
Parallel Functional Reactive Programming

John Peterson, Valery Trifonov, and Andrei Serjantov

Yale University
peterson-john@cs.yale.edu trifonov-valery@cs.yale.edu

andrei.serjantov@yale.edu

Abstract. In this paper, we demonstrate how Functional Reactive Programming
(FRP), a framework for the description of interactive systems, can be extended
to encompass parallel systems. FRP is based on Haskell, a purely functional pro-
gramming language, and incorporates the concepts of time variation and reac-
tivity.
Parallel FRP serves as a declarative system model that may be transformed into a
parallel implementation using the standard program transformation techniques of
functional programming. The semantics of parallel FRP include non-determinism,
enhancing opportunities to introduce parallelism. We demonstrate a variety of
program transformations based on parallel FRP and show how a FRP model may
be transformed into explicitly parallel code. Parallel FRP is implemented using
the Linda programming system to handle the underlying parallelism. As an ex-
ample of parallel FRP, we show how a specification for a web-based online auc-
tioning system can be transformed into a parallel implementation.

1 Introduction

A common approach to developing parallel programs is to express a sequential specifi-
cation of the system in a declarative way and to then transform this model into a parallel
implementation of it while preserving its semantics. In this work, we develop a frame-
work for expressing models ofinteractive systemssuch as web servers and databases.

Our work is based on Functional Reactive Programming [PESL98] (FRP), a library
of functions and types that extend Haskell [PJ99], a purely functional language, with
means for describing interactive systems containing values that vary in time.

At the core of FRP are the notions ofeventsandbehaviors. An event of typeEvent a
denotes a discrete series of occurrences in time, each having a timestamp and a value
of typea, while a behavior of typeBehavior b may be sampled at any time to yield a
value of typeb. FRP defines a rich set of functions operating on these datatypes, and
is designed to retain the “look and feel” of pure functional Haskell without resorting to
constructs such as monads to handle interaction.

To enable the introduction of parallelism into FRP programs, we have extended the
basic framework with constructs which enrich the semantics of the models with non-
determinism, representing the fact that the order in which two computations on separate
processors started does not determine the order in which they will finish.

To formalize the process of parallelizing FRP models, we introduce a number of
equations which define valid transformations of sequential FRP constructs into parallel

ones. Thus, transformations can be performed by means of a well understood meaning
preserving process — equational reasoning. This is currently done by hand but possibly
could be automated in the future.

2 Basic Concepts

We begin with a simple FRP model of a web server. This system receives requests for
web pages (URLs) and reacts by generating events to post the resulting web pages.

server :: Event URL -> Event WebPage
server urls = urls ==> lookupWebPage

This server is a simpleevent transformer. That is, theURL in each incoming event is
transformed into aWebPage. Event transformation is a primitive in FRP: the function

(==>) :: Event a -> (a -> b) -> Event b

implements this directly. The actual web page generation is performed by the function
lookupWebPage, a Haskell function that maps aURL onto aWebPage. We assume
(for now) that the web pages are unchanging: thus,lookupWebPage is a pure function
that does not perform IO. The semantics of FRP dictate that the resulting events of
==> logically occur at the same time as the stimulus; that is, the clock (event times)
associated with the web pages exactly matches the clock in the input event stream. For
example, if the incoming event stream is

[(1, "f.com/a"), (3, "f.com/b"), (6, "f.com/c")]

then the output stream might be

[(1, "Page a"), (3, "Page b"), (6, "Page c")]

We represent event streams as lists of tuples, each tuple containing an occurrence time
and a value. This is not necessarily how events are implemented, but it serves to illus-
trate the operation of the system. We are simplifying the problem somewhat: requests
to a real server would carry for example the IP address and port identifying the client.

