
Subtyping Constrained Types

Valery Trifonov? ?? and Scott Smith?

Department of Computer Science, Johns Hopkins University
Baltimore, MD 21218, USA
http://www.cs.jhu.edu/hog/

Abstract. A constrained typeis a type that comes with a set of subtyping con-
straints on variables occurring in the type. Constrained type inference systems
are a natural generalization of Hindley/Milner type inference to languages with
subtyping. This paper develops several subtyping relations on polymorphic con-
strained types of a general form that allows recursive constraints and multiple
bounds on type variables. Subtyping constrained types has applications to signa-
ture matching and to constrained type simplification.

1 Introduction

A constrained type intuitively is a simple type together with a set of subtyping con-
straints on its type variables. An example ist → int \ {t ≤ int}, a type of functions
whose argument typet is constrained to be a subtype ofint. It is possible to perform let-
polymorphic type inference for constrained types, producing polymorphic types (“type
schemes”) of the form∀t1, . . . , tn. τ \C, which generalize the type schemes produced
by the Hindley/Milner unification algorithm; constrained type inference is strictly more
general than unification-based type inference. The idea of including subtyping con-
straints as part of typing judgements was first developed by Mitchell [17, 18]. His
constraint sets were restricted to be atomic, allowing coercions between type variables
only; numerous other systems with restricted forms of constraint inference have been
introduced since, including [16, 12, 14, 4].

A type inference algorithm for polymorphic constrained types of the form studied
here was first discovered by Curtis [8], and later independently discovered in somewhat
different form, and first proven sound, by Aiken and Wimmers [1]. These constraint
systems are less restrictive than the previously cited formulations: they allow recursive
constraints such ast ≤ t→int, and thus subsume recursive types. Additionally, both
upper- and lower-bound constraints on variables are legal, and multiple bounds may be
placed on a single variable (multiple bounds such as{t ≤ τ1, t ≤ τ2} are expressed
equivalently ast ≤ τ1 ∩ τ2, where∩ is the type intersection operator of [1]). This extra
flexibility allowed in the constraint sets gives a more powerful, but computationally
more complex, inference algorithm.

Constrained types are particularly appropriate for object-oriented programming lan-
guages [10, 9]: these types incorporate subtyping and recursive dependence, both critical
? Partially supported by NSF grant CCR-9301340
?? Partially supported by AFOSR grant F49620-93-1-0169

in an object-oriented setting, and their greater flexibility gives a reasonable solution to
the binary methods problem [5].

The objective of this paper is to address the problem of subtyping between polymor-
phic constrained types:

∀t1, . . . , tn.τ \C ≤∀ ∀t1, . . . , tn.τ ′ \C ′

Considering the generality of these types, the relation≤∀ should be expected to subsume
both the “more general than” relation between type schemes in the Hindley/Milner
system, and the subtyping relation on recursive types of Amadio/Cardelli [3].

This relation, which has not received the deserved attention in the literature, has
at least two important applications. The first is separate compilation via modules and
functors, and the subsequent need for signature matching. To a first approximation, in a
module system based on Hindley/Milner style of type inference the program specifies
a polymorphic type (signature)S for the parameter of a functorF to allow uses of
the parameter at different types (which is not possible for parameters of functions);
the polymorphic signatureS′ inferred for the actual argumentM is then matched
againstS at the point of applicationF (M). In a constrained type settingS andS′ are
polymorphic constrained types; “matching the signature” thus requires verifying that
the S′ ≤∀ S. Another application is the justification of simplification operations on
constrained polymorphic types. In this case a proof is required that the simplified type
is equivalent to the original (i.e.both a subtype and a supertype).

In this paper we define several variants of≤∀. The “optimal” form≤∀obs may be
characterized observationally by analogy with Morris/Plotkin contextual expression
equivalence, replacing expression contexts with proof contexts. We then define a se-
mantic form≤∀sem based on a regular tree interpretation, and prove it is a good model
by showing it is exactly≤∀obs, a full type abstractionproperty. The ideal model [15]
may also be used as a basis of a constrained type ordering≤∀ideal [2], but it is not fully
abstract. The relation≤∀sem is surprisingly complex: we leave open the question whether
it is decidable, and develop a powerful decidable approximation≤∀dec.

