within the function body, then the theorem would
fail to hold.

5.2.3 Benefits of Reasoning in Monadic Style

In denotational semantics, adding a feature may change the structure of the entire seman-
tics, forcing us to redo the induction for every case of abstract syntax. For example, Wand
(Wand, 1990) pointed out that he could change to a continuation-based semantics, and
prove the theorem, but only by modifying the proofs accordingly.

Modular monadic semantics, on the other hand, offers highly modularized proofs and
more general results. This is particularly applicable to real programming languages, which
usually carry a large set of features and undergo evolving designs.

5.3 Targeting Monadic Code

In general, it is more efficient to use target language built-in features instead of monadic
combinators defined as higher-order functions. We have seen how the explicit environment
can be “absorbed” into the meta-language. This section addresses the question of whether
we can do the same for other features, such as stores and continuations.

5.3.1 The Target Language Monad

We can view a target language as having a built-in monad supporting a set of monadic op-
erations. For example, the following table lists the correspondence between certain monadic
operations and ML constructs:
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Monadic operations ML constructs

returnx x

{x← c1; c2} let val x = c1 in c2 end

update ref, !, :=, print

callcc callcc

err raise Err

Note that the imperative features in ML (e.g., := and print) supports a single-threaded
store, whereas the monadic update operation more generally supports recoverable store.
It is easy to verify that the monad laws are satisfied in the above context. For example,
the ML let construct is associative (assuming no unwanted name capturings occur):

let val v2 = let val v1 = c1

in c2 end
in c3 end

=
let val v1 = c1

in let val v2 = c2

in c3 end end

5.3.2 Utilizing Target Language Features

We now investigate how to utilize the features directly supported by the target language
monad. Because of a technical limitation related to nondeterminism, we tentatively drop
it from our source language. (We will discuss the support for nondeterminism later.) The
underlying monad M becomes:

type M a = EnvT Env (ContT Answer (StateT Store (StateT IO (ErrT Id)))) a

Now we substitute the base monad Id with the built-in ML monad (call it MML):

type M1 a = EnvT Env (ContT Answer (StateT Store (StateT IO (ErrT MML)))) a

Note that M1 supports two sets of kernel-level operations for continuation, store, I/O, and
error reporting. The monadic code can choose to use the ML built-in operations instead
of those implemented as higher-order functions. In addition, if we have used the natural
semantics to transform away all environment accesses, then the EnvT monad transformer
is no longer useful. Because the natural lifting condition guarantees that adding or deleting
an unused monad transformer does not effect the result of the computation, it suffices to
run the target program on M2:

type M2 a = MML a

which directly utilizes the more efficient ML built-in features.
Therefore, by using a monad with a set of primitive monadic combinators, we can expose

the features embedded in the target language. It then becomes clear what is directly
supported in the target language, and what needs to be compiled explicitly.

The above process would have been impossible had we been working with traditional
denotational semantics. Various features clutter up and make it hard to determine whether
it is safe to remove certain interpretation overhead, and how to achieve that.
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We do not need to transform away all monad transformers. For example, the following
monad is also capable of supporting the source language:

type M3 a = ContT Answer MML a

Because M3 supports two callcc operations, the monadic code can either use the ML built-
in callcc function, or use the callcc supported by the continuation monad transformer.

5.3.3 Limitations of This Approach

It is important to recognize the limitations of the transformation process:

1. Unlike other features, nondeterminism must be directly supported by the target lan-
guage, since the nondeterminism monad (List) must be the base monad. This is why
we put aside nondeterminism in the preceding discussion.

2. We have shown that the ordering of monad transformers (in particular, the cases
involving ContT) has an impact on the resulting semantics. In practice, we need to
make sure when we use one monad transformer instead of another, that the resulting
change of ordering does not have unwanted effects on semantics. For example, if we
had left one of the state monad transformers unreduced:

type M4 a = StateT Store MML a

we have effectively swapped the order of StateT and ContT. (The latter is now sup-
ported in MML.)

5.3.4 Implications for a Common Back-end

To overcome the above limitations, a common back-end must support a rich set of features
needed by a wide range of source languages, thereby guaranteeing that we can always
transform away the monad transformers.

The ordering of monad transformers only effects the semantics of callcc. To deal with
situations where the order of monad transformers matters, the back-end can provide mul-
tiple variations of the a monadic operation, with each version implementing a variation
of the semantics. For example, a back-end can support a special version of callcc that
captures the current state for the purpose of debugging.

6 Related Work, Future Work and Conclusion

In this paper, we have demonstrated how monads and monad transformers can be used
to provide more modular specification of programming language features than traditional
denotational semantics. In addition, we have shown how the modularity offered in our
framework can provide better support for equational reasoning, program transformation,
interpreter construction, and semantics-directed compilation. More specifically, the con-
tributions of the work presented in this paper are as follows:

• We have constructed modular semantic building blocks that support a wide variety
of source language features, including arithmetic expressions, call-by-value, call-by-
name, lazy evaluation, references and assignment, tracing, first-class continuation, and
nondeterminism. Although each of these features has been modeled using monads
before, it is the first time all of them fit into a single modular framework.

• We have solved a number of open problems in how to lift operations through monad
transformers. We have extended Moggi’s (Moggi, 1990) natural lifting condition to
higher-order types, making it possible to reason about the relatively complex opera-
tions related to environment and continuation. In addition, we have shown how liftings
capture the interactions between various programming language features.
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• We have implementationed modular semantic building blocks and monad transformers
in Gofer (Jones, 1991). This is the first implementation of a full-featured modular
monadic interpreter using a strongly-typed language.

• We have investigated high-level monadic properties of programming language features
(for example, the environment axioms). We have applied these properties to construct
modular proofs and to perform semantics-directed compilation.

6.1 Related Work

Our work is built on a number of previous attempts to better organize modular semantics,
to more effectively reason about programming languages, and to more efficiently compile
higher-order programs.