This model serves well for a single processor web server, but what about a parallel
version of this problem? First, we observe that this system isstateless: that is, the gen-
erated web pages depend only on the incomingURL, not on previous transactions. We
can infer this property directly from the specification:==> is stateless (by its definition
in FRP) and thelookupWebPage function has no interactions with the outside world.
Given this property, we can use two processors to serve the requests, dividing the in-
coming requests among the processors arbitrarily. Rewriting, the new server becomes:

server’ :: Event URL -> Event WebPage
server’ urls = urls1 ==> lookupWebPage .|.

urls2 ==> lookupWebPage
where (urls1, urls2) = splitEvents urls

splitEvents :: Event a -> (Event a, Event a)
(.|.) :: Event a -> Event a -> Event a

We have addedsplitEvents to the standard FRP primitives like.|. (which merges
two event streams together) and defined it by the following property:

e ≡ let (e1,e2) = splitEvents e in e1 .|. e2

This states that each incoming event must be distributed to one or the other of the result-
ing event streams. ThussplitEvents stands for all the different ways of partitioning
one event stream into two. We note that the above property does not guarantee refer-
ential transparency—two calls tosplitEvents on the same event stream will produce
different results. We are being a little free with the semantics of Haskell here. In real-
ity, there are a family of event splitting functions; for simplicity, though, we are using
the same name,splitEvents, for every member of this family. Strictly speaking, we
should instead give different names to eachsplitEvents in our examples, indicating
that they all split event streams in (potentially) different manners. However, as all func-
tions in this family abide by the same property we choose to use the same name for
clarity.

To show thatserver’ is equivalent toserver, we need one more FRP equivalence,
distributing==> over.|.:

(e1 .|. e2) ==> f ≡ (e1 ==> f) .|. (e2 ==> f)

Thus,
server urls

(definition ofserver) ≡ urls ==> lookupWebPage
(splitEvents property) ≡ (let (urls1,urls2) = splitEvents urls in urls1 .|. urls2)

==> lookupWebPage
(let floating) ≡ let (urls1,urls2) = splitEvents urls in

(urls1 .|. urls2) ==> lookupWebPage
(==> over.|.) ≡ let (urls1,urls2) = splitEvents urls in

(urls1 ==> lookupWebPage) .|. (urls2 ==> lookupWebPage)
(definition ofserver’) ≡ server’ urls

We now have a server that has two calls tolookupWebPage rather than one. The
next step is to implement this modified server so that these two calls can be placed
on different processors. To do this, we step back and go outside of the FRP frame-
work to incorporate explicit message passing into the two resulting processes. We will
present this later, after describing the Haskell-Linda system which handles communi-
cation across processes. At present, though, we must contemplate a serious semantic
issue: non-determinism.

We have already introduced one non-deterministic construct:splitEvents. How-
ever, in this particular system, the non-determinism ofsplitEvents is not observable:
the specific event splitting used cannot be seen by the user. That is, the.|. removes the
evidence of non-determinism from the result.

This model, however, still over-constrains a parallel implementation. Why? The
problem lies in the clocking of the event streams. The semantics of FRP dictate that
the functions applied to an event stream by==> take no observable time, as previously
explained. However, there is no reason to require that these times are preserved. For
example, our server could respond to

[(1, "f.com/a"), (3, "f.com/b"), (6, "f.com/c")]

with a completely different set of timings:

[(2, "Page a"), (7, "Page c"), (10, "Page b")]

This result is completely acceptable: the fact that “page b” is served before “page c”
doesn’t matter in this application, assuming we have tagged the event with the request-
ing IP address and sent it to the right client. If these two pages go to separate processors,
there is no reason to delay delivering the result of the second request until the first re-
quest is completed. We are not addressing real time issues here: specifying that requests
must be served within some fixed time of their arrival is not presently part of our model.

We need to express the fact that our server is not required to maintain the order-
ing of the output event stream. This is accomplished by placing a pseudo-function in
the system model:shuffle is a function that (semantically) allows the timings in an
event stream to be re-assigned, possibly re-ordering the sequence of events. This can be
thought of as a function that non-deterministically rearranges an event stream:

shuffle :: Event a -> Event a

When the model is used sequentially, this function may be ignored altogether. How-
ever, when the model is used to generate parallel code, this function produces an event
stream whose timing may be altered by parallelization. As withsplitEvents, we are
using a single name to denote a family of functions. Strictly speaking, each reference to
shuffle should have a distinct name. Furthermore,shuffle serves more as an annota-
tion than a function. It is beyond the scope of this paper to precisely define the rules for
correctly transforming program containingshuffle and other pseudo-functions but,
intuitively, the use of these functions is easily understood. As withsplitEvents, we
must treat separate uses ofshuffle as different functions.

