
Fully Reflexive Intensional Type Analysis ∗

Valery Trifonov Bratin Saha Zhong Shao
Department of Computer Science

Yale University
New Haven, CT 06520-8285

{trifonov, saha, shao}@cs.yale.edu

ABSTRACT
Compilers for polymorphic languages can use runtime type inspec-
tion to support advanced implementation techniques such as tagless
garbage collection, polymorphic marshalling, and flattened data
structures. Intensional type analysis is a type-theoretic framework
for expressing and certifying such type-analyzing computations.
Unfortunately, existing approaches to intensional analysis do not
work well on types with universal, existential, or fixpoint quanti-
fiers. This makes it impossible to code applications such as garbage
collection, persistence, or marshalling which must be able to exam-
ine the type of any runtime value.

We present a typed intermediate language that supportsfully re-
flexiveintensional type analysis. By fully reflexive, we mean that
type-analyzing operations are applicable to the type of any runtime
value in the language. In particular, we provide both type-level and
term-level constructs for analyzing quantified types. Our system
supports structural induction on quantified types yet type checking
remains decidable. We show how to use reflexive type analysis to
support type-safe marshalling and how to generate certified type-
analyzing object code.
Keywords: certified code, runtime type dispatch, typed intermedi-
ate language.

1. INTRODUCTION
Runtime type analysis is used extensively in various applications

and programming situations. Runtime services such as garbage col-
lection and dynamic linking, applications such as marshalling and
pickling, type-safe persistent programming, and unboxing imple-
mentations of polymorphic languages all analyze types to various
degrees at runtime. Most existing compilers use untyped intermedi-
ate languages for compilation; therefore, they support runtime type

∗This research was sponsored in part by the Defense Advanced Research
Projects Agency ISO under the title “Scaling Proof-Carrying Code to Pro-
duction Compilers and Security Policies,” ARPA Order No. H559, issued
under Contract No. F30602-99-1-0519, and in part by NSF Grants CCR-
9633390 and CCR-9901011. The views and conclusions contained in this
document are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’00, Montreal, Canada
Copyright 2000 ACM 1-58113-202-6/00/0009 ..$5.00

inspection in a type-unsafe manner. In this paper, we present a stat-
ically typed intermediate language that allows runtime type analy-
sis to be coded within the language. This allows us to leverage the
power of dynamically typed languages, yet retain the advantages of
static type checking.

Supporting runtime type analysis in a type-safe manner has been
an active area of research. This paper builds on existing work [8]
but makes the following new contributions:

• We support fully reflexive type analysis at the term level.
Consequently, programs can analyze any runtime value such
as function closures and polymorphic data structures.

• We support fully reflexive type analysis at the type level.
Therefore, type transformations operating on arbitrary types
can be encoded in our language.

• We prove that the language is sound and that type reduction
is strongly normalizing and confluent.

In the companion technical report [18], we also show a translation
into a language with type erasure semantics [2]. In a type preserv-
ing compiler this provides an approach to typed closure conversion
which allows generation of certified object code.

2. MOTIVATION
The core issue that we address in this paper is the design of a

statically typed intermediate language that supports runtime type
analysis. Why is this important? Modern programming paradigms
are increasingly giving rise to applications that rely critically on
type information at runtime, for example:

• Java adopts dynamic linking as a key feature, and to ensure
safe linking, an external module must be dynamically veri-
fied to satisfy the expected interface type.

• A garbage collector must keep track of all live heap objects,
and for that type information must be kept at runtime to allow
traversal of data structures.

• In a distributed computing environment, code and data on
one machine may need to be pickled for transmission to a
different machine, where the unpickler reconstructs the data
structures from the bit stream. If the type of the data is not
statically known at the destination (as is the case for the en-
vironment components of function closures), the unpickler
must use type information, encoded in the bit stream, to cor-
rectly interpret the encoded value.

• Type-safe persistent programming requires language support
for dynamic typing: the program must ensure that data read
from a persistent store is of the expected type.

• Finally, in polymorphic languages like ML, the type of a
value may not be known statically; therefore, compilers have
traditionally used inefficient, uniformly boxed data represen-
tation. To avoid this, several modern compilers [23, 19, 25]
use runtime type information to support unboxed data repre-
sentation.

When compiling code which uses runtime type inspections, most
existing compilers use untyped intermediate languages, and reify
runtime types into values at some early stage. However, discarding
type information during compilation puts this approach at a serious
disadvantage when it comes to generating certified code [13].

Code certification is appealing for a number of reasons. One
need not trust the correctness of a compiler generating certified
code; instead, one can verify the correctness of the generated code.
Checking the correctness of a compiler-generated proof (of a pro-
gram property) is much easier than proving the correctness of the
compiler. Secondly, with the growth of web-based computing, pro-
grams are increasingly being developed at remote sites and shipped
to clients for execution. Client programs may also download mod-
ules dynamically as they need them. For such a system to be prac-
tical, a client should be able to accept code from untrusted sources,
but have a means of verifying it before execution. This again re-
quires compilers that generate certified code.

A necessary step in building a certifying compiler is to have the
compiler generate code that can be type-checked before execution.
The type system ensures that the code accesses only the provided
resources, makes legal function calls,etc. A certifying compiler
can support runtime type analysis only in a typed framework.

The safety of such a system depends not only on the downloaded
code, but also on the correctness of all the code that is executed by
the system after type checking. This typically includes the runtime
services like garbage collection, linking,etc. This code constitutes
the trusted computing base of the system. Reducing the trusted
computing base makes the system more reliable; for this, we must
independently verify the correctness of this code. This implies that
as many of the runtime services as possible should be written in a
type-safe language, which requires support for runtime type analy-
sis in a typed framework.

Finally, why is it important to have fully reflexive type analy-
sis? Why do we want to analyze quantified types? Many type-
analyzing applications mentioned above must handle arbitrary run-
time values. For example, a pickler must be able to pickle any
value, including closures (which have existential types), polymor-
phic functions, or recursive data structures. A garbage collector has
to be able to traverse all data structures in the heap to track live ob-
jects. Therefore the language must support type analysis over any
runtime value in the language.

2.1 Background
Harper and Morrisett [8] proposed intensional type analysis and

presented a type-theoretic framework for expressing computations
that analyze types at runtime. They introduced two explicit type-
analysis operators: one at the term level (typecase) and another
at the type level (Typerec); both use induction over the structure
of types. Type-dependent primitive functions use these operators
to analyze types and select the appropriate code. For example, a
polymorphic subscript function for arrays might be written as the
following pseudo-code:

sub = Λα. typecase α of
int ⇒ intsub
real⇒ realsub
β ⇒ boxedsub [β]

(kinds) κ ::= Ω | κ→ κ′

(cons) τ ::= int | τ → τ ′ | α | λα :κ. τ | τ τ ′
| Typerec τ of (τint; τ→)

(types) σ ::= τ | ∀α :κ. σ

Figure 1: The type language of Harper and Morrisett

Heresub analyzes the typeα of the array elements and returns the
appropriate subscript function. We assume that arrays of typeint
and real have specialized representations (defined by types, say,
intarray andrealarray), and therefore special subscript functions,
while all other arrays use the default boxed representation.

Typing this subscript function is more interesting, because it
must have all of the typesintarray → int → int, realarray →
int → real, and∀α. boxedarray (α)→ int→ α. To assign a type
to the subscript function, we need a construct at the type level that
parallels thetypecase analysis at the term level. In general, this
facility is crucial since many type-analyzing operations like flatten-
ing and marshalling transform types in a non-uniform way. The
subscript operation would then be typed as

sub : ∀α.Array (α)→ int→ α
where Array = λα.Typecase α of

int ⇒ intarray
real⇒ realarray
β ⇒ boxedarrayβ

The Typecase construct in the above example is a special case of
the Typerec construct in [8], which also supports primitive recur-
sion over types.

2.2 The problem
The language of Harper and Morrisett only allows the analysis of

monotypes; it does not support analysis of types with binding struc-
ture (e.g.,polymorphic, existential or recursive types). Therefore,
type analyzing primitives that handle polymorphic code blocks,
closures (since closures are represented as existentials [11]), or re-
cursive structures, cannot be written in their language. The types
in their language (in essence shown in Figure 1) are separated into
two universes,constructorsandtypes. The constructor calculus is
a simply typed lambda calculus, with no polymorphic types. The
Typerec operator analyzes only constructors of base kindΩ:

int : Ω
→ : Ω→ Ω→ Ω

The kinds of these constructors’ arguments do not contain any neg-
ative occurrence of the kindΩ, soint and→ can be used to define
Ω inductively. TheTyperec operator is essentially an iterator over
this inductive definition; its reduction rules can be written as:

Typerec int of (τint; τ→) ; τint

Typerec (τ1 → τ2) of (τint; τ→) ;

τ→ τ1 τ2 (Typerec τ1 of (τint; τ→)) (Typerec τ2 of (τint; τ→))

Here theTyperec operator examines the head constructor of the
type being analyzed and chooses a branch accordingly. If the type is
int, it reduces to theτint branch. If the type isτ1 → τ2, the analysis
proceeds recursively on the subtypesτ1 andτ2. TheTyperec op-
erator then applies theτ→ branch to the original component types,

and to the result of analyzing the components; thus providing a
form of primitive recursion.