6.1.1 Modular Semantics

The lack of modularity of traditional denotational semantics (Stoy, 1977) has long been
recognized (Mosses, 1984) (Lee, 1989).

Moggi first suggested the use of monads and monad transformers to structure denota-
tional semantics. Wadler popularized Moggi’s ideas in the functional programming com-
munity by showing how monads could be used in a variety of settings, including incorporat-
ing imperative features (Peyton Jones & Wadler, 1993) and building modular interpreters
(Wadler, 1992). Wadler (King & Wadler, 1993) also discussed the issues in combining mon-
ads. Pseudomonads (Steele Jr., 1994) were proposed as a way to compose monads and thus
build up an interpreter from smaller parts. However, implementing pseudomonads in the
Haskell (Hudak et al., 1992) type system turned out to be problematic.

Returning to Moggi’s original ideas, Espinosa formulated a system called Semantic Lego
(Espinosa, 1993) (Espinosa, 1995). Espinosa’s Scheme-based system was the first modular
interpreter that incorporated monad transformers. Among his contributions, Espinosa
pointed out that pseudomonads were really just a special kind of monad transformer, first
suggested by Moggi as a way to leave a “hole” in a monad for further extension. Espinosa’s
work reminded the programming language community—who had become distracted by the
use of monads—that Moggi himself, responsible in many ways for the interest in monadic
programming, had actually focussed more on the importance of monad transformers.

Related approaches to enhance modularity include composing monads (Jones & Duponcheel,
1993) and stratified monads (Espinosa, 1994).

This paper was motivated by the above line of work, which led to the solution (Liang
et al., 1995) of a number of open issues in how to lift operations through monad trans-
formers, as well as how to implement modular interpreters in a strongly-typed language.

6.1.2 Reasoning with Monads

In his original note (Moggi, 1990), Moggi raised the issue of reasoning in the monadic
framework. The monadic framework has been used to specify state monad laws (Wadler,
1990), and to reason about exceptions (Spivey, 1990). A related, but more general, frame-
work to reason about states is mutable abstract data types (MADTs) (Chen & Hudak,
1997).

This paper extends previous work by presenting the environment axioms (Liang &
Hudak, 1996). In addition, we demonstrate how these axioms, together with monad laws,
can be used to reason about programs in a modular way.
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6.1.3 Semantics-directed Compilation

Early efforts (Wand, 1984) (Paulson, 1982) were based on traditional denotational seman-
tics. The resulting compilers were inefficient.

Action Semantics (Mosses, 1992) allows modular specification of programming language
semantics. Action semantics and a related approach (Lee, 1989) have been successfully
used to generate efficient compilers. While action semantics is easy to construct, extend,
understand and implement, we note the following comments ((Mosses, 1992), page 5):

“Although the foundations of action semantics are firm enough, the theory for reasoning
about actions (and hence about programs) is still rather weak, and needs further devel-
opment. This situation is in marked contrast to that of denotational semantics, where
the theory is strong, but severe pragmatic difficulties hinder its application to realistic
programming languages.”

Our work essentially attempts to formulate actions in a denotational semantics frame-
work. Monad transformers roughly correspond to facets in action semantics, although
issues such as concurrency are beyond the power of our approach.

A related approach (Meijer, 1995) is to combine the standard initial algebra seman-
tics approach with aspects of Action Semantics to derive compilers from denotational
semantics.

One application of partial evaluation (Jones et al., 1989) is to generate compilers from
interpreters. A partial evaluator has been successfully applied to an action interpreter
(Bondorf & Palsberg, 1993), and similar results can be achieved with monadic interpreters
(Danvy et al., 1991) as well.

Staging transformations (Jørring & Scherlis, 1986) are a class of general program trans-
formation techniques for separating a given computation into stages. Monad transformers
make computational stages somewhat more explicit by separating compile-time features,
such as the environment, from run-time features.

There have been several successful efforts (including (Kelsey & Hudak, 1989), (Appel
& Jim, 1989), and others) to build efficient compilers for higher-order languages by trans-
forming the source language into continuation-passing style (CPS). The suitability of a
monadic form as an intermediate form has been observed by many researchers (including,
for example, (Sabry & Felleisen, 1992) and (Hatcliff & Danvy, 1994)).

6.2 Future Work

6.2.1 Theory of Programming Language Features

We have used monads and monad transformers to study programming language features
and their interactions. Plenty of work remains on extending the theory to handle other
useful features we have not covered. As a result, we may be able to better understand and
implement these features.

6.2.2 Monadic Program Transformation

We have demonstrated that monadic code is particularly suitable for program transforma-
tion. Because monadic semantics is no more than an abstraction of traditional denotational
semantics, all equational reasoning techniques apply. Monadic semantics can thus be used
to facilitate various program transformation techniques such as partial evaluation.
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6.2.3 A Common Back-end for Modern Languages

The experience of building a retargeted Haskell compiler suggests the feasibility of a
common back-end for modern languages. An efficient, well-thought-out system such as
SML/NJ is a strong candidate to serve as a common back-end for a variety of modern
languages.

We can further develop our monadic semantics based compilation method into a com-
piler construction tool for a common back-end.

6.2.4 Concurrency

Concurrency is an important feature in many modern languages such as JavaTM (Gosling
et al., 1996). The monadic framework covers the properties of callcc. Since callcc captures
the activities occur during a thread context switch, we expect the results related to callcc
will be useful in reasoning about multi-threaded concurrent systems.

6.3 Conclusion

We have demonstrated the power of modular monadic semantics in two ways. First, it is a
powerful technique to specify and reason about programming language features. Second, it
can be used in practice to construct modular interpreters and perform semantics-directed
compilation.

The key benefit of our approach is modularity. The underlying mechanism is monad-
based abstraction. Modular monadic semantics helps to bridge the gap between program-
ming language theory and the complex practical languages.
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A Proofs

This appendix contains detailed proofs for many of the results given in the body of this
paper. For convenience, we repeat the statement of each result at the beginning of the
corresponding proof.