We now change our original system model to the following:

server :: Event URL -> Event WebPage
server urls = shuffle (urls ==> lookupWebPage)

This model states that the results in the output event stream may arrive in a different
order to the events in the input stream and therefore permits a more effective paral-
lelization of the system. As withsplitEvents, theshuffle function has a number of
algebraic properties, to be described later.

3 Implementing Parallelism

3.1 Haskell-Linda

Before looking at the implementation of parallel FRP, we need to examine the low-level
constructs that allow parallel programming in Haskell. We have implemented parallel
FRP using an existing parallel programming infrastructure: Linda [CGMS94]. We have
used Linda (actually Linda/Paradise, a commercial version of Linda) to implement basic

parallel programming services, including message passing, message broadcast, object
locking, shared objects, and persistence.

The Linda/Paradise system implements a global shared memory called tuple space,
storing not just bytes but structured Haskell objects. Three basic access operations,
out (write), read, andin (read and remove), are provided instead of the two (write
and read) provided by conventional address spaces. These operations are atomic with
built-in synchronization. Data transfer between processes or machines is implicit and
demand-driven.

In Haskell-Linda, the tuple space is partitioned into a set ofregions, each contain-
ing values of some specific type. All tuple-space operations are performed within the
context of a specific region, where the region name is embedded in the operator. Thus,
eachread, in, or out operation has access to only one part of tuple space. The scope
of a reading operation may be further narrowed using a pattern, requiring some set of
fields in the object to have known values. Each region may contain an arbitrary number
of tuples. Tuple space is shared by all processes: values written by one process may be
read by others. Regions for storing higher-order values could also be defined but are not
needed in this context.

Haskell-Linda is implemented as a preprocessor that transforms Haskell-Linda code
into a pair of programs, one in Haskell and the other in C, connected to Haskell using
GreenCard. This was done because C-Linda has no support for dynamically constructed
tuple space queries, so a pre-processor has to be used to generate C code at compile
time. A distinguished set of declarations, common to all Haskell programs using tuple
space, defines the regions and types in tuple space. All tuple space operators are in the
Haskell IO monad.

The values in tuple space are not ordered in any way. A read operation may return
any value in the designated region matching the associated pattern, regardless of the
order in which the values were placed into tuple space. Thus, the basic read operation is
non-deterministic when more than one tuple matches the pattern. More complex disci-
plines can be layered on top of these basic tuple space operations. For example, a reader
and writer may preserve the sequence of tuples by adding a counter to the data objects.

All tuple space functions are suffixed by a region name. Thus, theout R function
writes values into region R of tuple space. The functionin R reads and deletes a tuple
from R, whileread R does not delete the tuple. Reading functions may optionally select
only tuples in which some of the fields match specified values; this is allowed only when
the type in the region is defined using named fields. For example, given the tuple space
definitions,

region R = TupType
data TupType = TupType {key :: Int, val :: String}

thenread R {key = 1} reads only tuples with a 1 in thekey field. There is currently
no support for matching recursive datatypes at arbitrary levels of nesting.

Tuple space allows interprocess communication using events. An event producer
places event values into tuple space while an event consumer reads and deletes (us-
ing in) event values out of tuple space. When multiple producers write events into the
same region of tuple space, these events are implicitly combined, as with the.|. oper-

ator. When multiple readers take values from the same event, an implicitsplitEvents
occurs.

3.2 Using Haskell-Linda in FRP

A program written using Functional Reactive Programming is executed by an engine
that converts incoming and outgoing events into Haskell-Linda commands. Each FRP
process uses a separate engine; a function of type

frpEngine :: IO a -> (Event a -> Event b) -> (b -> IO ()) -> IO ()

The arguments to the engine are the input event source, the FRP event transformation,
and a dispatcher for outgoing events. The event source is an IO action that generates
the events stimulating the system. Incoming events are timestamped with their time of
arrival; each FRP engine is thus clocked locally rather than globally. When an event
moves from one process (engine) to another, the timestamp on the outgoing event is
dropped and a new, local time stamp is placed on the event as it enters the new FRP
engine. This eliminates the need for global clock synchronization but restricts the way
in which a program may be partitioned into parallel tasks.

This engine blocks while waiting for the IO action to deliver a new stimulus. How-
ever, multiple FRP engines may be running in separate processes (e.g. using thefork
primitive of Concurrent Haskell [PJGF96]) on a processor to keep it busy even when
some of its FRP engines have no work to do or are waiting on IO actions.