Types with binding structure can be constructed using higher-
order abstract syntax. For example, the polymorphic type con-
structor∀∀ can be given the kind(Ω → Ω) → Ω, so that the type
∀α :Ω. α→ α is represented as∀∀ (λα :Ω. α→ α). It would seem
plausible to define an iterator with the reduction rule:

Typerec (∀∀ τ) of (τint; τ→; τ∀)
; τ∀ τ (λα :Ω.Typerec τ α of (τint; τ→; τ∀))

However the negative occurrence ofΩ in the kind of the argument
of ∀∀ poses a problem: this iterator may fail to terminate! Consider
the following example, assumingτ = λα :Ω. α and

τ∀ = λβ1 :Ω→ Ω. λβ2 :Ω→ Ω. β2 (∀∀β1)

the following reduction sequence will go on indefinitely:

Typerec (∀∀τ) of (τint; τ→→; τ∀)
; τ∀ τ (λα :Ω.Typerec τ α of (τint; τ→; τ∀))
; Typerec (τ (∀∀ τ)) of (τint; τ→; τ∀)
; Typerec (∀∀τ) of (τint; τ→→; τ∀)
; . . .

Clearly this makes typecheckingTyperec undecidable.
Another serious problem in analyzing quantified types involves

both the type-level and the term-level operators. Typed interme-
diate languages like FLINT [20] and TIL [24] are based on the
calculusFω [5, 17], which has higher order type constructors. In a
quantified type, say∃α :κ. τ , the quantified variableα is no longer
restricted to a base kindΩ, but can have an arbitrary kindκ. Con-
sider the term-leveltypecase in such a scenario:

sub = Λα. typecase α of
int ⇒ eint

. . .
∃α :κ. τ⇒ e∃

To do anything useful in thee∃ branch, even to open a package of
this type, we need to know the kindκ. We can get around this by
having an infinite number of branches in thetypecase, one for each
kind; or by restricting type analysis to a finite set of kinds. Both of
these approaches are clearly impractical. Recent work on typed
compilation of ML and Java has shown that both would require an
Fω-like calculus with arbitrarily complex kinds [21, 22, 9].

2.3 Requirements for a solution
Before we discuss our solution, let us look at the properties we

want it to have.
First, our language must support type analysis in the manner of

Harper/Morrisett. That is, we want to include type analysis prim-
itives that will analyze the entire syntax tree representing a type.
Second, we want the analysis to continue inside the body of a quan-
tified type; handling quantified types parametrically, or in a uniform
way by providing a default case, is insufficient. As we will see later,
many interesting type-directed operations require these two prop-
erties. Third, we do not want to restrict the kind of the (quantified)
type variable in a quantified type; we want to analyze types where
the quantification is over a variable of arbitrary kind.

Consider a type-directed pickler that converts a value of arbitrary
type into an external representation. Suppose we want to pickle a
closure. With a type-preserving compiler, the type of a closure
would be represented as an existential with the environment held
abstract. Even if the code is handled uniformly, the function must
inspect the type of the environment (which is also the witness type

of the existential package) to pickle it. This shows that at the term
level, the analysis must proceed inside a quantified type. In Sec-
tion 3.2, we show the encoding of a polymorphic equality function
in our calculus; the comparison of existential values requires a sim-
ilar technique.

The reason for not restricting the quantified type variable to a
finite set of kinds is twofold. Restricting type analysis to a finite
number of kinds would bead hocand there is no way of satisfacto-
rily predetermining this finite set (this is even more the case when
we compile Java into a typed intermediate language [9]). More
importantly, if the kind of the bound variable is a known constant
in the corresponding branch of theTyperec construct, it is easy to
generalize the non-termination example of the previous section and
break the decidability of the type system.

2.4 Our solution
The key problem in analyzing quantified types such as the poly-

morphic type∀α : Ω. α→ α is to determine what happens when
the iteration reaches the quantified type variableα, or (in the gen-
eral case of type variables of higher kinds) a normal form which is
an application with a type variable in the head.

One approach would be to leave the type variable untouched
while analyzing the body of the quantified type. The equational
theory of the type language then includes a reduction of the form
(Typerec α of . . .) ; α so that the iterator vanishes when it
reaches a type variable. However this would break the confluence
of the type language—the application ofλα : Ω.Typerec α of . . .
to τ would reduce in general to different types if we perform the
β-reduction step first or eliminate the iterator first.

Crary and Weirich [1] propose another method for solving this
problem. Their language LX allows the representation of terms
with bound variables using deBruijn notation and an encoding of
natural numbers as types. To analyze quantified types, the iterator
carries an environment mapping indices to types; when the iterator
reaches a type variable, it returns the corresponding type from the
environment. This method has several disadvantages.

• It is not fully reflexive, since it does not allow analysis of
all quantified types—their analysis is restricted to types with
quantification only over variables of kindΩ.

• The technique is “limited toparametrically polymorphic
functions, and cannot account for functions that perform in-
tensional type analysis” [1, Section 4.1]. For example poly-
morphic types such as∀α :Ω.Typerec α of . . . are not ana-
lyzable in their framework.

• The correctness of the structure of a type encoded using de-
Bruijn notation cannot be verified by the kind language (in-
dices not corresponding to bound variables go undetected,
so the environment must provide a default type for them),
which does not break the type soundness but opens the door
for programmer mistakes.

To account for non-parametrically polymorphic functions, we
must analyze the quantified type variable. Moreover, we want to
have confluence of the type language, soβ-reduction should be
transparent to the iterator. This is possible only if the analysis gets
suspended when it reaches a type variable, or its application, of
kind Ω, and resumes when the variable gets substituted. Therefore,
we consider(Typerec α of . . .) to be a normal form. For example,
the result of analyzing the body (α→ int) of the polymorphic type
∀α :κ. α→ int is

Typerec (α→ int) of (τint; τ→; τ∀) ;

τ→ α int (Typerec α of (τint; τ→; τ∀)) (τint)

We formalize the analysis of quantified types when we present the
type reduction rules of theTyperec construct (Figure 5).

The other problem is to analyze quantified types when the quan-
tified variable can be of an arbitrary kind. In our language the so-
lution is similar at both the type and the term levels: we use kind
polymorphism! We introduce kind abstractions at the type level

(Λχ. τ) and at the term level (Λ
+
χ. e) to bind the kind of the quan-

tified variable. (See Section 3 for details.)
Kind polymorphism also ensures the termination of theTyperec

constructor. Consider again the analysis of the polymorphic type:

Typerec (∀∀ τ) of (τint; τ→; τ∀)
; τ∀ τ (λα :Ω.Typerec τ α of (τint; τ→; τ∀))

Informally, we must ensure that the type being analyzed decreases
in size at every iteration. That isτα is smaller than∀∀τ . (Note that
the previous non-terminating example violates this requirement).
This will be true if we can ensure thatα is always substituted by a
single variable. Therefore, we make the kind ofα abstract by using
kind polymorphism;α now has the kind bound in theτ∀ branch.
The only way to construct another type of this kind is to bind a
type variable of the same kind in theτ∀ branch. This ensures that
α can only be substituted by another type variable.

It is important to note that our language provides no facilities for
kind analysis. Analyzing the kindκ of the bound variableα in the
type∀∀ (λα : κ. τ) would let us synthesize a type argument of the
same kind, for every kindκ. The synthesized type can then be used
in the style of the non-termination example of the previous section.
Intuitively, we would not be able to guarantee that the type being
analyzed decreases at every step.

The rest of the paper is organized as follows. Section 3 describes
the languageλPi supporting analysis of polymorphic and existen-
tial types. Section 4 presents the languageλQi that also includes
support for analysis of recursive types. In the companion technical
report [18] we also show a translation into a language with type
erasure semantics [2].

3. ANALYZING POLYMORPHIC TYPES
In the impredicativeFω calculus, the polymorphic types∀α :κ. τ

can be viewed as generated by an infinite set of type constructors
∀κ of kind (κ→ Ω)→ Ω, one for each kindκ. The type∀α :κ. τ
is then represented as∀κ (λα :κ. τ). The kinds of constructors that
can generate types of kindΩ then would be

int : Ω
→→ : Ω→ Ω→ Ω
∀Ω : (Ω→ Ω)→ Ω
. . .
∀κ : (κ→ Ω)→ Ω
. . .

We can avoid the infinite number of∀κ constructors by defining a
single constructor∀∀ of polymorphic kind∀χ. (χ→ Ω)→ Ω and
then instantiating it to a specific kind before forming polymorphic
types. More importantly, this technique also removes the negative
occurrence ofΩ from the kind of the argument of the constructor
∀Ω. Hence in ourλPi calculus we extendFω with polymorphic
kinds and add a type constant∀∀ of kind ∀χ. (χ → Ω) → Ω to the
type language. The polymorphic type∀α :κ. τ is now represented
as∀∀ [κ] (λα :κ. τ).