In the process of defining these subtyping relations, other results of independent
interest are derived. First, an entailment relationC ` τ ≤ τ ′ over simple typesτ
is axiomatized. The setC is a system of arbitrary type constraints, thus generalizing
the system of [3] which only allows one upper, non-recursive bound of each variable
in C. We define two reduced forms of constraint sets,constraint maps(kernels) and
canonicalmaps, which are also of use as more compact representations of constraint sets
in algorithms such as type inference. Next, the subtyping relations on constrained types
are defined, and their relationship is established. Finally, soundness of a system of typing
rules with constrained types is proved by a simple method of reduction to soundness of
a system without constrained types. A principal typing property is established for our
type inference algorithm.

In this paper we work over a simple language with only function, top, and bottom
types to reduce clutter. However, previous work [10, 9] shows how state, records,
variants, classes, and objects all may be incorporated in a constrained type framework,
and we explicitly avoid semantic tools (such as the ideal model of types [15]) which
lack a strong potential to generalize to such constructs.

2 Simple and Constrained Types

We illustrate our ideas by studying an extension of the call-by-nameλ-calculus with
constants andlet-binding. The abstract syntax of the expressions in the language is

e ::= x | λx. e | e e′ | X | let X = e in e′

To simplify the presentation we assume that theλ-bound andlet-bound variables are in
different syntactic classes, thatλ-bound variables are not re-bound, and that constants
are a special case oflet-variables, bound in the initial environment. We writeλ_. e for
λx. e wherex is not free ine, and(e; e′) for (λ_. e′) e.

Thesimple typesare

Typ3 τ ::= t | ⊥ | > | τ→τ ′ | . . .

where t ranges over the setTyVar of type variables,⊥ and> are “minimal” and
“maximal” types. In addition to the function types there may be a set of basic types
which we leave unspecified. We call⊥, >, →, etc. type constructors, and all simple
types inTyp− TyVar constructed.

A constrained typeκ has the form∀t. A ⇒ τ \C, where thecontextA is a finite
map from variables to simple types, written〈xi : τi〉, theroot typeτ is a simple type,
and theconstraint setC is a set of subtyping constraintson simple types, each of
the form τ ′ ≤ τ ′′.2 We use this new notion for constrained types in order to more
appropriately present the binding structure of type variables. The contextA represents
the assumptions about the types ofλ-bound variables free in the term, andC is the
set of subtyping constraints (a.k.a. coercions) under which the term is typable; they are
both part of the type itself instead of the environment. Thus all constrained types in a
type sequent are closed, so we can compare constrained types with different sets of type
variables, and avoid giving meaning to constrained types with constrained but free type
variables.

Definition 1. A constraint setC is closedif it is closed under transitivity (i.e. {τ ≤
τ ′, τ ′ ≤ τ ′′} ⊆ C entailsτ ≤ τ ′′ ∈ C) and decomposition (τ1→ τ ′1 ≤ τ2→ τ ′2 ∈ C
entails{τ2 ≤ τ1, τ ′1 ≤ τ ′2} ⊆ C).

We denote byCl(C) the least closed superset ofC. Thus, for example, ifC = {t→
t ≤ (⊥→ t)→>→>}, thenCl(C) = C ∪ {⊥→ t ≤ t, t ≤ >→>, ⊥→ t ≤ >→
>, > ≤ ⊥, t ≤ >, ⊥→t ≤ >}.

A constraint set isconsistentif for each constraintτ ≤ τ ′ in it at least one of the
following is true:τ = ⊥, τ ′ = >, both sides have the same outermost type constructor,
or one of them is a type variable.

2 We only consider closed constrained types, for which{t} ⊇ FTV(A) ∪ FTV(τ) ∪ FTV(C),
whereFTV(τ) as usual denotes the set of type variables free inτ . Constrained types are
considered identical underα-renaming of bound type variables.