Returning to the web server example, a program defining a single server process
looks like this:

region IncomingURL = URL
region OutgoingPage = WebPage

frpProgram :: Event URL -> Event WebPage
frpProgram urls = urls ==> lookupWebPage

main = frpEngine
in IncomingURL
frpProgram
out OutgoingPage

The two-server version of the web server may be executed by running this same
program in two different processes that share a common tuple space. ThesplitEvents
and.|. found in the transformed version of the server are implicit in the tuple space
operations used by the FRP engines.

To complete the web server, we need to add a process that interfaces between the
HTTP server and tuple space. This process simply listens for incoming requests and
drops them into theIncomingURL region of tuple space while also listening to the
OutgoingPage region and sending web pages to the appropriate IP addresses.

4 Parallel FRP

Parallel FRP augments traditional FRP in three ways:

– it expands the core semantics of FRP with a number of new functions,
– it defines transformation rules that increase the potential for parallelism, and
– it specifies a compilation process that transforms a system specification into a set

of FRP processes, running in parallel and communicating via Haskell-Linda.

4.1 Events

The essential property of events in our system is that, using Haskell-Linda, they can be
moved from one process to another. For example, consider the following program:

pipeline :: Event Input -> Event Output
stage1 :: Event Input -> Event Middle
stage2 :: Event Middle -> Event Output
pipeline = stage2 . stage1

We can encapsulate each of the stages as a separate process, and have the result of
stage1 passed intostage2 through tuple space. As a side effect, however, the time
elapsed instage1 computations becomes observable — the timing of event occur-
rences is different in the event streams fed into the two stages since each process uses
its own clock to timestamp events based on the actual time of arrival. Thus an expression
which reads the timestamp of an event (using e.g. the FRP primitivewithTimeE) will
have different values in different stages. Additionally, event occurrences can be propa-
gated into the second stage either in the order they are generated by the first stage, or
in arbitrary order; the latter approach will in general yield a faster implementation, but
changing the order of occurrences may also be observable by the program. Hence there
are some restrictions on the programs that can be partitioned into separate processes
without losing their meaning.

To get a better grasp of these restrictions, let us first classify event transformers
considering their relation with time transforms on events. Atime transformon events
is an endomorphism onEvent a which preserves the values associated with event’s
occurrences, but may alter their times arbitrarily, so they may end up in a different order
after going through the time transform. Consider an event transformerf and an event
e in the domain off. Alluding to the obvious (imperative) implementation of events in
real time, we callf statelessif it commutes with all time transforms — with the intuition
that the value of each occurrence off e depends only on the value of the corresponding
(in time) occurrence ofe. A time-independentevent transformer commutes with all
monotonically increasing time transforms; in this case the value of an occurrence off e
may depend on values of earlier occurrences ofe as well (sof may have some “internal
state”). However the event transformers in neither of these classes may observe the
timestamps of the input events.

Now we can denote the re-timestamping of the event stream connecting two pro-
cesses using two marker functions:

shuffle, delay :: Event a -> Event a
pipeline = stage2 . delay . shuffle . stage1

The functionshuffle, introduced earlier, represents an unspecified time transform,
while delay is an unspecified but monotonically increasing time transform. In effect

these functions designate event streams that may be completely reordered (shuffle)
or those that may be delayed but remain in the same order (delay). Thus by defini-
tion both shuffle and delay commute with stateless event transformers like==>,
while delay also commutes with “stateful” but time-independent operators such as
withElemE. Some equivalences involving these functions are:

shuffle (e ==> f) ≡ (shuffle e) ==> f
filterE (shuffle e) p ≡ shuffle (filterE e p)
delay (withElemE e l) ≡ withElemE (delay e) l

For operators that observe timestamps, such aswithTimeE, the placement ofshuffle
anddelay is observable: moving the markers through such an operator changes the
meaning of a program. Although we do not give formal proofs of any of these equiva-
lences here, we believe that they could be proved using suitable tools.

Some FRP transformations serve to introduce new opportunities for parallelism. For
example, the transformation

e ==> (f . g) −→ e ==> g ==> f

allows the event transformation to be computed in two stages.