We define the syntax of theλPi calculus in Figure 2, and some
derived forms of types in Figure 3. The static semantics ofλPi is
shown in Figures 4 and 5 as a set of rules for judgments using the

(kinds) κ ::= Ω | κ→ κ′ | χ | ∀χ. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀
+

| α | Λχ. τ | λα :κ. τ | τ [κ] | τ τ ′
| Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)

(values) v ::= i | Λ
+
χ. e | Λα :κ. e | λx :τ. e | fixx :τ. v

(terms) e ::= v | x | e [κ]
+
| e [τ] | e e′

| typecase[τ] τ ′ of (eint; e→; e∀; e∀+)

Figure 2: Syntax of theλPi language

τ → τ ′ ≡ ((→→) τ) τ ′

∀α :κ. τ ≡ (∀∀ [κ]) (λα :κ. τ)

∀
+
χ. τ ≡ ∀∀

+
(Λχ. τ)

Figure 3: Syntactic sugar forλPi types

following environments:

kind environment E ::= ε | E , χ
type environment ∆ ::= ε | ∆, α :κ
term environment Γ ::= ε | Γ, x :τ

TheTyperec operator analyzes polymorphic types with bound vari-
ables of arbitrary kind. The corresponding branch of the operator
must bind the kind of the quantified type variable; for that purpose
the language provides kind abstraction (Λχ. τ) and kind application
(τ [κ]) at the type level. The formation rules for these constructs,
excerpted from Figure 4, are

E , χ; ∆ ` τ : κ

E ; ∆ ` Λχ. τ : ∀χ. κ
E ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` τ [κ′] : κ{κ′/χ}

Similarly, while analyzing a polymorphic type, the term-level con-
structtypecase must bind the kind of the quantified type variable.

Therefore, we introduce kind abstraction (Λ
+
χ. e) and kind appli-

cation (e [κ]
+
) at the term level. To type the term-level kind abstrac-

tion, we need a type construct∀
+
χ. τ that binds the kind variableχ

in the typeτ . The formation rules are shown below.

E , χ; ∆; Γ ` v : τ

E ; ∆; Γ ` Λ
+
χ. v : ∀

+
χ. τ

E ; ∆; Γ ` e : ∀
+
χ. τ E ` κ

E ; ∆; Γ ` e [κ]
+

: τ{κ/χ}

However, since our goal is fully reflexive type analysis, we need
to analyze kind-polymorphic types as well. As with polymorphic

types, we can represent the type∀
+
χ. τ as the application of a type

constructor∀∀
+

of kind (∀χ.Ω) → Ω to a kind abstractionΛχ. τ .
Thus the kinds of the constructors for types of kindΩ are

int : Ω
→→ : Ω→ Ω→ Ω
∀∀ : ∀χ. (χ→ Ω)→ Ω

∀∀
+

: (∀χ.Ω)→ Ω

None of these constructors’ arguments have the kindΩ in a negative
position; hence the kindΩ can now be defined inductively in terms
of these constructors. TheTyperec construct is then the iterator
over this kind. The formation rule forTyperec follows naturally

Kind formation E ` κ

E ` Ω

χ ∈ E
E ` χ

E ` κ E ` κ′

E ` κ→ κ′
E , χ ` κ
E ` ∀χ. κ

Type environment formation E ` ∆

E ` ε
E ` ∆ E ` κ
E ` ∆, α :κ

Type formation E ; ∆ ` τ : κ

E ` ∆

E ; ∆ ` int : Ω
E ; ∆ ` (→→) : Ω→ Ω→ Ω
E ; ∆ ` ∀∀ : ∀χ. (χ→ Ω)→ Ω

E ; ∆ ` ∀∀
+

: (∀χ.Ω)→ Ω

E ` ∆ α :κ in ∆

E ; ∆ ` α : κ

E , χ; ∆ ` τ : κ

E ; ∆ ` Λχ. τ : ∀χ. κ
E ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` τ [κ′] : κ{κ′/χ}

E ; ∆, α :κ ` τ : κ′

E ; ∆ ` λα :κ. τ : κ→ κ′
E ; ∆ ` τ : κ′ → κ E ; ∆ ` τ ′ : κ′

E ; ∆ ` τ τ ′ : κ

E ; ∆ ` τ : Ω
E ; ∆ ` τint : κ
E ; ∆ ` τ→ : Ω→ Ω→ κ→ κ→ κ
E ; ∆ ` τ∀ : ∀χ. (χ→ Ω)→ (χ→ κ)→ κ
E ; ∆ ` τ∀+ : (∀χ.Ω)→ (∀χ. κ)→ κ

E ; ∆ ` Typerec[κ] τ of (τint; τ→; τ∀; τ∀+) : κ

Term environment formation E ; ∆ ` Γ

E ` ∆

E ; ∆ ` ε
E ; ∆ ` Γ E ; ∆ ` τ : Ω

E ; ∆ ` Γ, x :τ

Term formation E ; ∆; Γ ` e : τ

E ; ∆; Γ ` e : τ E ; ∆ ` τ ; τ ′ : Ω

E ; ∆; Γ ` e : τ ′
E ; ∆ ` Γ

E ; ∆; Γ ` i : int

E ; ∆ ` Γ x :τ in Γ

E ; ∆; Γ ` x : τ

E , χ; ∆; Γ ` v : τ

E ; ∆; Γ ` Λ
+
χ. v : ∀

+
χ. τ

E ; ∆, α :κ; Γ ` v : τ

E ; ∆; Γ ` Λα :κ. v : ∀α :κ. τ

E ; ∆; Γ, x :τ ` e : τ ′

E ; ∆; Γ ` λx :τ. e : τ → τ ′

E ; ∆; Γ, x :τ ` v : τ

τ = ∀
+
χ1 . . . χn.∀α1 :κ1 . . . αm :κm :τ1 → τ2.

n ≥ 0,m ≥ 0

E ; ∆; Γ ` fixx :τ. v : τ

E ; ∆; Γ ` e : ∀∀
+
τ E ` κ

E ; ∆; Γ ` e [κ]
+

: τ [κ]

E ; ∆; Γ ` e : ∀∀ [κ] τ E ; ∆ ` τ ′ : κ

E ; ∆; Γ ` e [τ ′] : τ τ ′

E ; ∆; Γ ` e : τ ′ → τ E ; ∆; Γ ` e′ : τ ′

E ; ∆; Γ ` e e′ : τ

E ; ∆ ` τ : Ω→ Ω
E ; ∆ ` τ ′ : Ω
E ; ∆; Γ ` eint : τ int
E ; ∆; Γ ` e→ : ∀α :Ω.∀α′ :Ω. τ (α→ α′)

E ; ∆; Γ ` e∀ : ∀
+
χ.∀α :χ→ Ω. τ (∀∀ [χ]α)

E ; ∆; Γ ` e∀+ : ∀α : (∀χ.Ω). τ (∀∀
+
α)

E ; ∆; Γ ` typecase[τ] τ ′ of (eint; e→; e∀; e∀+) : τ τ ′

Figure 4: Formation rules of λPi

Type reduction E ; ∆ ` τ1 ; τ2 : κ

E ; ∆, α :κ′ ` τ : κ E ; ∆ ` τ ′ : κ′

E ; ∆ ` (λα :κ′. τ) τ ′ ; τ{τ ′/α} : κ

E , χ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` (Λχ. τ) [κ′] ; τ{κ′/χ} : κ{κ′/χ}

E ; ∆ ` τ : κ→ κ′ α /∈ ftv(τ)

E ; ∆ ` λα :κ. τ α ; τ : κ→ κ′

E ; ∆ ` τ : ∀χ′. κ χ /∈ fkv(τ)

E ; ∆ ` Λχ. τ [χ] ; τ : ∀χ′. κ

E ; ∆ ` Typerec[κ] int of (τint; τ→; τ∀; τ∀+) : κ

E ; ∆ ` Typerec[κ] int of (τint; τ→; τ∀; τ∀+) ; τint : κ

E ; ∆ ` Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+) ; τ ′1 : κ
E ; ∆ ` Typerec[κ] τ2 of (τint; τ→; τ∀; τ∀+) ; τ ′2 : κ

E ; ∆ ` Typerec[κ] ((→→) τ1 τ2) of (τint; τ→; τ∀; τ∀+) ; τ→ τ1 τ2 τ
′
1 τ
′
2 : κ

E ; ∆, α :κ′ ` Typerec[κ] (τ α) of (τint; τ→; τ∀; τ∀+) ; τ ′ : κ

E ; ∆ ` Typerec[κ] (∀∀ [κ′] τ) of (τint; τ→; τ∀; τ∀+)
; τ∀ [κ′] τ (λα :κ′. τ ′) : κ

E , χ; ∆ ` Typerec[κ] (τ [χ]) of (τint; τ→; τ∀; τ∀+) ; τ ′ : κ

E ; ∆ ` Typerec[κ] (∀∀
+
τ) of (τint; τ→; τ∀; τ∀+) ; τ∀+ τ (Λχ. τ ′) : κ

Figure 5: SelectedλPi type reduction rules

from the type reduction rules (Figure 5). Depending on the head
constructor of the type being analyzed,Typerec chooses one of the
branches. At theint type, it returns theτint branch. At the function
typeτ → τ ′, it applies theτ→ branch to the componentsτ andτ ′

and to the result of the iteration overτ andτ ′.
When analyzing a polymorphic type, the reduction rule is

Typerec[κ] (∀α :κ′. τ) of (τint; τ→; τ∀; τ∀+) ;

τ∀ [κ′] (λα :κ′. τ) (λα :κ′.Typerec[κ] τ of (τint; τ→; τ∀; τ∀+))

Thus the∀-branch ofTyperec receives as arguments the kind of
the bound variable, the abstraction representing the quantified type,
and a type function encapsulating the result of the iteration on the
body of the quantified type. Sinceτ∀ must be parametric in the kind
κ′ (there are no facilities for kind analysis in the language), it can
only apply its second and third arguments to locally introduced type
variables of kindκ′. We believe this restriction, which is crucial
for preserving strong normalization of the type language, is quite
reasonable in practice. For instanceτ∀ can yield a quantified type
based on the result of the iteration.

