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ABSTRACT
Defining nontrivial class instances for irregular and exponen-
tial datatypes in Haskell is challenging, and as a solution
it has been proposed to extend the language with quanti-
fied class constraints of the form ∀a.C a ⇒ C ′ (f a) in the
contexts of instance declarations. We show how to express
the equivalent of such constraints in vanilla Haskell 98, but
their utility in this language is limited. We also present a
more flexible solution, which relies on a widely-supported
language extension.
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1. INTRODUCTION
Contexts in Haskell instance declarations constrain type

variables appearing in the defined instance type. As an ex-
ample (adapted from Ralf Hinze and Simon Peyton Jones [4])
consider the class of types with representation in binary:

data Bit = Zero | One

class Binary a where

showBin :: a → [Bit ]

instance Binary Bit where

showBin = (: [ ])

An instance of Binary for lists could be defined as follows:

instance Binary a ⇒ Binary [a] where

showBin = concat . map showBin
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This instance declaration actually represents an “instance
generator,” or a proof that the type [a] is an instance of
Binary whenever a is; hence the type variable a can be
thought of as universally quantified, and the instance dec-
laration as a proof of ∀a.Binary a ⇒ Binary [a], where the
quantification over a is made explicit.

Explicit quantification is not allowed in Haskell contexts,
and typically it is unnecessary, because usually the construc-
tion of only finitely many class instances must be ensured in
order to type-check a Haskell expression. In these cases, as
in the above example, the range of the quantifier would in-
clude both the class context of the declaration and the type
being declared as an instance.

However the ability to express polymorphic recursion in
Haskell (directly or in the guise of recursive instance declara-
tions) introduces some cases when specifying class contexts
with local quantifiers appears to be the only solution. One
of these cases occurs when in order to type-check an instance
declaration, we have to prove the existence of infinitely many
instances, as in instances of the following types (an example
due to David Feuer and Simon Peyton Jones [6], arising in
the context of Chris Okasaki’s use of irregular datatypes to
represent square matrices in [8]):

newtype Two f a = Two (f (f a))
data Sq f a = M a (f a) | E (Sq (Two f) a)

In order to define the binary representation for expressions
of type Sq f a in terms of their components, we need types
a and f a to be instances of Binary :

instance (Binary a, Binary (f a), . . .) ⇒ Binary (Sq f a)
where

showBin (M x xs) = showBin x ++ showBin xs
showBin (E p) = showBin p

Let us ignore the fact that the constraint on f a is not in
Haskell 98 (allowing type expressions in class constraints
hinders instance inference); several implementations sup-
port such constraints. This instance declaration is not yet
complete—additional context, denoted by ellipsis, is needed
for the case when the term is constructed with E : we need
an instance of Binary for Sq (Two f) a, which is a substitu-
tion instance of the very type for which we are defining the
current instance. The instance inference algorithm assumes
the current declaration is already available, so we can in-
stantiate the known thus far context of the declaration to
find out that we need the instance Binary (Two f a):

instance Binary (f (f a)) ⇒ Binary (Two f a) where

showBin (Two x ) = showBin x



Now we run into the real problem in defining the instance
Binary (Sq f a): Since the constraint Binary (f (f a)) must
be included in the ellipsis, the instantiation with Two f for
f in turn requires the instance Binary (Sq (Two (Two f)) a),
hence the constraint Binary (f (f (f (f a)))) must be added,
etc., ad infinitum1—meaning that no finite proof exists that
an instance Binary (Sq f a) can be constructed.

In other cases a finite number of instances would suffice for
checking the instance declaration, but no finite instance con-
struction is possible. This happens in the following example
(adapted from Peyton Jones’ message [5] and his paper with
Hinze [4]):

data GRose f a = GBranch a (f (GRose f a))

instance (Binary a, Binary (f (GRose f a))) - - illegal
⇒ Binary (GRose f a) where

showBin (GBranch x xs) = showBin x ++ showBin xs

The constraint Binary (f (GRose f a)), required by the sec-
ond application of showBin, is not legal in Haskell 98. Im-
plementations which allow it (in extensions) accept this dec-
laration; however, except in degenerate cases for f , no in-
stances Binary (GRose f a) can actually be created. Con-
sider the example of f = [ ]. To create an instance of
Binary for GRose [ ] a, the compiler must first create one for
[GRose [ ] a]; however according to the instance declaration
for Binary [a] it must first create an instance for GRose [ ] a,
causing the instance generation to diverge.