Proposition 3.2 EnvT r, StateT s, ErrT, and ContT c are monad transformers.

Proof: We need to show that the corresponding lift functions are monad morphisms.

Case EnvT r:

returnEnvT r m e = λρ. returnm e (returnEnvT r m)
= liftEnvT r (returnm e) (liftEnvT r)

bindEnvT r m (liftEnvT rm) (λa.(liftEnvT r(ka)))
= bindEnvT r m (λρ′.m) (λa.(λρ′.ka)) (liftEnvT r)
= λρ.{a← (λρ′.m) ρ; (λρ′.ka)ρ}m (bindEnvT r m)
= λρ.bindm e k (β)
= liftEnvT r (bindm e k) (liftEnvT r)

Case StateT s:

returnStateT s m e
= λs. returnm(s, e) (returnStateT s m)
= λs.{a← returnm e; returnm(s, a)}m (left unit)
= liftStateT s (returnm e) (liftStateT s)

bindStateT s m (liftStateT se) (λa.liftStateT s(ka))
= λs.{(s′, a)← liftStateT s e s; liftStateT s (ka) s′}m (bindStateT s m)
= λs.{(s′, a′)← {a← e; returnm(s, a)}m;

b← ka′; returnm(s′, b)}m (liftStateT s)
= λs.{a← e; (s′, a′)← returnm(s, a);

b← ka′; returnm(s′, b)}m (associativity)
= λs.{a← e; b← ka; returnm(s, b)}m (left unit)
= liftStateT s (bindm e k) (liftStateT s)

Case ErrT:

returnErrT m e
= returnm(Ok e) (returnErrT m)
= {a← returnm e; returnm(Ok a)}m (left unit)
= mapm Ok (returnm e) (mapm)
= liftErrT (returnm e) (liftErrT)
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bindErrT m (liftErrTe) (λa.liftErrT(ka))
= {a′ ← liftErrTe;

case a′ of Ok a→ liftErrT(ka) . . .}m (bindErrT m)
= {a′ ← {a← e; returnm(Ok a)}m;

case a′ of Ok a→ {b← ka; returnm(Ok b)}m . . .}m (liftErrT, mapm)
= {a← e; a′ ← returnm(Ok a);

case a′ of Ok a→ {b← ka; returnm(Ok b)}m . . .}m (associativity)
= {a← e; b← ka; returnm(Ok b)}m (left unit)
= liftErrT (bindm e k) (liftErrT, mapm)

Case ContT:

returnContT c m e
= λk.ke (returnContT c m)
= bindm (returnm e) (left unit)
= liftContT c (returnm e) (liftContT c)

bindContT c m (liftContT ce) (λa.liftContT c(fa))
= λk.(liftContT ce) (λa.liftContT c (fa) k) (bindContT c m)
= λk.bindm e (λa.bindm (fa) k) (liftContT c)
= λk.bindm (bindm e f) k (associativity)
= liftContT c (bindm e f) (liftContT c)

Proposition 3.4 The environment operations, rdEnv and inEnv satisfy the following
axioms:

(inEnv ρ) · return = return (unit)
inEnv ρ {v ← e1; e2} = {v ← inEnv ρ e1; inEnv ρ e2} (distribution)

inEnv ρ rdEnv = return ρ (cancellation)
inEnv ρ′ (inEnv ρ e) = inEnv ρ e (overriding)

Proof: We verify that: 1) inEnv and rdEnv satisfy the axioms after being introduced by
EnvT, and that: 2) the axioms are preserved through EnvT, StateT, and ErrT. (There is
no lifting of inEnv through ContT.)

Base case:

inEnvEnvT r m ρ (returnEnvT r m x)
= λρ′.(returnEnvT r m x)ρ (inEnvEnvT r m)
= λρ′.(λρ′′. returnm x)ρ (returnEnvT r m)
= λρ′. returnm x (β)
= returnEnvT r m x (returnEnvT r m)

inEnvEnvT r m ρ {v ← e1; e2}EnvT r m

= λρ′.{v ← e1; e2}EnvT r mρ (inEnvEnvT r m)
= λρ′.{v ← e1 ρ; e2 ρ}m (bindEnvT r m)
= λρ′.{v ← (λρ′′.e1 ρ)ρ′; (λρ′′.e2 ρ)ρ′}m
= λρ′.{v ← inEnvEnvT r m ρ e1 ρ′; inEnvEnvT r m ρ e2 ρ′}m (inEnvEnvT r m)
= {v ← inEnvEnvT r m ρ e1; inEnvEnvT r m ρ e2}EnvT r m (bindEnvT r m)

inEnvEnvT r m ρ rdEnvEnvT r m

= λρ′.rdEnvEnvT r m ρ (inEnvEnvT r m)
= λρ′.(λρ. returnm ρ)ρ (rdEnvEnvT r m)
= λρ′. returnm ρ
= returnEnvT r m ρ (returnEnvT r m)
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inEnvEnvT r m ρ′ (inEnvEnvT r m ρ e)
= λρ′′.inEnvEnvT r m ρ e ρ′ (inEnvEnvT r m)
= λρ′′.(λρ′.e ρ) ρ′ (inEnvEnvT r m)
= λρ′′.e ρ (β)
= inEnvEnvT r m ρ e (inEnvEnvT r m)