The reduction rule for analyzing a kind-polymorphic type is

Typerec[κ] (∀
+
χ. τ) of (τint; τ→; τ∀; τ∀+) ;

τ∀+ (Λχ. τ) (Λχ.Typerec[κ] τ of (τint; τ→; τ∀; τ∀+))

The arguments of theτ∀+ are the kind abstraction underlying the
kind-polymorphic type and a kind abstraction encapsulating the re-
sult of the iteration on the body of the quantified type.

For ease of presentation, we will use ML-style pattern matching
syntax to define a type involvingTyperec. Instead of

τ = λα :Ω.Typerec[κ] α of (τint; τ→; τ∀; τ∀+)
where τ→ = λα1 :Ω. λα2 :Ω. λα′1 :κ. λα′2 :κ. τ ′→

τ∀ = Λχ. λα :χ→ Ω. λα′ :χ→ κ. τ ′∀
τ∀+ = λα : (∀χ.Ω). λα′ : (∀χ. κ). τ ′

∀+

we will write

τ (int) = τint

τ (α1 → α2) = τ ′→{τ (α1), τ (α2)/α′1, α
′
2}

τ (∀∀ [χ]α1) = τ ′∀{λα :χ. τ (α1 α)/α′}
τ (∀∀

+
α1) = τ ′

∀+
{Λχ. τ (α1 [χ])/α′}

To illustrate the type-level analysis we will use theTyperec opera-
tor to define the class of types admitting equality comparisons. To
make the example non-trivial we extend the language with a prod-
uct type constructor×× of the same kind as→→, and with existential
types with type constructor∃∃ of kind identical to that of∀∀, writing
∃α :κ. τ for ∃∃ [κ] (λα :κ. τ). Correspondingly we extendTyperec
with a product branchτ× and an existential branchτ∃ which be-
have in exactly the same way as theτ→ branch and theτ∀ branch
respectively. We will useBool instead ofint.

A polymorphic functioneq comparing two objects for equality
is not defined on values of function or polymorphic types. We can
enforce this restriction statically if we define a type operatorEq of
kind Ω → Ω, which maps function and polymorphic types to the
type Void ≡ ∀α : Ω. α (a type with no values), and require the
arguments ofeq to be of typeEq τ for some typeτ . Thus, given
any typeτ , the functionEq serves to verify that a non-equality type
does not occur insideτ .

Eq (Bool) = Bool
Eq (α1 → α2) = Void
Eq (α1×α2) = Eq (α1)×Eq (α2)
Eq (∀∀ [χ]α) = Void

Eq (∀∀
+
α) = Void

Eq (∃∃ [χ]α) = ∃∃ [χ] (λα1 :χ.Eq (αα1))

(λx :τ. e) v; e{v/x}

(Λα :κ. v)[τ] ; v{τ/α}

(Λ
+
χ. v)[κ]

+
; v{κ/χ}

(fixx :τ. v) v′; (v{fixx :τ. v/x}) v′

(fixx :τ. v)[τ] ; (v{fixx :τ. v/x})[τ]

(fixx :τ. v)[κ]
+

; (v{fixx :τ. v/x})[κ]
+

e ; e′

e e1 ; e′ e1

e ; e′

v e ; v e′
e ; e′

e[τ] ; e′[τ]

e ; e′

e[κ]
+

; e′[κ]
+

typecase[τ] int of (eint; e→; e∀; e∀+) ; eint

typecase[τ] (τ1 → τ2) of (eint; e→; e∀; e∀+) ; e→ [τ1] [τ2]

typecase[τ] (∀∀ [κ] τ) of (eint; e→; e∀; e∀+) ; e∀ [κ]
+

[τ]

typecase[τ] (∀∀
+
τ) of (eint; e→; e∀; e∀+) ; e∀+ [τ]

ε; ε ` τ ′ ;∗ ν′ :Ω ν′ is a normal form

typecase[τ] τ ′ of (eint; e→; e∀; e∀+) ;

typecase[τ] ν′ of (eint; e→; e∀; e∀+)

Figure 6: Operational semantics ofλPi

The property is enforced even on hidden types in an existentially
typed package by the reduction rule forTyperec which suspends
its action on normal forms with variable head. For instance a term
e can only be given type

Eq (∃α :Ω. α× α) = ∃α :Ω.Eqα× Eqα

if it can be shown thate is a pair of terms of typeEq τ for some
τ , i.e., terms of equality type. Note thatEq ((Bool → Bool)×
(Bool → Bool)) reduces to(Void×Void); a more complicated
definition is necessary to map this type toVoid.

At the term level type analysis is carried out by thetypecase
construct; however, it is not iterative since the term language has a
recursion primitive,fix. Thee∀ branch oftypecase binds the kind
and the type abstraction carried by the type constructor∀∀, while the

e∀+ branch binds the kind abstraction carried by∀∀
+
.

typecase[τ] (∀∀ [κ] τ ′) of (eint; e→; e∀; e∀+) ; e∀ [κ]
+

[τ ′]

typecase[τ] (∀∀
+
τ ′) of (eint; e→; e∀; e∀+) ; e∀+ [τ ′]

The operational semantics of the term language ofλPi is presented
in Figure 6.

The languageλPi has the following important properties (for de-
tailed proofs we refer the reader to the companion technical re-
port [18]).

THEOREM 3.1. Reduction of well-formed types is strongly nor-
malizing.

We prove strong normalization of the type language following
Girard’s method of candidates [6], using his definition of a candi-
date. The standard set of neutral types is extended to include types
constructed byTyperec. We defineRΩ as the set of typesτ of
kind Ω such that the typeTyperec[κ] τ of (τint; τ→; τ∀; τ∀+) be-
longs to a candidate for kindκ whenever the branches belong to
candidates of the corresponding kinds from theTyperec formation
rule. We then prove that this set is a candidate. Next we define
the setSκ[C/χ] of types of kindκ (for given candidatesC corre-
sponding to the free kind variablesχ of κ), equal toRΩ for kind

Ω, and defined inductively as in [6] for function, polymorphic, and
variable kinds. We show thatSκ[C/χ] is a candidate. Finally we
prove thatS•[C/χ] is closed under substitution of types for free
type variables; strong normalization is an immediate corollary.

THEOREM 3.2. Reduction of well-formed types is confluent.

Confluence of type reduction is a corollary of local confluence,
which we prove by case analysis of the type reduction relation (;).
We consider type contexts with two holes and show that the reduc-
tion is locally confluent in each case.

We say that a terme is stuck ife is not a value ande ; e′ for
no terme′.

THEOREM 3.3 (SOUNDNESS OFλPi FOR TYPE SAFETY).
If ε; ε; ε ` e :τ ande ;∗ e′ in λPi , thene′ is not stuck.

We prove soundness of the system using a contextual semantics
in Wright/Felleisen style [26] using the standard progress, subject
reduction, and substitution lemmas as well as the confluence and
strong normalization properties of theλPi type system.

3.1 Example: Marshalling
One of the examples that Harper and Morrisett [8] use to illus-

trate the power of intensional type analysis is based on the exten-
sion of ML for distributed computing proposed by Ohori and Kato
[14]. The idea is to convert values into a form which can be used for
transmission over a network. An integer value may be transmitted
directly, but a function may not; instead, a globally unique identi-
fier is transmitted that serves as a proxy at the remote site. These
identifiers are associated with their functions by a name server that
may be contacted through a primitive addressing scheme. The re-
mote sites use the identifiers to make remote calls to the function.
Harper and Morrisett show how to define types of transmissible val-
ues as well as functions for marshalling to and unmarshalling from
these types using intensional type analysis. However, the predica-
tivity of their calculus prevents them from handling the full calculus
of Ohori and Kato, which also includes the remote representation
of polymorphic functions and remote type application.