The problems with generating an unbounded number of
instances and with mutually dependent instances could be
resolved if, instead of trying to describe them all, we could
describe a recipe for creating them. Hinze and Peyton Jones
observe this in [4], and point out that “no ordinary Haskell
context will do” and that a solution would be to allow “poly-
morphic predicates” of the form

ctx ::= ∀a. (ctx 1, . . . , ctxn) ⇒ C t

where C is a class name and t is a type, in instance contexts.
(We use the term “quantified constraints” instead of “poly-
morphic predicates.”) In the above examples the necessary
constraint is

∀a.Binary a ⇒ Binary (f a)

Thus the instance declaration for GRose takes the form

instance (Binary a, ∀b.Binary b ⇒ Binary (f b))
⇒ Binary (GRose f a) where

showBin (GBranch x xs) = showBin x ++ showBin xs

Now the required instance for f (GRose f a) can be con-
structed by instantiating the quantified constraint with the
type GRose f a and applying the result to the current in-
stance. Similarly the instance Binary (f a), needed in the
declaration of Binary (Sq f a) in the earlier example, can be
constructed from Binary a (instead of required in the con-
text), thus cutting the infinite chain of required instances.

In this paper we show that Haskell’s constructor classes
offer a way to express the equivalent of quantified constraints
in vanilla Haskell 98. The full compliance with the language

1In contrast, other uses of polymorphic recursion require a
statically unbounded number of instances to be constructed
at run time, but only a finite number of class constraints, so
they are correct programs in Haskell 98.

comes at the price of non-local flow-based program transfor-
mations, which limit its scope of applicability. We also show
how to achieve closer simulation of the uses of quantified con-
straints when programming with the widely-supported lan-
guage extension with variable constructor heads in declared
instance types. While not covering the range of applications
targeted by the proposal for direct language support, these
solutions can be applied successfully to problems which have
received attention in the community [4, 5, 6, 7, 10], and yield
programs in supported Haskell.

2. DICTIONARIES
AND TYPE EQUIVALENCES

A quantified constraint ∀a.C a ⇒ C (f a) indicates the
requirement that an “instance generator” for class C is avail-
able for type f . Our goal is thus to allow the context of one
instance generator (e.g. for the instance Binary (GRose f a))
to request the existence of another instance generator (e.g.
that for ∀b. Binary b ⇒ Binary (f b)), whereas Haskell only
allows instances to be requested. With this observation, let
us look at the semantics of instances and generators and try
to find a correspondence.

The standard semantics of Haskell type classes is given
by translating the language into one with explicit passing
of dictionaries [9] — records containing the methods of the
required instances. Thus a class declaration

class C a where mi :: cty i

gives rise to a type constructor C = λa :: κ. {mi :: [[ctyi]]a}
in a standard extension of Fω [2] with records (tuples):

kinds κ ::= ∗ | κ → κ′

types τ ::= a | λa :: κ. τ | τ τ ′ | τ → τ ′ | ∀a :: κ. τ
| {mi :: τi} | . . .

terms e ::= x | λx :: τ. e | e e′ | Λa :: κ. e | e [τ ]
| {mi = ei} | e.m | . . .

where x ranges over term variables, a and b range over type
variables, and m ranges over labels.2 The types [[cty i]]a are
the translations of cty i, which are Haskell types with con-
texts; the most important feature of the translation is that it
turns class contexts into types of dictionaries as arguments,
and quantifies over all free type variables other than a:

[[(Cj (aj tj)) ⇒ t]]a = ∀b.Cj (aj tj) → t

where b is a sequence of all type variables in the set {aj} ∪
FV (tj)∪FV (t)−{a}, i.e. all type variables free in the type
(including the contexts) but a. Note that the metavariable t
ranges over simple Haskell types; we gloss over the details of
their translation by assuming they are a subset of the target
language types τ .