Case EnvT r′:

inEnvEnvT r′ m ρ (returnEnvT r′ m x)
= λρ′.inEnvm ρ (returnEnvT r′ m xρ′) (inEnvEnvT r′ m)
= λρ′.inEnvm ρ ((λρ′′. returnm x)ρ′) (returnEnvT r′ m)
= λρ′.inEnvm ρ (returnm x) (β)
= λρ′. returnm x (ind. hypo.)
= returnEnvT r′ m x (returnEnvT r′ m)

inEnvEnvT r′ m ρ {v ← e1; e2}EnvT r′ m

= λρ′.inEnvm ρ ({v ← e1; e2}EnvT r′ mρ′) (inEnvEnvT r′ m)
= λρ′.inEnvm ρ {v ← e1 ρ′; e2 ρ′}m (bindEnvT r′ m)
= λρ′.{v ← inEnvm ρ (e1 ρ′); inEnvm ρ (e2 ρ′)}m (ind. hypo.)
= λρ′.{v ← inEnvEnvT r′ m ρ e1 ρ′; inEnvEnvT r′ m ρ e2 ρ′}m (inEnvEnvT r′ m)
= {v ← inEnvEnvT r′ m ρ e1; inEnvEnvT r′ m ρ e2}EnvT r′ m (bindEnvT r′ m)

inEnvEnvT r′ m ρ rdEnvEnvT r′ m

= λρ′.inEnvm ρ (rdEnvEnvT r′ m ρ′) (inEnvEnvT r′ m)
= λρ′.inEnvm ρ (λρ′′.rdEnvm ρ′) (rdEnvEnvT r′ m)
= λρ′.inEnvm ρ rdEnvm (β)
= λρ′. returnm ρ (ind. hypo.)
= returnEnvT r′ m ρ (returnEnvT r′ m)

inEnvEnvT r′ m ρ′ (inEnvEnvT r′ m ρ e)
= λρ′′.inEnvm ρ′ (inEnvEnvT r′ m ρ e ρ′′) (inEnvEnvT r′ m)
= λρ′′.inEnvm ρ′ ((λρ′.inEnvm ρ (eρ′)) ρ′′) (inEnvEnvT r′ m)
= λρ′′.inEnvm ρ′ (inEnvm ρ (eρ′′)) (β)
= λρ′′.inEnvm ρ (eρ′′) (ind. hypo.)
= inEnvEnvT r′ m ρ e (inEnvEnvT r′ m)

Case StateT s:

inEnvStateT s m ρ (returnStateT s m x)
= λs.inEnvm ρ (returnStateT s m xs) (inEnvStateT s m)
= λs.inEnvm ρ ((λs. returnm(s, x))s) (returnStateT s m)
= λs.inEnvm ρ (returnm(s, x)) (β)
= λs. returnm(s, x) (ind. hypo.)
= returnStateT s m x (returnStateT s m)

inEnvStateT s m ρ {v ← e1; e2}StateT s m

= λs.inEnvm ρ ({v ← e1; e2}StateT s ms) (inEnvStateT s m)
= λs.inEnvm ρ {(s′, v)← e1 s; e2s

′}m (bindStateT s m)
= λs.{(s′, v)← inEnvm ρ (e1 s); inEnvm ρ (e2s

′)}m (ind. hypo.)
= λs.{(s′, v)← inEnvStateT s m ρ e1 s; inEnvStateT s m ρ e2 s′}m (inEnvStateT s m)
= {v ← inEnvStateT s m ρ e1; inEnvStateT s m ρ e2}StateT s m (bindStateT s m)
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inEnvStateT s m ρ rdEnvStateT s m

= λs.inEnvm ρ (rdEnvStateT s m s) (inEnvStateT s m)
= λs.inEnvm ρ {ρ′ ← rdEnvm; returnm(s, ρ′)}m (rdEnvStateT s m)
= λs.{ρ′ ← inEnvm ρ rdEnvm; inEnvm ρ returnm(s, ρ′)}m (ind. hypo.)
= λs.{ρ′ ← returnm ρ; returnm(s, ρ′)}m (ind. hypo.)
= λs. returnm(s, ρ) (left unit)
= returnStateT s m ρ (returnStateT s m)

inEnvStateT s m ρ′ (inEnvStateT s m ρ e)
= λs.inEnvm ρ′ (inEnvStateT s m ρ e s) (inEnvStateT s m)
= λs.inEnvm ρ′ ((λs′.inEnvm ρ (es′)) s) (inEnvStateT s m)
= λs.inEnvm ρ′ (inEnvm ρ (es)) (β)
= λs.inEnvm ρ (es) (ind. hypo.)
= inEnvStateT s m ρ e (inEnvStateT s m)

Case ErrT:

inEnvErrT m ρ (returnErrT m x)
= inEnvm ρ (returnErrT m x) (inEnvErrT m)
= inEnvm ρ (returnm(Ok x)) (returnErrT m)
= returnm(Ok x) (ind. hypo.)
= returnErrT m x (returnErrT m)

inEnvErrT m ρ {v ← e1; e2}ErrT m

= inEnvm ρ ({v ← e1; e2}ErrT ms) (inEnvErrT m)
= inEnvm ρ { a← e1;

case a of
Ok v → e2

Err s→ returnm(Err s)}m

(bindErrT m)

= { a← inEnvmρe1;
case a of

Ok v → inEnvmρe2

Err s→ inEnvmρ returnm(Err s)}m

(ind. hypo.)

= { a← inEnvmρe1;
case a of

Ok v → inEnvmρe2

Err s→ returnm(Err s)}m

(ind. hypo.)

= {v ← inEnvErrT m ρ e1; inEnvErrT m ρ e2}ErrT m (bindErrT m)

inEnvErrT m ρ rdEnvErrT m

= inEnvm ρ rdEnvErrT m (inEnvErrT m)
= inEnvm ρ {ρ′ ← rdEnvm; returnm(Ok ρ′)}m (rdEnvErrT m)
= {ρ′ ← inEnvm ρ rdEnvm; inEnvm ρ returnm(Ok ρ′)}m (ind. hypo.)
= {ρ′ ← returnm ρ; returnm(Ok ρ′)}m (ind. hypo.)
= returnm(Ok ρ) (left unit)
= returnErrT m ρ (returnErrT m)

inEnvErrT m ρ′ (inEnvErrT m ρ e)
= inEnvm ρ′ (inEnvm ρ e) (inEnvErrT m)
= inEnvm ρ e (ind. hypo.)
= inEnvErrT m ρ e (inEnvErrT m)
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Lemma 3.4

∀g, h, f, f ′, s0.
(∀k, f ′(λx.λs.map (λx.h(s, x)) (kx))s0 = map g (fk)⇒

callcc (λk.f ′(λx.λs.k(gx))s0) = map g (callcc f)

Proof: We establish the lemma by covering the cases when callcc was first introduced by
ContT and lifted through EnvT, StateT, and ErrT. (There is no lifting of callcc through
ContT.)