In λPi marshalling of polymorphic values is straightforward; in
fact it offers more flexibility than the calculus of Ohori and Kato
needs, since polymorphic functions become first-class values, and
polymorphic types can be used in remote type applications. Adapt-
ing the constructs of [8] toλPi , we introduce a type constructor
Id : Ω → Ω. A value of typeτ has a global identifier of typeId τ .
The Typerec and typecase operators are extended in an obvious
way. For example, the following type reduction relation is added:

Typerec[κ] (Id τ) of (τint; τ→; τ∀∀; τ∀+; τId) ;

τId τ (Typerec[κ] τ of (τint; τ→; τ∀∀; τ∀+; τId))

The type of the remote representation of values of typeτ is Tran τ ,
defined in [8] using intensional analysis ofτ . Values of typeTran τ
do not contain any abstractions; all the abstractions are wrapped
inside anId constructor. We can extend the Harper/Morrisett defi-
nition of Tran to handle the quantified types ofλPi as follows:

Tran (int) = int
Tran (α1 → α2) = Id (Tranα1 → Tranα2)
Tran (∀∀ [χ]α) = Id (∀α′ :χ. (λα1 :χ.Tran (αα1))α′)

Tran (∀∀
+
α) = Id (∀

+
χ′. (Λχ.Tran (α [χ])) [χ′])

Tran (Idα) = Idα

At the term level the system provides primitives for creating global

identifiers and performing remote invocations:1

newid : ∀α1 :Ω.∀α2 :Ω. (Tranα1→Tranα2)→Tran (α1→α2)
rapp : ∀α1 :Ω.∀α2 :Ω.Tran (α1→α2)→Tranα1→Tranα2

newpid : ∀
+
χ.∀α :χ→Ω. (∀α′ :χ.Tran (αα′))→Tran (∀∀ [χ]α)

rtapp : ∀
+
χ.∀α :χ→ Ω.Tran (∀∀ [χ]α)→ ∀α′ :χ.Tran (αα′)

For completeness in our system we also need to handle kind poly-
morphism and remote kind applications:

newkid : ∀α : (∀χ.Ω). (∀
+
χ.Tran (α [χ]))→ Tran (∀∀

+
α)

rkapp : ∀α : (∀χ.Ω).Tran (∀∀
+
α)→ ∀

+
χ.Tran (α [χ])

Operationally, thenewid’s take a function between transmissible
values and generate a new, globally unique identifier and tell the
name server to associate that identifier with the function on the lo-
cal machine. The remote applications take a proxy identifier of
a remote function and a transmissible argument value. The name
server is contacted to get the site where the remote value exists;
the argument is sent to this machine, and the result of the function
transmitted back as the result of the operation.

Marshalling and unmarshalling of values from transmissible rep-
resentations are performed by the mutually recursive functionsM :
∀α :Ω. α→ Tranα andU :∀α :Ω.Tranα→ α. They are defined
below by a pattern-matching syntax and implicit recursion instead
of typecase andfix. We assume that a type or a kind does not need
to be transformed in order to be transmitted.

M [int] = λx : int. x
M [α1 → α2] = λx :α1 → α2.

newid [α1] [α2]
(λx′ :Tranα1.M [α2] (x (U [α1]x′)))

M [∀∀ [χ]α] = λx :∀∀ [χ]α.

newpid [χ]
+

[α] (Λα′ :χ.M [αα′] (x [α′]))

M [∀∀
+
α] = λx :∀∀

+
α. newkid [α] (Λ

+
χ.M [α [χ]] (x [χ]

+
))

M [Idα] = λx : Idα. x

U [int] = λx :Tran (int). x
U [α1 → α2] = λx :Tran (α1 → α2). λx′ :α1.

U [α2] (rapp [α1] [α2]x (M [α1]x′))
U [∀∀ [χ]α] = λx :Tran (∀∀ [χ]α).Λα′ :χ.

U [αα′] (rtapp [χ]
+

[α]x [α′])

U [∀∀
+
α] = λx :Tran (∀∀

+
α).Λ

+
χ.U [α [χ]] (rkapp [α]x [χ]

+
)

U [Idα] = λx :Tran (Idα). x

3.2 Example: Polymorphic equality
Another view at the term-level analysis of quantified types is pro-

vided by an example involving the comparison of values of existen-
tial type. The term constructs for introduction and elimination of
existential types have the following formation rules.

E ; ∆; Γ ` e : (λα :κ. τ) τ ′

E ; ∆; Γ ` 〈α :κ = τ ′, e :τ〉 : ∃α :κ. τ

E ; ∆; Γ ` e : ∃∃ [κ] τ E ; ∆ ` τ ′ : Ω
E ; ∆, α :κ; Γ, x :τ α ` e′ : τ ′

E ; ∆; Γ ` open e as 〈α :κ, x :τ α〉 in e′ : τ ′

The polymorphic equality functioneq is defined in Figure 7 (we
use aletrec construct derived from ourfix). The domain type of
the function is restricted to types of the formEq τ to ensure that
only values of types admitting equality are compared.
1Ohori and Kato [14] define one primitive for creating identifiers
for both term and type abstraction.

letrec
heq :∀α :Ω.∀α′ :Ω.Eqα→ Eqα′ → Bool
= Λα :Ω.Λα′ :Ω.

typecase[λγ :Ω.Eq γ → Eqα′ → Bool] α of
Bool ⇒ λx :Bool.

typecase[λγ :Ω.Eq γ → Bool] α′ of
Bool ⇒ λy :Bool. primEqBool x y
. . . ⇒ . . . false

β1×β2⇒ λx :Eqβ1×Eqβ2.
typecase[λγ :Ω.Eq γ → Bool] α′ of
β′1×β′2 ⇒ λy :Eqβ′1×Eqβ′2.

heq [β1] [β′1] (x.1) (y.1) and
heq [β2] [β′2] (x.2) (y.2)

. . . ⇒ . . . false
∃∃ [χ]β ⇒ λx : (∃β1 :χ.Eq (β β1)).

typecase[λγ :Ω.Eq γ → Bool] α′ of
∃∃ [χ′]β′⇒ λy : (∃β′1 :χ′.Eq (β′ β′1)).

open x as 〈β1 :χ, xc :Eq (β β1)〉 in
open y as 〈β′1 :χ′, yc :Eq (β′ β′1)〉 in

heq [β β1] [β′ β′1] xc yc
. . . ⇒ . . . false

. . .
in let eq = Λα :Ω. λx :Eqα. λy :Eqα. heq [α] [α] x y
in . . .

Figure 7: Polymorphic equality in λPi

Consider the two packagesv = 〈α : Ω = Bool, false : α〉 and
v′ = 〈α : Ω = Bool×Bool, 〈true, true〉 : α〉. Both are of type
∃α :Ω. α, which makes the invocationeq [∃α :Ω. α] v v′ legal. But
when the packages are open, the types of the packaged values may
(as in this example) turn out to be different. Therefore we need the
auxiliary functionheq to compare values of possibly different types
by comparing their types first. The function corresponds to a ma-
trix on the types of the two arguments, where the diagonal elements
compare recursively the constituent values, while off-diagonal ele-
ments returnfalse and are abbreviated in the figure.

The only interesting case is that of values of an existential type.
Opening the packages provides access to the witness typesβ1 and
β′1 of the argumentsx andy. As shown in the typing rules, the ac-
tual types of the packaged values,x andy, are obtained by applying
the corresponding type functionsβ andβ′ to the respective wit-
ness types. This yields a perhaps unexpected semantics of equality.
Consider this invocation of theeq function which evaluates totrue:

eq [∃α :Ω. α]
〈α :Ω = ∃β :Ω. β, 〈β :Ω = Bool, true :Eqβ〉 :Eqα〉
〈α :Ω = ∃β :Ω→ Ω. β Bool,
〈β :Ω→ Ω = λγ :Ω. γ, true :Eq (β Bool)〉 :Eqα〉

At runtime, after the two packages are opened, the call toheq is

heq [∃β :Ω. β] [∃β :Ω→ Ω. β Bool]
〈β :Ω = Bool, true :Eqβ〉
〈β :Ω→ Ω = λγ :Ω. γ, true :Eq (β Bool)〉

This term evaluates totrue even though the type arguments are
different. The reason is that what is being compared are the actual
types of the values before hiding their witness types. Tracing the
reduction of this term to the recursive callheq [β β1] [β′ β′1] xc yc
we find out it is instantiated to

heq [(λβ :Ω. β) Bool] [(λβ :Ω→ Ω. β Bool) (λγ :Ω. γ)] true true

which reduces toheq [Bool] [Bool] true true and thus totrue.
However this result is justified, since the above two packages

of type ∃α : Ω. α will indeed behave identically in all contexts.
An informal argument in support of this claim is that the most any
context could do with such a package is open it and inspect the type
of its value usingtypecase, but this will only provide access to a
type functionτ representing the inner existential type. Since the
kindκ of the domain ofτ is unknown statically, the only non-trivial
operation onτ is its application to the witness type of the package,
which is the only available type of kindκ. As we saw above, this
operation will produce the same result (namelyBool) in both cases.
Thus, since the two arguments toeq are indistinguishable byλPi
contexts, the above result is perfectly sensible.

3.3 Discussion
Before we move on, it would be worthwhile to analyze theλPi

language. Specifically, what is the price in terms of complexity of
the type theory that can be attributed to the requirements that we
imposed?

In Section 2.3 we saw that an iterative type operator is essen-
tial to typechecking many type-directed operations. Even when re-
stricted to compiling ML we still have to consider analysis of poly-
morphic types of the form∀α : Ω. τ , and theirad hocinclusion in
kind Ω makes the latter non-inductive. Therefore, even for this sim-
ple case, we need kind polymorphism in an essential way to handle
the negative occurrence ofΩ in the domain of∀∀. In turn, kind
polymorphism allows us to analyze at the type level types quanti-
fied over any kind; hence the extra expressiveness comes for free.
Moreover, adding kind polymorphism does not entail any heavy
type-theoretic machinery—the kind and type language ofλPi is a
minor extension (with primitive recursion) of the well-studied cal-
culusF2; we use the basic techniques developed forF2 [6] to prove
properties of our type language.