4.2 Behaviors

Unlike events, behaviors are continuously available: they may be observed at any time.
In the absence of time transforms in the program, piecewise-constant global behaviors
may be implemented directly in tuple space using a single tuple containing the cur-
rent value of the behavior; our current implementation based on Haskell-Linda has no
support for shared non-piecewise-constant behaviors. To illustrate behaviors, we mod-
ify the web server example to include a hit count that is passed into the HTML page
formatting routinelookupWebPage:

server :: Event URL -> Event WebPage
server urls = withHits urls1 ==> lookupWebPage .|.

withHits urls2 ==> lookupWebPage
where
(urls1, urls2) = splitEvents urls

withHits :: Event a -> Event (a, Integer)
withHits e = e ‘snapshot‘ hitCounter

hitCounter :: Behavior Integer
hitCounter = stepper 0 hitCounterE

hitCounterE :: Event Integer
hitCounterE = urls ‘withElemE_‘ [1..]

This program has the same structure as the previous web server except for the ad-
dition of withHits to the call tolookupWebPage. ThewithHits function gets the
current value of the hit counter using the FRP primitive

snapshot :: Event a -> Behavior b -> Event (a,b)

which samples the behavior at each event occurrence and augments the event value to
include the current value of the behavior. The hit counter behavior is generated using
the following FRP functions:

stepper :: a -> Event a -> Behavior a
withElemE_ :: Event a -> [b] -> Event b

ThehitCounterE event numbers the incomingURLs while thehitCounter behavior
makes this value available at all times.

Conversion of hit count to a behavior is not strictly necessary in this small example:
we could instead leave it embedded in the event stream. However, using a behavior
improves modularity by keeping the event structure separate from the hit count. It also
keeps theURL stream from being stateful, allowing easier parallelization.

A behavior such ashitCounter can be implemented by maintaining a single tuple
in a designated region tuple space, making the current value of the behavior available
to all processes. The producer, astepper function, deletes the old tuple and inserts a
new one every time the stepped event delivers a new value. Consumers of the behavior
perform aread, rather thanin, on this tuple to find the current value of the behavior.
Theread leaves the tuple in tuple space; only the producer removes this tuple. Instead
of the point to point communication used to pass events among processes, here we use
tuple space to broadcast the current value of the behavior to all processes.

This implementation has a semantic problem similar to the one we encountered
earlier when connecting processes using event streams: since the clocks of the various
processes are not synchronized, this globalized behavior may be slightly out of date.
For example, when a newURL enters the system, the producer may still be updating
the hit counter when the web page construction process reads it. Going back to the
non-parallel semantics, we again have to introduce some non-determinism. Here, we
don’t quite know at what time the behavior will be sampled. As with events, we can
add a marker function to the program to indicate that it is not necessary to sample the
behavior at precisely the current time. Theblur function serves this purpose:

blur :: Behavior a -> Behavior a

In the above example, addingblur in front of the reference tohitCounter in the
withHits function states that it is acceptable to see a value of the hit counter that is
close to the current time but perhaps not quite the same. Partitioning a program into
independent FRP processes is semantically correct only if all behaviors they share are
“blurred.”

4.3 Partitioning

Formally, the process of partitioning a specification into a set of parallel programs in-
volves rewriting the program as a set of mutually recursive global definitions. Each
definition corresponds to an event or behavior that will be placed in tuple space and is
shared by more than one of the processes. The following principles govern this parti-
tioning process:

– Every global event or behavior is associated with a unique region in tuple space.
– Only events that are referenced with eithershuffle or delay may be globalized.

When theshuffle marker is absent, a hidden counter must be inserted to ensure
that tuples are transferred in the correct order. Similarly, a process may only refer-
ence global behaviors tagged withblur.

– The semantic marker functions,shuffle, delay, andblur, are removed in trans-
lation.

– A .|. orsplitEvents used to define a global event is implemented in tuple space.
– Event streams used in more than one process must be sent to multiple regions.
– A process may produce or consume more than one global event stream. However,

multiple streams must be combined into a single type stream using a union type
such asEither.

– A process that defines (produces) a shared piecewise-constant behavior encodes the
associatedstepper function in tuple space operations that turn FRP events into IO
actions. Exactly one such process must define each shared behavior.

– Exactly one process has to run each “stateful” event transformer task (commu-
nicating via event streams without theshuffle marker); an arbitrary number of
processes may run each stateless event transformer.