An “instance generator” declaration, of the form

instance (Cj aj) ⇒ C τ where mi = ei

can be translated as a “dictionary generator” term

dg = Λb. λdj :: Cj aj . {mi = [[ei]]
dj

Cj aj
}

2We use an overloaded notation A for sequences of terms of
the syntactic category ranged over by A: the separators be-
tween the terms in the sequence should be inferred from the
context. If each of the terms A has component subterms we
need to refer to, they are all indexed with the same subscript;
in some cases these subterms are themselves sequences.



where the translation [[·]]
dj

Cj aj
replaces all uses of the in-

stances Cj aj by operations on the corresponding dictiona-
ries dj . Details of this translation are omitted, because they
are not important for us at this point; important is the type
of the term dg :

dg :: ∀b.Cj aj → {mi :: τi}

Thus, in terms of this translation, our goal is to make dic-
tionary generators like dg take parameters of the type of dg .
However the translation obviously only allows dictionaries
as parameters of dictionary generators.

But perhaps it is possible to have a dictionary parameter
whose type is isomorphic to the type of a generator?

The difference between dictionaries and dictionary gen-
erators is that the former are records of values, while the
latter are polymorphic functions producing records of val-
ues. However there are well-known isomorphisms which we
can use to construct maps between the two types, namely
the distributivity laws

τ → {mi :: τi} ↔ {mi :: τ → τi}

∀a :: κ. {mi :: τi} ↔ {mi :: ∀a :: κ. τi}

So we have

∀a.Cj aj → {mi :: τi} ↔ {mi :: ∀a.Cj aj → τi}

This is a result in our variant of Fω, but not in Haskell
yet—not all Fω types can be represented in Haskell. In par-
ticular, the argument types we must push under the record
type constructor correspond to dictionaries, and hence to
contexts in Haskell—that is, they cannot be represented as
parameters of Haskell functions. Luckily, however, methods
in Haskell 98 can have local contexts in addition to the con-
text of the instance declaration, and the prenex universal
quantification on method types corresponds exactly to the
quantification in the type on the right hand side.

3. A REPRESENTATION IN HASKELL 98
Returning to Haskell, suppose we have a class declaration

class C a where mi :: ctx i ⇒ ti,

and in the context of some instance declaration we need
the quantified constraint ∀b. ctx ′ ⇒ C (f t), where the type
variable b appears in ctx ′ and the type t:

instance (∀b. ctx ′ ⇒ C (f t), ctx ′′) ⇒ C ′ t′ where

m′

j = ej

We introduce a “functorial class” C f declared as

class C f f where m fi :: ∀b. [f t/a]((ctx ′, ctx i) ⇒ ti)

where [t/a]cty denotes the type obtained by substituting t
for a in cty ; the quantification over b is implicit in Haskell 98
but shown here for emphasis, while other implicitly quan-
tified variables are not shown. Then we use the constraint
C f f instead of the desired quantified constraint, and we
use the method names m fi instead of mi in the expressions
in the dynamic scope of this constraint, e.g.

instance (C f f, ctx ′′) ⇒ C ′ t′ where

m′

j = [m fi/mi]ej

This syntactic transformation is in general non-local: The
requirement to cover the dynamic scope of the constraint im-
plies that all overloaded functions with the constraint C a in

the type, instantiated with f t for a in applications reachable
from ej , must be cloned, and the names of these functions
and mi substituted by their clones’ names in the cloned code.

We also provide instances of the form

instance C f T where m fi = mi

for each type constructor T for which we would need an
instance of the desired quantified constraint. The methods
in these instances are (modulo the type isomorphisms of
Section 2) essentially trampolines to the defined as usual
methods in instances of C for applications of T .

Although we omit the kind specifications of type variables
for brevity, it should be clear that this transformation is
valid for arbitrary consistent kinds; however different “func-
torial classes” must be provided for type constructors of dif-
ferent kinds. Since this scheme supports the cases when the
type t in the quantified constraint ∀b. ctx ′ ⇒ C (f t) is not
simply the variable b, if the constraints ∀b. ctx 1 ⇒ C (f1 t1)
and ∀b. ctx 2 ⇒ C (f2 t2) are both needed in instance dec-
larations, and t1 6= t2, we would have different “functorial
classes” for them; this is also the case in particular when the
kinds of t1 and t2 (hence of f1 and f2) are different.

In the example of the GRose type in the introduction,
Hinze and Peyton Jones suggest the use of the quantified
constraint ∀a.Binary a ⇒ Binary (f a) to define an in-
stance of Binary . We instead declare the class

class Binary f f where

showBin f :: Binary a ⇒ f a → [Bit ]

Then an instance of Binary can be constructed for GRose
as follows:

instance (Binary a, Binary f f)
⇒ Binary (GRose f a) where

showBin (GBranch x xs) =
showBin x ++ showBin f xs

(1)

Additionally, for the construction of Binary instances for
GRose [ ]Bit we need also the declaration

instance Binary f [ ] where

showBin f = showBin

assuming we already have the instance Binary [a], shown in
the introduction.