The kind polymorphism ofλPi is parametric,i.e.,kind analysis is
not possible. This property prevents in particular the construction
of non-terminating types based on variants of Girard’sJ operator
using a kind-comparing operator [7].

For analysis of quantified types at the term level we have the new

constructΛ
+
χ. e. This does not result in any additional complexity

at the type level—although we introduce a new type constructor∀∀
+
,

the kind of this construct is defined completely by the original kind
calculus, and the kind and type calculus is still essentiallyF2. The
term calculus becomes an extension of Girard’sλU calculus [5],
hence it is not normalizing; however it already includes the gen-
eral recursion constructfix, necessary in a realistic programming
language.

Restricting the type analysis at the term level to a finite set of
kinds would help avoid the term-level kind abstraction. However,
even in this case, we would still need kind abstraction to imple-
ment a type erasure semantics, which can simplify certain phases
of the compiler (for details see the extended report [18]). On the
other hand, having kind abstraction at the term level ofλPi adds no
complications to the transition to type erasure semantics.

4. ANALYZING RECURSIVE TYPES
Next we turn our attention to the problem of analyzing recur-

sive types. Following the general scheme described in the previous
section, we need to introduce a type constructorlu yielding a type
isomorphic to the least fixpoint of a given type function. Since the
types we analyze are of kindΩ, the kind oflu of interest is

lu : (Ω→ Ω)→ Ω

Unfortunately there is a negative occurrence ofΩ in the domain
of this kind, which—as it was with universally-quantified types in
Section 3—prevents defining an iterator over this kind while main-
taining strong normalization of the type language. In the case of
quantified types we were able to resolve this problem by general-
izing the negative occurrence ofΩ to an arbitrary kind; however
such an approach is doomed in the case of recursive types since the
argument oflu must have identical domain and range.

One possibility is to follow the approach outlined by Crary and
Weirich in [1] for quantified types; since type variables bound by
the fixpoint operator must be of kindΩ, an environment can be
used to map them to types of kindΩ without kind mismatches.
While plausible and perhaps efficient, this approach (as pointed out
in Section 2.4) gives no protection against some programming er-
rors, and it is unclear how to combine it withλPi .

4.1 A restricted Typerec
To handle recursive types, we introduce a new constructorPlace

that acts as the right inverse of theTyperec. We will first give an
informal explanation of how thePlace constructor is used in our
solution by considering a restricted form of theTyperec. This ap-
proach does not guarantee termination; we use it to ease the pre-
sentation of theλQi calculus.

Consider the iterationTyperec[Ω] τ of (τint; τ→; τ∀; τ∀+; τµ)
in the case whenτ is a recursive type, saylu (λα : Ω. int→ α). In
many cases, the desired result will be another recursive type, say

lu (λα : Ω. τ ′) whereτ ′ is the result of analyzing the body. If we
followed the approach we used in the case of polymorphic types
(i.e., if the iterator’s action on the type variable is suspended until
the variable is replaced by a type upon unfolding the fixpoint), then
the result would be:

lu (λα :Ω. τ→ intα τint (Typerec[Ω] α of . . .))

In this case, the iterator ends up being appliedn times to thenth
unfolding of the fixpoint, which does not correspond to the de-
sired fixpoint. Instead the iterator must be applied to the body of
the type function, but—in contrast with the behavior in the case
of a quantified type—the iterator shoulddisappearwhen applied
to the type variableα. Since the fixpoint notation represents a
type isomorphic to an infinite unfolding of the body, the traver-
sal of the entire infinite tree is complete with one iteration over
the body. In other words the iterator must satisfy an equation like
Typerec[Ω] α of . . . = α so that the result of analyzing the body
is λα :Ω. τ→ intα τint α.

Therefore, we need to distinguish between type variables bound
by a polymorphic or existential quantifier and those bound in a re-
cursive type. This reasoning leads us to a solution based on the
work of Fegaras and Sheard on catamorphisms over non-inductive
datatypes [4]. The main idea is to introduce an auxiliary type con-
structorPlace of kind Ω → Ω which is the right inverse of the
iterator,i.e., it holds that

Typerec[Ω] (Place τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τ

The iterator processes the body of a recursive type with thelu-bound
type variable protected underPlace. While processing the body, the
iterator eventually reduces to instances of the form

Typerec[Ω] (Placeα) of . . . ,

which reduce toα. The reduction rule for the iterator over a recur-

(kinds) κ ::= χ | \κ | κ→ κ′ | ∀χ. κ

(types) τ ::= α | int | →̊→ | ∀̊∀ | ∀̊∀
+
| l̊u | Place

| λα :κ. τ | τ τ ′ | Λχ. τ | τ [κ]
| Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ)

(values) v ::= i | Λ
+
χ. v | Λα :κ. v | λx :τ. e | fixx :τ. v

| fold v as τ

(terms) e ::= v | x | e [κ]
+
| e [τ] | e e′

| fold e as τ | unfold e as τ
| typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ)

Figure 8: The λQi language

Ω≡ ∀χ. \χ
τ$τ ′ ≡ Λχ. τ [χ] (τ ′ [χ]) for χ /∈ fkv(τ) ∪ fkv(τ ′)

τ → τ ′ ≡ (→→) τ τ ′

∀α :κ. τ ≡ ∀∀ [κ] (λα :κ. τ)

∀
+
χ. τ ≡ ∀∀

+
(Λχ. τ)

(→→) :Ω→ Ω→ Ω = λα :Ω. λα′ :Ω. ((→̊→)$α)$α′

∀∀ :∀χ. (χ→ Ω)→ Ω = Λχ. λα :χ→ Ω.Λχ′.

∀̊∀ [χ′] [χ] (λα′ :χ. αα′ [χ′])

∀∀
+

: (∀χ.Ω)→ Ω = λα : (∀χ.Ω).Λχ′.

∀̊∀
+
[χ′] (Λχ. α [χ] [χ′])

lu : (∀χ. \χ→ \χ)→ Ω = λα : (∀χ. \χ→ \χ). l̊u$α

Figure 9: Syntactic sugar forλQi

sive type is

Typerec[Ω] (lu τ
′) of (τint; τ→; τ∀; τ∀+; τµ) ;

τµ τ
′

(λα :Ω.Typerec[Ω] (τ ′ (Placeα)) of (τint; τ→; τ∀; τ∀+; τµ))

4.2 The general case
The previous approach does not generalize to the case when the

result of theTyperec may be of an arbitrary kind. In the general
case, the type reductions are:

Typerec[κ] (Place τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τ
Typerec[κ] (lu τ

′) of (τint; τ→; τ∀; τ∀+; τµ) ;

τµ τ
′

(λα :κ.Typerec[κ] (τ ′ (Placeα)) of (τint; τ→; τ∀; τ∀+; τµ))

The constructorPlace can now be applied to a type of arbitrary
kind, but its return result must beΩ. This implies thatPlace has the
kind∀χ. χ→ Ω. But this is unsound since we can not constrain the
kind of τ above (the argument ofPlace) to match the result kindκ
of theTyperec.

Adopting the solution given by Fegaras and Sheard, we modify
the domain of intensional analysis: in place ofΩ we introduce a
parameterized kind\, and require that the typeτ being analyzed
in Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ) is of kind \κ. The con-
structorPlace must then have the polymorphic kind∀χ. χ → \χ,
and the fix-point constructor̊lu the kind∀χ. (\χ→ \χ)→ \χ.

We define theλQi calculus in Figures 8 and 9. Figures 10, 11,

Kind formation E ` κ
χ ∈ E
E ` χ

E ` κ
E ` \κ

E ` κ1 E ` κ2

E ` κ1 → κ2

E , χ ` κ
E ` ∀χ. κ

Type formation E ; ∆ ` τ : κ

E ` ∆ α :κ in ∆

E ; ∆ ` α : κ

E ` ∆

E ; ∆ ` int : ∀χ. \χ
E ; ∆ ` (→̊→) : ∀χ. \χ→ \χ→ \χ

E ; ∆ ` ∀̊∀ : ∀χ.∀χ′. (χ′ → \χ)→ \χ

E ; ∆ ` ∀̊∀
+

: ∀χ. (∀χ′. \χ)→ \χ
E ; ∆ ` l̊u : ∀χ. (\χ→ \χ)→ \χ
E ; ∆ ` Place : ∀χ. χ→ \χ

E ; ∆, α :κ ` τ : κ′

E ; ∆ ` λα :κ. τ : κ→κ′
E ; ∆ ` τ : κ′→κ E ; ∆ ` τ ′ : κ′

E ; ∆ ` τ τ ′ : κ

E , χ; ∆ ` τ : κ

E ; ∆ ` Λχ. τ : ∀χ. κ
E ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` τ [κ′] : κ{κ′/χ}

E ; ∆ ` τ : \κ
E ; ∆ ` τint : κ
E ; ∆ ` τ→ : \κ→ \κ→ κ→ κ→ κ
E ; ∆ ` τ∀ : ∀χ. (χ→ \κ)→ (χ→ κ)→ κ
E ; ∆ ` τ∀+ : (∀χ. \κ)→ (∀χ. κ)→ κ
E ; ∆ ` τµ : (\κ→ \κ)→ (κ→ κ)→ κ

E ; ∆ ` Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ) : κ

Figure 10: λQi type formation rules

and 12 show the static semantics. Figure 13 shows the dynamic
semantics.