The partitioning process is too complex to fully describe here; a small example will
make it a little clearer. We split the web server with a hit counter, annotated with marker
functions, into three processes: one to keep track of the hit counter and two to serve
web pages. We assume that an outside agent places the incomingURLs into two regions,
IncomingURL1 andIncomingURL2 (one copy for the page servers and another for the
hit counter).

-- Tuple space declarations
region IncomingURL1 = URL
region IncomingURL2 = URL
region HitBehavior = Integer
region OutgoingPage = Webpage

-- This keeps the hit counter up to date
hitCounterProcess = do out_HitBehavior 0

frpEngine
in_IncomingURL1
(withElem_ [1..] urls)
(\h -> do _ <- in_HitBehavior

out_HitBehavior h)

-- Code for both page server processes
pageServer = frpEngine

in_IncomingURL2
(\urls -> urls ‘snapshot‘ hitB

==> lookupWebPage)
out_OutgoingPage

where

hitB = makeExternalBehavior read_HitBehavior

The functionmakeExternalBehavior creates a behavior from an IO action. The.|.
andsplitEvents operations are implicit in the use of tuple space. This code is not
restricted to two server processes — an arbitrary number of these server processes may
be used since the event transformer inpageServer is stateless.

4.4 Stateful Event Handling

While we have discussed a parallel implementation of the==> operator, it is much
more common to encounter stateful systems: ones in which each transaction modifies
the system state for the next transaction. Stateful event processing is typified by the FRP
functionaccumE:

accumE :: a -> Event (a -> a) -> Event a

This function takes an initial value and stream of “state update” functions, and pro-
duces a stream of values. ThusaccumE v is a time-independent but not stateless event
transformer, and we cannot perform the same sort of parallelization onaccumE that
we could for==>, since to compute the value of each event occurrence in general we
must wait for the evaluation of the previous occurrence to “update the state.” Our ap-
proach to parallelizing stateful event streams is to consider a more restricted situation:
one in which the state comprises a set of independent substates. For example, the online
auction example satisfies this restriction; incoming requests are partitioned by auction,
allowing different processes to operate on different auctions in parallel. The structure
of the resulting program is quite similar to the construction of the parallel web page
server. The only difference is that the splitting of the incoming event stream is dictated
by the auction name embedded in each request. For example, if auctions are named by
integers, we may choose to use one processor to handle even numbered auctions and
another to handle the odd numbered ones. We have investigated two different ways of
partitioning the incoming stream of requests:

– Static partitioning: each substate resides on a fixed processor, requests are routed in
a statically determined way. Interacting requests are always delivered to the same
process.

– Dynamic partitioning: each substate resides in tuple space. To modify a substate, a
process locks it. Interacting requests are resolved by blocking processes.

Each of these strategies has advantages and disadvantages. Static partitioning is easily
expressed in ordinary FRP terms: filtering and merging, while dynamic partitioning is
handled by the FRP drivers. Dynamic partitioning requires a special rule in the parti-
tioner to generate these modified drivers. Dynamic partitioning also presents difficulties
for transactions that observe all of the substates at once.

In either case, some domain-specific knowledge must be applied during the trans-
formation process to allow parallel handling of stateful requests.

5 Example: An Online Auction Server

As a demonstration of FRP’s suitability for distributed transaction processing, we have
built a parallel web-based on-line auction system. This is essentially an event trans-
former which takes a stream of inputs and turns it into a stream of outputs, both of
which are defined below:

data Input
= StartAuction (Maybe Auction) User Item Description Date
| Bid User Auction Price
| Query Auction
| Search Item

data Output
= WebPage WebPage
| MailTo User EmailMessage

The whole system consists of a number of independent auctions (each having a
unique auction identifier) and a database of all items being auctioned, which can be
used to answer queries about auctions involving a particular type of item.

The incoming events of typeInput get partitioned according to whether they ini-
tiate an operation which will update the global state of the system (e.g. starting a new
auction), handled by the event transformerindexStateMachine, or whether they just
relate to the state of a particular auction (e.g. query the price or place a bid), in which
case they are passed on toauctionStateMachine.