Base case:

callcc(λk.f ′(λx.λs.k(gx))s0)k
= (λk.f ′(λx.λs.k(gx))s0)(λa.λk′.ka)k
= f ′(λx.λs.λk′.k(gx))s0k
= f ′(λx.λs.λk′.(λk′′.k(gx))(λx.k′(h(s, x))))s0k
= f ′(λx.λs.mapContT c m(λx.h(s, x)) (λk′′.k(gx)))s0k
= mapContT c m g (f(λx.λk′′.k(gx))) k (pre-condition)

mapContT c m g (callccf) k = callcc f (λx.k(gx))
= (λk.f(λa.λk′.ka)k)(λx.k(gx))
= f(λa.λk′.k(ga))(λx.k(gx))
= mapContT c m g (f(λa.λk′.k(ga)))k

Case “t = EnvT r:”

Let:

f ′ k s0 = f ′(λx.λs.λρ′.kxs)s0ρ

f k = f(λa.λρ′.ka)ρ

We first verify that:

f ′(λx.λs.mapm(λx.h(s, x))(kx))s0

= f ′(λx.λs.λρ′.mapm(λx.h(s, x))(kx))s0ρ
= f ′(λx.λs.λρ′.bindm (kx) (λx. returnm(h(s, x))))s0ρ
= f ′(λx.λs.λρ′.bindm ((λρ′′.kx)ρ′)

(λx.(λρ′′. returnm(h(s, x)))ρ′))s0ρ
= f ′(λx.λs.bindtm (λρ′′.kx) (λx. returntm(h(s, x))))s0ρ
= f ′(λx.λs.maptm (λx.h(s, x)) (λρ′′.kx))s0ρ

(condition)
= maptm g (f(λx.λρ′′.kx))ρ
= bindtm (f(λx.λρ′′.kx)) (λx. returntm(gx))ρ
= bindm (f(λx.λρ′′.kx)ρ) (λx. returnm(gx))
= bindm (fk) (λx. returnm(gx))

= mapm g (fk)

We now set out to prove:

callcctm(λk.f ′(λx.λs.k(gx))s0)ρ = maptm g (callcctmf)ρ

callcctm(λk.f ′(λx.λs.k(gx))s0)ρ
= callccm(λk.(λk.f ′(λx.λs.k(gx))s0)(λa.λρ′.ka)ρ)
= callccm(λk.f ′(λx.λs.λρ′.k(gx))s0ρ)
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maptm g (callcctmf)ρ
= bindtm(callcctmf)(λx. returntm(gx))ρ
= bindm(callcctmf ρ)(λx. returnm(gx))
= mapm g (callccm(λk.f(λa.λρ′.ka)ρ))
= mapm g (callccmf)

(induction hypo.)
= callccm(λk.f ′(λx.λs.k(gx))s0)

= callccm(λk.f ′(λx.λs.λρ′.k(gx))s0ρ)

Case “t = StateT s:” (States of type s are underlined.)

Let:

f ′ k s0 = f ′(λx.λs.λs1.k(s0, x)s)s0s0

f k = f(λa.λs1.k(s0, a))s0

g = λ(s1, x).(s1, gx)

h = λ(s, (s2, x)).h(s2, (s, x))

We first verify that:

f ′(λx.λs.mapm(λx.h(s, x))(kx))s0

= f ′(λx.λs.λs1.mapm(λx.h(s, x))(k(s0, x)))s0s0

= f ′(λx.λs.λs1.bindm (k(s0, x)) (λx. returnm(h(s, x))))s0s0

= f ′(λx.λs.λs1.bindm ((λs2.k(s0, x))s1)
(λ(s2, x).(λs3. returnm(h(s, (s2, x))))s2))s0s0

= f ′(λx.λs.bindtm (λs2.k(s0, x)) (λx. returntm(h(s, x))))s0s0

= f ′(λx.λs.maptm (λx.h(s, x)) (λs2.k(s0, x)))s0s0

(condition)
= maptm g (f(λx.λs2.k(s0, x)))s0

= bindtm (f(λx.λs2.k(s2, x))) (λx. returntm(gx))s0

= bindm (f(λx.λs2.k(s0, x))s0) (λ(s2, x). returnm(s2, gx))
= bindm (fk) (λ(s2, x). returnm(s2, gx))

= mapm g (fk)

We now set out to prove:

callcctm(λk.f ′(λx.λs.k(gx))s0)s0 = maptm g (callcctmf)s0

callcctm(λk.f ′(λx.λs.k(gx))s0)s0

= callccm(λk.(λk.f ′(λx.λs.k(gx))s0)(λa.λs1.k(s0, a))s0)
= callccm(λk.f ′(λx.λs.λs1.k(s0, gx))s0s0)

maptm g (callcctmf)s0

= bindtm(callcctmf)(λx. returntm(gx))s0

= bindm(callcctmf s0)(λ(s1, x). returnm(s1, gx))
= mapm (λ(s1, x).(s1, gx)) (callccm(λk.f(λa.λs1.k(s0, a))s0))
= mapm g (callccmf)

(induction hypo.)
= callccm(λk.f ′(λx.λs.k(gx))s0)

= callccm(λk.f ′(λx.λs.λs1.k(g(s0, x)))s0s0)

= callccm(λk.f ′(λx.λs.λs1.k(s0, gx))s0s0)

Case “t = ErrT:”