Types which had kindΩ in λPi could be analyzed by aTyperec
with an arbitrary result kindκ′. In our new languageλQi , a type
that can be analyzed by an arbitraryTyperec construct must have
the kind\κ for all possibleκ. Thus the kindΩ of λPi is represented
by the kind∀χ. \χ in λQi .

To be able to analyze function and polymorphic types, we now
have to modify their kinds as well; to avoid confusion with the
constructors based onΩ, we denote the new constructors bẙ→→, ∀̊∀,
and∀̊∀

+
(Figure 8). The kind rules for these constructors are shown

in Figure 10. We can define equivalents of theλPi types(→→), ∀∀,
and∀∀

+
starting from→̊→, ∀̊∀, and∀̊∀

+
respectively. The key intuition

in the definition (Figure 9) is that we thread the same kind through
all components of kindΩ. For example, expanding the definition
of τ → τ ′ we obtain its equivalent,Λχ. →̊→ [χ] (τ [χ])(τ ′ [χ]). Ex-
pressed in terms of these derived types, the typing rules for most
λQi terms (Figure 11) are identical to those ofλPi . Compared with
λPi , the term language ofλQi has two new constructs –fold e as τ
andunfold e as τ – to implement the isomorphism between a re-
cursive type and its unfolding.

Each of these constructors must first be applied to kindκ before
being analyzed, whereκ is the kind of the result of the analysis. In
all other aspects the type-level analysis proceeds as inλPi by iter-
ating over the components of the type and then passing the results
of the iteration and the original components to the corresponding

Term formation E ; ∆; Γ ` e : τ

E ; ∆ ` Γ

E ; ∆; Γ ` i : int

E ; ∆; Γ ` e : τ E ; ∆ ` τ ; τ ′ : Ω

E ; ∆; Γ ` e : τ ′

E ; ∆ ` τ : ∀χ. \χ→ \χ E ; ∆; Γ ` e : luτ

E ; ∆; Γ ` unfold e as τ : τ$(luτ)

E ; ∆ ` τ : ∀χ. \χ→ \χ E ; ∆; Γ ` e : τ$(luτ)

E ; ∆; Γ ` fold e as τ : luτ

E , χ; ∆; Γ ` v : τ

E ; ∆; Γ ` Λ
+
χ. v : ∀

+
χ. τ

E ; ∆; Γ ` e : ∀∀
+
τ E ` κ

E ; ∆; Γ ` e [κ]
+

: τ [κ]

E ; ∆, α :κ; Γ ` e : τ

E ; ∆; Γ ` Λα :κ. e : ∀α :κ. τ

E ; ∆; Γ, x :τ ` e : τ ′

E ; ∆; Γ ` λx :τ. e : τ → τ ′

E ; ∆; Γ ` e : ∀∀ [κ] τ E ; ∆ ` τ ′ : κ

E ; ∆; Γ ` e [τ ′] : τ τ ′

E ; ∆; Γ ` e1 : τ2 → τ1 E ; ∆; Γ ` e2 : τ2

E ; ∆; Γ ` e1 e2 : τ1

E ; ∆; Γ, x :τ ` v : τ

τ = ∀
+
χ1 . . . χn.∀α1 :κ1 . . . αm :κm :τ1 → τ2.

n ≥ 0,m ≥ 0

E ; ∆; Γ ` fixx :τ. v : τ

E ; ∆ ` τ : Ω→ Ω
E ; ∆ ` τ ′ : Ω
E ; ∆; Γ ` eint : τ int
E ; ∆; Γ ` e→ : ∀α :Ω.∀α′ :Ω. τ (α1 → α2)

E ; ∆; Γ ` e∀ : ∀
+
χ.∀α :χ→ Ω. τ (∀∀ [χ]α)

E ; ∆; Γ ` e∀+ : ∀α : (∀χ.Ω). τ (∀∀
+
α)

E ; ∆; Γ ` eµ : ∀α : (∀χ. \χ→ \χ). τ (luα)

E ; ∆; Γ ` typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ) : τ τ ′

Figure 11: λQi term formation rules

branch of the iterator. For example, consider the analysis of theint

and∀̊∀ constructors (Figure 12) :

Typerec[κ] (int [κ]) of (τint; τ→; τ∀; τ∀+; τµ) ; τint

Typerec[κ] (̊∀∀ [κ] [κ′] τ) of (τint; τ→; τ∀; τ∀+; τµ) ;

τ∀ [κ′] τ (λα :κ′.Typerec[κ] (τ α) of (τint; τ→; τ∀; τ∀+; τµ))

The reduction rules fortypecase are similar to those inλPi , with
the recursive type handled in an obvious way (Figure 13). How-
ever, there is one subtlety in thetypecase reduction rules. Since
typecase does not iterate over the structure of a type, its reductions
do not introduce thePlace constructor; thus the type analyzed by
Typerec[κ] must be of kind\κ, but atypecase can only analyze
types of kindΩ, i.e., ∀χ. \χ. It is easy to see that there are no
closed types of this kind constructed usingPlace. Thus there are no
reduction rules fortypecase analyzing thePlace constructor. We
show this (in the companion technical report [18]) when proving
the soundness ofλQi .

Type reduction E ; ∆ ` τ1 ; τ2 : κ

E ; ∆, α :κ′ ` τ : κ E ; ∆ ` τ ′ : κ′

E ; ∆ ` (λα :κ′. τ) τ ′ ; τ{τ ′/α} : κ

E , χ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` (Λχ. τ) [κ′] ; τ{κ′/χ} : κ{κ′/χ}

E ; ∆ ` τ : κ→ κ′ α /∈ ftv(τ)

E ; ∆ ` λα :κ. τ α ; τ : κ→ κ′

E ; ∆ ` τ : ∀χ′. κ χ /∈ fkv(τ)

E ; ∆ ` Λχ. τ [χ] ; τ : ∀χ′. κ

E ; ∆ ` Typerec[κ] (int [κ]) of (τint; τ→; τ∀; τ∀+; τµ) : κ

E ; ∆ ` Typerec[κ] (int [κ]) of (τint; τ→; τ∀; τ∀+; τµ) ; τint : κ

E ; ∆ ` Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+; τµ) ; τ ′1 : κ
E ; ∆ ` Typerec[κ] τ2 of (τint; τ→; τ∀; τ∀+; τµ) ; τ ′2 : κ

E ; ∆ ` Typerec[κ] ((→̊→) [κ] τ1 τ2) of (τint; τ→; τ∀; τ∀+; τµ) ; τ→ τ1 τ2 τ
′
1 τ
′
2 : κ

E ; ∆, α :κ′ ` Typerec[κ] (τ α) of (τint; τ→; τ∀; τ∀+; τµ) ; τ ′ : κ

E ; ∆ ` Typerec[κ] (̊∀∀ [κ] [κ′] τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τ∀ [κ′] τ (λα :κ′. τ ′) : κ

E , χ; ∆ ` Typerec[κ] (τ [χ]) of (τint; τ→; τ∀; τ∀+; τµ) ; τ ′ : κ

E ; ∆ ` Typerec[κ] (̊∀∀
+
[κ] τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τ∀+ τ (Λχ. τ ′) : κ

E ; ∆, α :κ ` Typerec[κ] (τ (Place [κ]α)) of (τint; τ→; τ∀; τ∀+; τµ) ; τ ′ : κ

E ; ∆ ` Typerec[κ] (̊lu [κ] τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τµ τ (λα :κ. τ ′) : κ

E ; ∆ ` Typerec[κ] (Place [κ] τ) of (τint; τ→; τ∀; τ∀+; τµ) : κ

E ; ∆ ` Typerec[κ] (Place [κ] τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τ : κ

Figure 12: SelectedλQi type reduction rules

unfold (fold v as τ) as τ ; v

e ; e′

fold e as τ ; fold e′ as τ

e ; e′

unfold e as τ ; unfold e′ as τ

typecase[τ] int of (eint; e→; e∀; e∀+; eµ) ; eint

typecase[τ] (τ1 → τ2) of (eint; e→; e∀; e∀+; eµ) ; e→ [τ1] [τ2]

typecase[τ] (∀∀ [κ] τ ′) of (eint; e→; e∀; e∀+; eµ) ; e∀ [κ]
+

[τ ′]

typecase[τ] (∀∀
+
τ ′) of (eint; e→; e∀; e∀+; eµ) ; e∀+ [τ ′]

typecase[τ] (luτ
′) of (eint; e→; e∀; e∀+; eµ) ; eµ [τ ′]

ε; ε ` τ ′ ;∗ ν′ :Ω ν′ is a normal form

typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ) ;

typecase[τ] ν′ of (eint; e→; e∀; e∀+; eµ)

Figure 13: SelectedλQi term reduction rules

The languageλQi enjoys the properties ofλPi listed in Section 3,
detailed proofs of which can be found in the companion technical
report [18]. For instance, we prove strong normalization using Gi-
rard’s method of candidates [6] as forλPi , with a few adjustments:
Since our “base” kind\ is parametric, we defineR\Cκ as the set of
typesτ of kind \κ for which Typerec[κ] τ . . . belongs to a candi-
dateCκ of kindκwhenever the branches belong to candidates of the
respective kinds, and the setS\κ[C/χ] is defined asR\(Sκ[C/χ]).