The simplicity of the auxiliary declarations is due to the
type inference and dictionary conversion, which automati-
cally insert the type and dictionary applications. As an il-
lustration, the translation of the above code into a variant of
Fω is shown in Figure 1; the calculus is enriched with pattern
matching on function arguments and a fixpoint expression
rec x :: τ = e to allow the translation of recursive instances,
and we assume the standard definitions of List , concat , map,
append , and Bit are available. Note that the definition
of Binary f List implements half of the isomorphism be-
tween Binary f f and ∀a.Binary a → Binary (f a), while
the other half is inlined in the last three lines of the figure
and evident in the order of the selection from and applica-
tions of df . (An implementation based on Hinze and Peyton
Jones’ proposal would just avoid these shuffles.)

This approach, however, is limited by the non-local as-
pects of the transformation. To apply it, we must be able
to locate and clone statically all functions which are invoked
from the translated instance declaration and have types with
the constraints we are replacing. Since Haskell 98 does not



Binary :: ∗ → ∗
= λa :: ∗. {showBin :: a → List Bit}

Binary f :: (∗ → ∗) → ∗
= λf :: ∗ → ∗.

{showBin f :: ∀a.Binary a → f a → List Bit}

Binary List :: ∀a :: ∗.Binary a → Binary (List a)
= Λa :: ∗. λda :: Binary a.

{showBin = λxs :: List a.
concat [Bit ]

(map [a] [List Bit ] (da.showBin) xs)}

Binary f List :: Binary f List
= {showBin f = Λa :: ∗. λda :: Binary a.

(Binary List [a] da).showBin}

Binary GRose type :: ∗
= ∀a. ∀f.Binary a → Binary f f → Binary (f a)

Binary GRose :: Binary GRose type
= rec d :: Binary GRose type

= Λa. Λf. λda. λdf .
{showBin =

λ(GBranch (x :: a) (xs :: f (GRose f a))).
append [Bit ]

(da.showBin x )
(df .showBin f [GRose f a]

(d [a] [f ] da df )
xs)}

Figure 1: Translation of instances of Binary.

allow constraints to be nested in types, it may appear that
these functions are not first class, hence their invocations
are always direct and their reachability can be determined
statically. This is not the case, because these functions may
be methods of another class; then their types may contain
constraints,3 and their invocations are not only indirect—
they are invisible in the Haskell code. Consider the types
Sq and Two, introduced earlier. Defining an instance of
Binary for Sq is now straightforward by replacing the quan-
tified constraint on f with Binary f f . We must then define
an instance of Binary f for Two f under the assumption of
Binary f f . However, this is impossible, because (following
the algorithm) we need to replace with Binary f f the con-
straint Binary a in the type of showBin f in the assumed
instance Binary f f , which cannot be determined statically.

4. A MORE FLEXIBLE APPROACH
Suppose we also need an instance of Binary for the type

GRose (GRose [ ])Bit . To satisfy the constraints in decla-
ration (1), we have to declare an instance of Binary f for
GRose [ ]. Naturally we can obtain it from the more general

instance Binary f f ⇒ Binary f (GRose f) where

showBin f = showBin

Just as in the case of lists above, this definition exploits the
existence of an instance of Binary for GRose f a. However
we have to provide these (trivial) declarations, each defin-
ing showBin f in terms of showBin, for each type construc-

3Ironically this is exactly the Haskell feature that made pos-
sible the approach in the first place.

tor required to satisfy the quantified constraint encoded by
Binary f , and as we showed they introduce a major weak-
ness, because their invocations cannot be replaced statically.