Let:
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f ′ k s0 = f ′(λx.λs.k(Ok x)s)s0

f k = f(λa.k(Ok a))

g = λa.case a of Ok x→ Ok (gx)
Err s→ Err s

h = λ(s, a).case a of Ok x→ Ok (h(s, x))
Err s→ Err s

We first verify that:

f ′(λx.λs.mapm(λx.h(s, x))(kx))s0

= f ′(λx.λs.mapm(λx.h(s, x))(k(Ok x)))s0

= f ′(λx.λs.bindm (k(Ok x)) (λx. returnm(h(s, x))))s0

= f ′(λx.λs.bindm (k(Ok x))
(λx. returnm(case x of Ok y → Ok (h(s, y))

Err s→ Err s )))s0

= f ′(λx.λs.bindm (k(Ok x))
(λx.case a of Ok y → returnm(Ok (h(s, y)))

Err s→ returnm(Err s) ))s0

= f ′(λx.λs.bindtm (k(Ok x)) (λx. returntm(h(s, x))))s0

= f ′(λx.λs.maptm (λx.h(s, x)) (k(Ok x)))s0

(condition)
= maptm g (f(λx.k(Ok x)))
= bindtm (f(λx.k(Ok x))) (λx. returntm(gx))
= bindm (fk) (λa.case a of Ok x→ returnm(Ok (gx))

Err s→ returnm(Err s))
= mapm g (fk)

We now set out to prove:

callcctm(λk.f ′(λx.λs.k(gx))s0) = maptm g (callcctmf)

callcctm(λk.f ′(λx.λs.k(gx))s0)
= callccm(λk.(λk.f ′(λx.λs.k(gx))s0)(λa.k(Ok a)))
= callccm(λk.f ′(λx.λs.k(Ok (gx)))s0)

maptm g (callcctmf)
= bindtm(callcctmf)(λx. returntm(gx))
= bindm(callcctmf)(λa.case a of Ok x→ returnm(Ok (gx))

Err s→ returnm(Err s) )
= mapm g (callccmf)

(induction hypo.)
= callccm(λk.f ′(λx.λs.k(gx))s0)

= callccm(λk.f ′(λx.λs.k(g(Ok x)))s0)

= callccm(λk.f ′(λx.λs.k(Ok (gx)))s0)

Theorem 5.1 For any source language program e, we have:

inEnv ρ E[[e]] = inEnv ρ N [[e]]

Proof:

We prove the theorem by induction over the structure of expressions.

Arithmetic expressions:

inEnv ρ E[[n]] = inEnv ρ (return n) (E)
= inEnv ρ N [[n]] (N)
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inEnv ρ E[[e1 + e2]]
= inEnv ρ {v1 ← E[[e1]]; v2 ← E[[e2]]; return (v1 + v2)} (E)
= {v1 ← inEnv ρ E[[e1]]; v2 ← inEnv ρ E[[e2]];

inEnv ρ return (v1 + v2)} (distribution)
= {v1 ← inEnv ρ N [[e1]]; v2 ← inEnv ρ N [[e2]];

inEnv ρ return (v1 + v2)} (ind. hypo.)
= inEnv ρ {v1 ← N [[e1]]; v2 ← N [[e2]]; return (v1 + v2)} (distribution)
= inEnv ρ N [[e1 + e2]] (N)

Functions:

inEnv ρ E[[v]] = inEnv ρ {ρ← rdEnv; ρ[[v]]} (E)
= {ρ← inEnv ρ rdEnv; inEnv ρ (ρ[[v]])} (distribution)
= {ρ← return ρ; inEnv ρ (ρ[[v]])} (cancellation)
= inEnv ρ (ρ[[v]]) (left unit)
= inEnv ρ v (ρ)
= inEnv ρ N [[v]] (N)

inEnv ρ E[[λv.e]]
= inEnv ρ {ρ← rdEnv; return(λc.inEnv ρ[c/[[v]]] E[[e]])} (E)
= {ρ← inEnv ρ rdEnv;

inEnv ρ (return(λc.inEnv ρ[c/[[v]]] E[[e]]))} (distribution)
= {ρ← return ρ; return(λc.inEnv ρ[c/[[v]]] E[[e]])} (cancel., unit)
= return(λc.inEnv ρ[c/[[v]]] E[[e]]) (left unit)
= return(λv.inEnv ρ[v/[[v]]] E[[e]]) (α renaming)
= return(λv.inEnv ρ E[[e]]) (ρ)
= return(λv.inEnv ρ N [[e]]) (ind. hypo.)
= inEnv ρ N [[λv.e]] (N)

inEnv ρ E[[(e1 e2)n]]
= inEnv ρ {f ← E[[e1]]; ρ← rdEnv; f(inEnv ρ E[[e2]])} (E)
= {f ← inEnv ρ E[[e1]]; ρ← inEnv ρ rdEnv;

inEnv ρ (f(inEnv ρ E[[e2]]))} (distribution)
= {f ← inEnv ρ E[[e1]]; ρ← return ρ;

inEnv ρ (f(inEnv ρ E[[e2]]))} (cancellation)
= {f ← inEnv ρ E[[e1]]; inEnv ρ (f(inEnv ρ E[[e2]]))} (left unit)
= {f ← inEnv ρ N [[e1]]; inEnv ρ (f(inEnv ρ N [[e2]]))} (ind. hypo.)
= inEnv ρ {f ← N [[e1]]; f(inEnv ρ N [[e2]])} (distribution)
= inEnv ρ N [[(e1 e2)n]] (N)

inEnv ρ E[[(e1 e2)v]]
= inEnv ρ {f ← E[[e1]]; v ← E[[e2]]; f(return v)} (E)
= {f ← inEnv ρ E[[e1]]; v ← inEnv ρ E[[e2]];

inEnv ρ (f(return v))} (distribution)
= {f ← inEnv ρ N [[e1]]; v ← inEnv ρ N [[e2]];

inEnv ρ (f(return v))} (ind. hypo.)
= inEnv ρ {f ← N [[e1]]; v ← N [[e2]]; f(return v)} (distribution)
= inEnv ρ N [[(e1 e2)v]] (N)