The initial system specification is thus quite simple.

auction :: Event Input -> Event Output
auction i = auctionStateMachine auctionReqs .|.

indexStateMachine indexReqs
where
i’ = addAuctionNames (delay i)
auctionReqs = i’ ‘suchThat‘ isAuctionReq
indexReqs = i’ ‘suchThat‘ isIndexReq

We note, however, that in a real auction theauctionStateMachine will be doing
most of the work, so we may want either to try to parallelize it, or simply run multi-
ple copies of it concurrently. We take the latter approach, and partition the stream of
auction-related events into two. The resulting model is as follows:

auction i = auctionStateMachine auctionReqs1 .|.
auctionStateMachine auctionReqs2 .|.
indexStateMachine indexReqs

where
i’ = addAuctionNames (delay i)
auctionReqs = i’ ‘suchThat‘ isAuctionReq
auctionReqs1 = auctionReqs ‘suchThat‘ evenAuctionNumber
auctionReqs2 = auctionReqs ‘suchThat‘ oddAuctionNumber
indexReqs = i’ ‘suchThat‘ isIndexReq

Another possible partition of this program is to create four processes: one to add the auc-
tion names to the input as well direct events to the proper handler (thesuchThat func-
tions), another to runindexStateMachine, and two runningauctionStateMachine.

6 Related Work

In this work, we are combining the FRP paradigm with a distributed shared memory
system (Linda) to produce a new functional environment which facilitates parallel pro-
gramming. The problem of partitioning applications into their components for execu-
tion on different processors is also considered. All of the above have been addressed
separately in the following ways:

FRP was originally developed by Conal Elliott for Fran, a language of interactive
animations, but has also been used for robotics [PHE99], computer vision [RPHH99],
and safety-critical systems [SJ99].

Concurrent functional languages have been implemented in various forms. Con-
current Haskell [PJGF96] extends Haskell with a small set of primitives for explicit
concurrency designed around monadic I/O. Concurrent ML [Rep91] formalized syn-
chronous operations as first-class purely functional values called “events.” The func-
tional language Eden [BKL98], built on top of Haskell, distinguishes between trans-
formational and reactive systems, and introduces its (slightly more general) versions
of splitEvents and.|. as special process abstractions to encapsulate nondetermin-
ism and thus keeps referential transparency within user processes. However, it does not
support time-varying behaviors or indeed any notion of time at all.

The Linda architecture has been well studied and widely used with languages like
C [CGMS94], extensions of Pascal and object-oriented languages, but has never been
integrated with Haskell.

Lastly, the whole idea of efficiently partitioning a problem such as a web server
or an online auction into its constituent components to be run in parallel has been ad-
dressed mainly by using the concept of skeletons. In the imperative world, languages
such as P3L [CDF+97] have been developed which infer a way of partitioning the
problem from annotations highlighting regions of code where task parallelism or data
parallelism could be exploited. A version of the same system has been implemented for
the functional language OCaml [DCLP98].

7 Conclusions

This work is a very preliminary foray into a large design space. We attempt to combine
two very different styles of programming: a declarative style of reactive programming
and an imperative style of parallel programming, represented here by the Linda tuple
space. Our primary contribution is the incorporation of interaction into the semantic
framework of the parallel system. While the use of a specific parallel programming
technology, Linda, has influenced the way we have built semantic models, these models
are ultimately independent of any underlying implementation mechanisms. This initial
effort has succeeded in a number of ways:

– This work can be applied to a large variety of problems of practical importance.
– We have developed a reasonable way of incorporating non-determinism into the

semantics of FRP in a very controlled fashion. The non-determinism is restricted
to behavior and event values without affecting the overall semantics of Haskell.

– Our work combines both operations on discrete messages (events) and unclocked,
continuously available values (behaviors).

– We have shown how a declarative, executable specification can be used to synthe-
size a complex parallel system.

The primary problem with this work is that the transformation strategy is somewhat
ad-hoc. There is not yet any systematic way to automate this process or to even test the
equivalence between the system model and a generated parallel program. We expect that
adding appropriate annotations to the specification would allow further automation.

We have not been able to evaluate the performance of the online auction example
in a particularly meaningful way. While we have observed the expected speedup when
adding more processors to the system, we have not yet effectively measured the over-
head attributed to the use of tuple space.