An alternative is to define showBin in terms of showBin f
(to illustrate this we have to ignore the code shown above,
including and following (1), as well as the earlier instance
declaration for Binary [a]). It turns out that a single decla-
ration suffices:

instance (Binary a, Binary f f) ⇒ Binary (f a) where

showBin = showBin f

Unfortunately, due to the type variable f in the head of the
instance type, this declaration is not in Haskell 98; however,
at least two implementations support extensions allowing
such declarations. The list type constructor is now handled
by one additional declaration:

instance Binary f [ ] where

showBin f = concat . map showBin

An analogous declaration would do it for GRose, but its
kind suggests that a more general definition is useful:

class Binary f3 (g :: (∗ → ∗) → ∗ → ∗) where

showBin f3 :: (Binary a, Binary f f ) ⇒ g f a → [Bit ]

instance (Binary f (f :: ∗ → ∗), Binary f3 g)
⇒ Binary f (g f) where

showBin f = showBin f3

instance Binary f3 GRose where

showBin f3 (GBranch x xs) = showBin x ++ showBin xs

The kind annotations are shown for clarity, but they are
inferred unambiguously. The strong similarity between the
instance declarations for Binary f (g f ) and Binary (f a), as
well as those for other function kinds, cannot be taken ad-
vantage of in Haskell, because they refer to classes with dif-
ferent (names and) types of methods.4 On the other hand
we only have to define one class and one instance for ev-
ery kind of type constructor for which we need instances of
Binary , and its subkinds (i.e. syntactic subterms of the kind
expression), and in a typical Haskell program their number
is very small.

With this approach the type Sq , shown in the introduc-
tion, is just as easy to handle:

instance Binary f3 Two where

showBin f3 (Two x ) = showBin x

instance Binary f3 Sq where

showBin f3 (M x xs) = showBin x ++ showBin xs
showBin f3 (E s) = showBin s

In another example, that of an “exponential” type

data T f a = A a (f a) | T (T f (T f a))

the encoding works together with Haskell’s recursive in-
stances:

instance Binary f3 T where

showBin f3 (Ax xs) = showBin x ++ showBin xs
showBin f3 (T u) = showBin u

The syntax of quantified constraints allows for an empty
list of premises, as in for instance ∀a.C (f a). A case when

4An extension of Clean which allows sharing the code for
such instances is presented in [1]; it can be supported by
compiling to the language of [3].



this sort of constraint is useful was demonstrated by Ashley
Yakeley in [10]: The class of bifunctors

class Bifunctor f where

bimap :: (a → a′) → (b → b′) → f a′ b → f a b′

can be synthesized from the classes of functors and cofunc-
tors:

class Functor f where - - standard
fmap :: (a → b) → f a → f b

class Cofunctor2 f where

comap2 :: (a → a′) → f a′ b → f a b

if one could write the instance declaration

instance (Cofunctor2 f, ∀a.Functor (f a))
⇒ Bifunctor f where

bimap fa fb = comap2 fa . fmap fb

Following the approach, we write instead

class Functor f f where

fmap f :: (a → a′) → f b a → f b a′

instance Functor f f ⇒ Functor (f a) where

fmap = fmap f

instance (Cofunctor2 f, Functor f f)
⇒ Bifunctor f where

bimap fa fb = comap2 fa . fmap fb

which completes a program valid in Haskell with extensions
for variable head instances and overlapping instances.

5. RELATED WORK
Ralf Hinze and Simon Peyton Jones describe in [4] the

utility of quantified constraints in the context of automatic
derivation of instances. They propose extending the lan-
guage with quantified constraints, and provide semantics for
the extension. Artem Alimarine and Rinus Plasmejier [1]
present extensions to Clean, which allow the use of induc-
tion on the structure of kinds in the definition of classes and
instances in the style of [3].

In contrast the simulations outlined in our paper are not
intended as a substitute for a language extension for the
purpose of providing compiler support for other features (for
example automatic instance derivation), although our sec-
ond approach can be used as a basis for a preprocessor. Our
goal is to offer a solution for problems involving a limited
set of kinds, for which it is feasible to code the required class
and instance declarations. Such problems, requiring quanti-
fied constraints, have been discussed multiple times on the
Haskell mailing lists in recent years. Conor McBride [7]
has independently outlined the essence of the solution pre-
sented here; unfortunately subsequent discussions on the
same topic indicate that his description was not interpreted
to suggest a solution within the existing language.

6. CONCLUSION
Of the two presented approaches to simulating quantified

constraints, the first has the advantages that it can be used
in Haskell 98, and it does not require changes in the way
instances of the original classes are constructed. However its
dependence on the ability to perform (a restricted form of)
flow analysis of the program prevents it from handling some
cases of irregular types. The second approach requires an

extension of Haskell allowing a type variable in the head of
an instance declaration, and forces some changes in the style
of coding of instances; in return it is much more flexible.
While not a substitute for a language extension, the second
approach appears quite useful in solving typical problems
involving quantified constraints.
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