References and assignment:
We can prove:

inEnv ρ E[[ref e]] = inEnv ρ N [[ref e]]
inEnv ρ E[[deref e]] = inEnv ρ N [[deref e]]
inEnv ρ E[[e1 := e2]] = inEnv ρ N [[e1 := e2]]

the same way we established the case for [[e1 + e2]].
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Lazy evaluation:

inEnv ρ E[[(e1 e2)l]]
= inEnv ρ {f ← E[[e1]]; l← alloc; ρ← rdEnv;

let thunk = {v ← inEnv ρ E[[e2]]; . . .} in . . .} (E)
= {f ← inEnv ρ E[[e1]]; l← inEnv ρ alloc;

ρ← inEnv ρ rdEnv;
inEnv ρ (let thunk = {v ← inEnv ρ E[[e2]]; . . .} in . . .)} (distribution)

= {f ← inEnv ρ E[[e1]]; l← inEnv ρ alloc;
inEnv ρ (let thunk = {v ← inEnv ρ E[[e2]]; . . .} in . . .)} (can., l. unit)

= {f ← inEnv ρ N [[e1]]; l← inEnv ρ alloc;
inEnv ρ (let thunk = {v ← inEnv ρ N [[e2]]; . . .} in . . .)} (ind. hypo.)

= inEnv ρ {f ← N [[e1]]; l← alloc;
let thunk = {v ← inEnv ρ N [[e2]]; . . .} in . . .} (distribution)

= inEnv ρ N [[(e1 e2)l]] (N)

Tracing:
Again, we can prove:

inEnv ρ E[[l @ e]] = inEnv ρ N [[l @ e]]

the same way we established the case for [[e1 + e2]].
First-class continuations:
We can prove:

inEnv ρ E[[callcc]] = inEnv ρ N [[callcc]]

the same way we established the case for [[n]].
Nondeterminism:
First we establish a lemma:

inEnv ρ (merge (map (λx.inEnv ρ x) e))
= inEnv ρ (join (lift (map (λx.inEnv ρ x) e))) (merge)
= inEnv ρ (join (lift {x← e; return (inEnv ρ x)})) (map)
= inEnv ρ (join {x← lift e; lift (return (inEnv ρ x))}) (monad morphism)
= inEnv ρ (join {x← lift e; return (inEnv ρ x)}) (monad morphism)
= inEnv ρ {x← lift e; a← return (inEnv ρ x); a} (join)
= inEnv ρ {x← lift e; inEnv ρ x} (left unit)
= {x← inEnv ρ (lift e); inEnv ρ (inEnv ρ x)} (distribution)
= {x← inEnv ρ (lift e); inEnv ρ x} (overriding)
= inEnv ρ {x← lift e; x} (distribution)
= inEnv ρ (join (lift e)) (join)
= inEnv ρ (merge e)) (merge)

Now we can prove:

inEnv ρ E[[{e0, e1, . . .}]]
= inEnv ρ merge [E[[e0]], E[[e1]], . . .] (E)
= inEnv ρ merge [inEnv ρ E[[e0]], inEnv ρ E[[e1]], . . .] (lemma)
= inEnv ρ merge [inEnv ρ N [[e0]], inEnv ρ N [[e1]], . . .] (ind. hypo.)
= inEnv ρ merge [N [[e0]], N [[e1]], . . .] (lemma)
= inEnv ρ N [[{e0, e1, . . .}]] (N)

B Gofer Code for Interpreter Building Blocks

Refer to Section 4.1 for the definitions of data types OR, Value, and Fun. Refer to Section 4.2
for the definitions of class InterpC, the arithmetic building block TermA, and convenience
funcitons bindPrj and returnInj.



52 Sheng Liang Paul Hudak

B.1 Variables and Functions

data TermF = Var String -- variables

| Abs String Term -- lambda abstraction

| AppN Term Term -- call-by-name application

| AppV Term Term -- call-by-value application

-- The variable binding environment and its helping functions.

data Env = Env [(String, M Value)]

lookupEnv :: String -> Env -> M Value

lookupEnv v (Env ((s, t):xs)) = if s == v then t

else lookupEnv v (Env xs)

lookupEnv v (Env []) = err ("unbound variable: " + v)

updateEnv :: (String, Value) -> Env -> Env

updateEnv n (Env e) = Env (n:e)

-- Modular semantics of function calls.

instance InterpC TermF where

interp (Var v) = rdEnv ‘bind‘ \env ->

lookupEnv v env

interp (Abs v e) =

rdEnv ‘bind‘ \env ->

returnInj (\c -> inEnv (updateEnv (v, c) env) (interp e))

interp (AppN e1 e2) =

interp e1 ‘bindPrj‘ \f ->

rdEnv ‘bind‘ \env ->

f (inEnv env (interp e2))

interp (AppV e1 e2) =

interp e1 ‘bindPrj‘ \f ->

interp e2 ‘bind‘ \v ->

f (return v)

B.2 References and Assginment

data TermA = Ref Term -- reference creation

| Deref Term -- dereference

| Assign Term Term -- assignment

-- The Store type and its helper functions.