We have investigated only static partitioning of the model into processes. A more
dynamic system would create and destroy processes as needed, allowing a more effec-
tive use of resources. This style of programming is easily supported by the underlying
Linda system: tuple pattern matching allows, in essence, new global variables to be cre-
ated and destroyed dynamically. Here, we have approached partitioning in a first-order
rather than a higher-order manner. The seems to be no inherent problems in adding
dynamic partitioning to our system.

Some features of FRP have not yet been integrated into this framework. For exam-
ple, time transformation is not supported at present and would be difficult to reconcile
with the imperative nature of tuple-space operators. Another shortcoming is the lack of
interprocess garbage collection. In the underlying implementation of FRP, events that
are no longer needed are removed by the garbage collector. In the parallel system, this
would require feedback from the consumer of some particular type of tuple back to the
producer, allowing the consumer to signal that its values are no longer needed.

We have not yet addressed real-time performance criteria. For example, we can-
not interrupt a computation in progress at the behest of a higher priority task or make
any assurances about fairness or response time. Such features would require serious
enhancements to the semantics and implementation of FRP.

While the basic transformations to set up pipelines or use multiple processors to
service stateless event streams are easily understood, the transformations relating to
stateful event or behavior usage are much harder to use and understand. We expect
that further practical experience will be necessary to develop a useful and application
appropriate set of transformations.

We have not yet formalized the semantic basis for our model. The work of Elliott
and Hudak [EH97] provides a semantic basis for a version of FRP in which the notion of
event corresponds to an occurrence of an event in our model and the one used in [Ell99],
leading to a different treatment of event primitives. A clear semantic definition of FRP
would be the first step towards proving formal correctness of our transformations or
inferring a valid set of transformations directly from the underlying semantics.

Acknowledgment

We are grateful to Paul Hudak and the anonymous referees for their constructive com-
ments.

References

[BKL98] S. Breitinger, U. Klusik, and R. Loogen. From (sequential) Haskell to (parallel)
Eden: An implementation point of view. InProc. Principles of Declarative Pro-
gramming (PLILP/ALP’98), pages 318–334, 1998.

[CDF+97] S. Ciarpaglini, M. Danelutto, L. Folchi, C. Manconi, and S. Pelagatti. ANA-
CLETO: a template-based P3L compiler. InProc. 7th Parallel Computing Workshop
(PCW’97), Canberra, Australia, September 1997.

[CGMS94] N. Carriero, D. Gelernter, T. Mattson, and A. Sherman. The Linda alternative to
message passing systems.Parallel Computing, 20(4):633–655, 1994.

[DCLP98] M. Danelutto, R. Di Cosmo, X. Leroy, and S. Pelagatti. Parallel functional pro-
gramming with skeletons: the OcamlP3L experiment. InProc. 1998 ACM SIGPLAN
Workshop on ML, September 1998.

[EH97] C. Elliott and P. Hudak. Functional reactive animation. InProc. ACM SIGPLAN
International Conference on Functional Programming, pages 163–173, June 1997.

[Ell99] C. Elliott. An embedded modelling language approach to interactive 3D and mul-
timedia animation. IEEE Transactions on Software Engineering, 25(3):291–308,
May/June 1999.

[PESL98] J. Peterson, C. Elliott, and G. Shu Ling. Fran user’s manual.http://research.

microsoft.com/~conal/Fran/UsersMan.htm, July 1998.
[PHE99] J. Peterson, P. Hudak, and C. Elliott. Lambda in motion: Controlling robots with

Haskell. InProc. 1st International Conference on Practical Aspects of Declarative
Languages (PADL’99), pages 91–105, January 1999.

[PJ99] S. Peyton Jones (ed.). Haskell 98: A non-strict, purely functional language. Techni-
cal Report RR-1106, Yale University, February 1999.

[PJGF96] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. InProc. 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January
1996.

[Rep91] J. Reppy. CML: A higher-order concurrent language. InProc. Conference on Pro-
gramming Language Design and Implementation, pages 293–305. ACM SIGPLAN,
June 1991.

[RPHH99] A. Reid, J. Peterson, P. Hudak, and G. Hager. Prototyping real-time vision systems:
An experiment in DSL design. InProc. 21st International Conference on Software
Engineering (ICSE’99), May 1999.

[SJ99] M. Sage and C. Johnson. A declarative prototyping environment for the development
of multi-user safety-critical systems. InProc. International System Safety Confer-
ence, August 1999.