4.3 Limitations
The approach outlined in this section allows the analysis of re-

cursive types within the term language and the type language, but
imposes severe limitations on combining these analyses. While one

can write a polymorphic equality function of type∀α : Ω. α →
α→ Bool, and one can write a type operatorEq as in Section 3, it
is not possible to write polymorphic equality of type∀α :Ω.Eqα→
Eqα → Bool. The reason is that althoughEq (lu τ) reduces to a
recursive type, its unfolding is notEq (τ$(lu τ)), the type needed
for the recursive invocation of the equality function. Indeed the
typesτ ′ (lu τ) andτ ′ (τ$(lu τ)) are not bisimilar in general, since
τ ′ may analyze its argument and produce different results depend-
ing on whether it is a recursive type or not. Thus the problem can be
traced back to our decision to definel̊u as a “constructor” for kind\,
which makes recursive types observably distinct from their unfold-
ings. Alternatives are to limit the result kind ofTyperec to Ω, or to
regain transparency of̊lu by eliminating theτµ branch ofTyperec
and providing a reduction rule which always maps recursive types
to recursive types; since the analogous transformation at the term
level in the latter case will require combiningtypecase with recur-
sion, the resulting language exceeds the scope of the current paper.

5. RELATED WORK
The work of Harper and Morrisett [8] introduced intensional type

analysis and pointed out the necessity for type-level type analysis
operators which inductively traverse the structure of types. The do-
main of their analysis is restricted to a predicative subset of the type
language, which prevents its use in programs which must support
all types of values, including polymorphic functions, closures, and
objects. This paper builds on their work by extending type analysis
to include the full type language. Craryet al. [1] propose a very
powerful type analysis framework. They define a rich kind calcu-
lus that includes sum kinds and inductive kinds. They also provide
primitive recursion at the type level. Therefore, they can define new
kinds within their calculus and directly encode type analysis oper-
ators within their language. They also include a novel refinement
operation at the term level. However, their type analysis is “limited
to parametrically polymorphic functions, and cannot account for
functions that perform intensional type analysis” [1, Section 4.1].

Our type analysis can also handle polymorphic functions that an-
alyze the quantified type variable. Moreover, their type analysis
is not fully reflexive since they can not handle arbitrary quantified
types; quantification must be restricted to type variables of kindΩ.
Duggan [3] proposes another framework for intensional type anal-
ysis; however, he allows the analysis of types only at the term level
and not at the type level. Yang [27] presents some approaches to
enable type-safe programming of type-indexed values in ML which
is similar to term-level analysis of types. Our solution for recursive
types is based on the idea proposed by Fegaras and Sheard [4] for
extending thefold operation to non-inductive datatypes. Meijer and
Hutton [10] also propose a method for extending catamorphisms
to datatypes with embedded functions; however, their method re-
quires the definition of an anamorphism for every such catamor-
phism.

Necula [13] proposed the ideas of a certifying compiler and im-
plemented a certifying compiler for a type-safe subset of C. Mor-
risettet al. [12] showed that a fully type-preserving compiler gen-
erating type-safe assembly code is a practical basis for a certifying
compiler.

The idea of programming with iterators is explained in Pierce’s
notes [16]. Pfenning and Mohring [15] show how inductively de-
fined types can be represented by closed types. They also construct
representations of all primitive recursive functions over inductively
defined types.

6. CONCLUSIONS
We presented a type-theoretic framework for fully reflexive in-

tensional analysis of types which includes analysis of polymorphic,
existential, and recursive types. We can analyze arbitrary types
both at the type level and at the term level. Moreover, we are not
restricted to analyzing only parametrically polymorphic functions;
we can also handle polymorphic functions that analyze the quan-
tified type variable. We proved the calculus sound and showed
that type checking still remains decidable. Since we can analyze
arbitrary types, we can now use these constructs to write type-
dependent runtime services that can operate on values of any type;
as an example we showed how to use reflexive type analysis to sup-
port type-safe marshalling.

Acknowledgments
We are grateful to the anonymous referees for their insightful com-
ments and suggestions on improving the presentation.

REFERENCES
[1] K. Crary and S. Weirich. Flexible type analysis. InProc. 1999 ACM

SIGPLAN International Conf. on Functional Programming, pages
233–248. ACM Press, Sept. 1999.

[2] K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in
type-erasure semantics. InProc. 1998 ACM SIGPLAN International
Conf. on Functional Programming, pages 301–312. ACM Press,
Sept. 1998.

[3] D. Duggan. A type-based semantics for user-defined marshalling in
polymorphic languages. In X. Leroy and A. Ohori, editors,Proc.
1998 International Workshop on Types in Compilation, volume 1473
of LNCS, pages 273–298, Kyoto, Japan, Mar. 1998. Springer-Verlag.

[4] L. Fegaras and T. Sheard. Revisiting catamorphism over datatypes
with embedded functions. In23rd Annual ACM Symp. on Principles
of Programming Languages, pages 284–294. ACM Press, Jan. 1996.

[5] J. Y. Girard.Interprétation Fonctionnelle et́Elimination des
Coupures dans l’Arithḿetique d’Ordre Suṕerieur. PhD thesis,
University of Paris VII, 1972.

[6] J.-Y. Girard, Y. Lafont, and P. Taylor.Proofs and Types. Cambridge
University Press, 1989.

[7] R. Harper and J. C. Mitchell. Parametricity and variants of Girard’s
J operator.Information Processing Letters, 70(1):1–5, April 1999.

[8] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. InProc. 22nd Annual ACM Symp. on
Principles of Programming Languages, pages 130–141. ACM Press,
Jan. 1995.

[9] C. League, Z. Shao, and V. Trifonov. Representing Java classes in a
typed intermediate language. InProc. 1999 ACM SIGPLAN
International Conf. on Functional Programming (ICFP’99), pages
183–196. ACM Press, September 1999.

[10] E. Meijer and G. Hutton. Bananas in space: Extending fold and
unfold to exponential types. InFunctional Programming and
Computer Architecture, 1995.

[11] Y. Minamide, G. Morrisett, and R. Harper. Typed closure
conversion. InProc. 23rd Annual ACM Symp. on Principles of
Programming Languages, pages 271–283. ACM Press, 1996.

[12] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. InProc. 25th Annual ACM Symp. on
Principles of Programming Languages, pages 85–97. ACM Press,
Jan. 1998.

[13] G. C. Necula.Compiling with Proofs. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA,
Sept. 1998.

[14] A. Ohori and K. Kato. Semantics for communication primitives in a
polymorphic language. InProc. 20th Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, pages 99–112. ACM Press, 1993.

[15] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the
calculus of constructions. InProc. Fifth Conf. on the Mathematical
Foundations of Programming Semantics, pages 209–228, New
Orleans, Louisiana, Mar. 1989. Springer-Verlag.

[16] B. Pierce, S. Dietzen, and S. Michaylov. Programming in
higher-order typed lambda-calculi. Technical Report
CMU-CS-89-111, Carnegie Mellon University, 1989.

[17] J. C. Reynolds. Towards a theory of type structure. InProceedings,
Colloque sur la Programmation, Lecture Notes in Computer
Science, volume 19, pages 408–425. Springer-Verlag, Berlin, 1974.

[18] B. Saha, V. Trifonov, and Z. Shao. Fully reflexive intensional type
analysis. Technical Report YALEU/DCS/TR-1194, Dept. of
Computer Science, Yale University, New Haven, CT, March 2000.
Available at URLflint.cs.yale.edu/flint/publications.

[19] Z. Shao. Flexible representation analysis. InProc. 1997 ACM
SIGPLAN International Conf. on Functional Programming, pages
85–98. ACM Press, June 1997.

[20] Z. Shao. An overview of the FLINT/ML compiler. InProc. 1997
ACM SIGPLAN Workshop on Types in Compilation, June 1997.

[21] Z. Shao. Typed cross-module compilation. InProc. 1998 ACM
SIGPLAN International Conf. on Functional Programming. ACM
Press, 1998.

[22] Z. Shao. Transparent modules with fully syntactic signatures. In
Proc. 1999 ACM SIGPLAN International Conf. on Functional
Programming (ICFP’99), pages 220–232. ACM Press, September
1999.

[23] Z. Shao and A. W. Appel. A type-based compiler for Standard ML.
In Proc. ACM SIGPLAN ’95 Conf. on Programming Language
Design and Implementation, pages 116–129, New York, 1995. ACM
Press.

[24] D. Tarditi.Design and Implementation of Code Optimizations for a
Type-Directed Compiler for Standard ML. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, Dec.
1996. Tech Report CMU-CS-97-108.

[25] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee.
TIL: A type-directed optimizing compiler for ML. InProc. ACM
SIGPLAN ’96 Conf. on Programming Language Design and
Implementation, pages 181–192. ACM Press, 1996.

[26] A. Wright and M. Felleisen. A syntactic approach to type soundness.
Technical report, Dept. of Computer Science, Rice University, June
1992.

[27] Z. Yang. Encoding types in ML-like languages. InProc. 1998 ACM
SIGPLAN International Conf. on Functional Programming, pages
289–300. ACM Press, 1998.