type Loc = Int

data Store = Store Int [(Loc, M Value)]

allocLoc :: M Loc

allocLoc = update (\(Store l s) -> Store (l+1) s) ‘bind‘ \_ ->

return l
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readLoc :: Loc -> M Value

readLoc l = update id ‘bind‘ \(Store b s) ->

if (l < 0 || l >= b) then err "invalid loc"

else lookup’ l s where

lookup’ l [] = err "bad access"

lookup’ l ((l’, v):rest) =

if l == l’ then v else lookup’ l rest

writeLoc :: (Loc, M Value) -> M ()

writeLoc (l, v) = update id ‘bind‘ \(Store b s) ->

if (l < 0 || l >= b) then err "invalid loc"

else update (\_ -> (Store b ((l, v):s)))

instance InterpC TermR where

interp (Ref x) =

interp x ‘bind‘ \v ->

allocLoc ‘bind‘ \a ->

writeLoc (a, return v) ‘bind‘ \_ ->

returnInj a

interp (Deref x) =

interp x ‘bindPrj‘ \a ->

readLoc a

interp (Assign l r) =

interp l ‘bindPrj‘ \a ->

interp r ‘bind‘ \rv ->

writeLoc (a, return rv) ‘bind‘ \_ ->

return rv

B.3 Lazy Evaluation

data TermL= AppL Term Term

instance InterpC TermL where

interp (AppL e1 e2) = interp e1 ‘bindPrj‘ \f ->

allocLoc ‘bind‘ \l ->

rdEnv ‘bind‘ \env ->

writeLoc (l, thunk) ‘bind‘ \_ ->

f (readLoc l)

where thunk = inEnv env (interp e2) ‘bind‘ \v ->

writeLoc (l, return v) ‘bind‘ \_ ->

return v

B.4 Tracing

data TermT = Trace String Term

instance InterpC TermT where

interp (Trace l e) =

write ("enter " ++ l) ‘bind‘ \_ ->

interp e ‘bind‘ \v ->

write ("leave " ++ l) ‘bind‘ \_ ->

return v
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B.5 First-class Continuation

data TermC = CallCC

-- Helper function inj_f is functionally equivalent to

-- returnInj. It helps the Gofer type checker to correctly

-- infer various higher-order types.

instance InterpC TermC where

interp CallCC =

inj_f (\f -> f ‘bindPrj‘ \f’ ->

callcc (\k ->

(f’ (inj_f (\c -> c ‘bind‘ k)))))

where

inj_f :: Function -> InterpM Value

inj_f = returnInj

B.6 Nondeterminism

data TermN= Amb [Term]

instance InterpC TermN where

interp (Amb vs) = merge (map interp vs)

C Gofer Code for Monad Transformers

This section lists the Gofer implementation for three monad transformers (environment,
continuation and error reporting) and their associated liftings. Section 4.5 lists the Gofer
implementation for the state monad transformer.

C.1 The Environment Monad Transformer

data EnvT r m a = EnvM (r -> m a)

unEnvM (EnvM x) = x

instance Monad m => Monad (EnvT r m) where

return a = EnvM (\r -> return a)

(EnvM m) ‘bind‘ k = EnvM (\r -> m r ‘bind‘ \a ->

unEnvM (k a) r)

instance MonadT (EnvT r) where

-- lift :: m a -> EnvT r m a

lift m = EnvM (\r -> m)

class Monad m => EnvMonad r m where

inEnv :: r -> m a -> m a

rdEnv :: m r

instance Monad m => EnvMonad r (EnvT r m) where

inEnv r (EnvM m) = EnvM (\_ -> m r)

rdEnv = EnvM (\r -> return r)
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-- lift EnvMonad through EnvT

instance (MonadT (EnvT r’), EnvMonad r m) =>

EnvMonad r (EnvT r’ m) where

inEnv r (EnvM m) = EnvM (\r’ -> inEnv r (m r’))

rdEnv = lift rdEnv

-- lift EnvMonad through StateT

instance (MonadT (StateT s), EnvMonad r m) =>

EnvMonad r (StateT s m) where

inEnv r (StateM m) = StateM (\s -> inEnv r (m s))

rdEnv = lift rdEnv

-- lift EnvMonad through ErrT

instance (MonadT ErrT, EnvMonad r m) =>

EnvMonad r (ErrT m) where

inEnv r (ErrM m) = ErrM (inEnv r m)

rdEnv = lift rdEnv

C.2 The Error Monad Transformer

data Err a = Ok a | Err String

data ErrT m a = ErrM (m (Err a))

unErrM (ErrM x) = x

instance Monad m => Monad (ErrT m) where

return = ErrM . return . Ok

(ErrM m) ‘bind‘ k = ErrM (m ‘bind‘ \a ->

case a of

Ok x -> unErrM (k x)

Err msg -> return (Err msg))

instance MonadT ErrT where

-- lift :: m a -> ErrT m a

lift c = ErrM (map Ok c)

class Monad m => ErrMonad m where

err :: String -> m a

instance Monad m => ErrMonad (ErrT m) where

err = ErrM . return . Err

instance (ErrMonad m, MonadT t) => ErrMonad (t m) where

err = lift . err

C.3 The Continuation Monad Transformer

data ContT ans m a = ContM ((a -> m ans) -> m ans)

unContM (ContM x) = x

instance Monad m => Monad (ContT ans m) where

return x = ContM (\k -> k x)

(ContM m) ‘bind‘ f =
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ContM (\k -> m (\a -> unContM (f a) k))

instance MonadT (ContT ans) where

-- lift :: m a -> ContT ans m a

lift m = ContM (\f -> m ‘bind‘ f)

class Monad m => ContMonad m where

callcc :: ((a -> m b) -> m a) -> m a

instance Monad m => ContMonad (ContT ans m) where

callcc f =

ContM (\k -> unContM (f (\a -> ContM (\_ -> k a))) k)

-- lift callcc through EnvT

instance (MonadT (EnvT r), ContMonad m) =>

ContMonad (EnvT r m) where

callcc f = EnvM (\r -> callcc (\k ->

unEnvM (f (\a -> EnvM (\r -> k a))) r))

-- lift callcc through StateT

instance (MonadT (StateT s), ContMonad m) =>

ContMonad (StateT s m) where

callcc f = StateM (\s -> callcc (\k -> unStateM

(f (\a -> StateM (\s1 -> k (s, a)))) s))

-- lift callcc through ErrT

instance (MonadT ErrT, ContMonad m) =>

ContMonad (ErrT m) where

callcc f = ErrM (callcc (\k ->

unErrM (f (\a -> ErrM (k (Ok a))))))