3 Primitive Subtyping

In order to define notions of≤∀, a theory of primitive subtyping under a set of subtyping
constraints,C |= τ ≤ τ ′, and its decidable axiomatization are developed. Due to space
limitations most of the proofs have been elided; currently they can be found on the
World Wide Web at URLhttp://www.cs.jhu.edu/hog/subcon.ps.gz .

3.1 Regular Tree Semantics of Constraints

SequentsC |= τ ≤ τ ′ may be defined as valid if they hold for all instantiations of type
variables inC, τ , andτ ′. There are many possibilities for the notion of “instance.” The
simplest is to allow instances to range over the variable-free types constructed from>,
⊥, and→. However, for our purposes this does not give enough points in the space of
instances,e.g.when typing binary methods [5] we have to work with recursive constraint
sets such as{t→ t ≤ t, t ≤ t→>}, which have no solutions in this space. This is an
example where differences arise when recursive constraint sets are allowed—if recursive
constraint sets were not allowed, the simple type basis would have been appropriate.
Another candidate is the ideal model [15] used in [2], but conversely it has too many
points, allowing polymorphic types such as∀t.t→t to be substituted for type variables;
since our system is “shallow” these points are superfluous in our framework. It turns out
that the addition of the solutions of recursive type equations to the ground types gives
just enough points to define an appropriate semantics. In the next section a theorem
will be proven which rigorously demonstrates this fact. We use the convenient notion
of regular trees [7, 3] to model solutions of recursive type equations.

We present the semantics of constraint sets in terms of regular trees over a ranked
alphabet. Let us review some definitions and results from [7, 3]. Given a ranked alphabet
L, atreeϕ is a partial function from finite sequences of natural numbersN

∗ (paths) toL
such thatDom(ϕ) is prefix-closed and for eachπ ∈ N∗ we have{k |πk ∈ Dom(ϕ)} =
{0, . . . rankL(ϕ(π))− 1}. Thesubtree atπ ∈ Dom(ϕ) is the functionλπ′.ϕ(ππ′); |π|
is thelevelof that subtree. A tree isregular if the set of its subtrees is finite.

DefineT as the set of regular trees over the ranked alphabetLτ of type constructors
in our language, the nullary⊥ and> and the binary→; we reuse the syntax of types
as a notation for trees. Aregular systemin this context is a set of equations of the
form ti = τi between type variablesti ∈ TyVar and simple typesτi (i.e. finite trees
overLτ ∪ TyVarwhere the type variables are nullary); a regular system iscontractive
if it has no subset of the form{t0 = t1, . . . , tn−1 = tn, tn = t0}. An assignmentρ
on V ⊂ TyVar is a total map inV → T; it is homomorphically extended on simple
typesτ with FTV(τ) ⊆ V : ρ(⊥) = ⊥, ρ(>) = >, andρ(τ→τ ′) = ρ(τ)→ρ(τ ′). An
assignmentρ on ti is asolutionof the regular systemti = τi if ρti = ρτi.

Proposition 2. Each contractive regular system has a unique solution, and each regular
tree is the image of some variable in a solution of a contractive regular system.

A level-k cut ϕ|k of ϕ ∈ T for k ∈ N is defined as the (finite) tree obtained by
replacing all subtrees at levelk of ϕ (if any) by>.

A partial order overL, in which⊥ is the minimal element and> is the maximal,
together with variance specifications for the arguments of non-nullary constructors (in
this case, contravariance in the domain and covariance in the range of→) induce a
partial order≤tree overT as follows:⊥ ≤tree ϕ andϕ ≤tree > for each finite treeϕ,
andϕ1 → ϕ′1 ≤tree ϕ2 → ϕ′2 if ϕ2 ≤tree ϕ1 andϕ′1 ≤tree ϕ′2; finally, ϕ ≤tree ϕ′ if
ϕ|k ≤tree ϕ′|k for eachk ∈ N.

Returning to our type system, within a set of constraints we model simple types by
regular trees satisfying these constraints:

Definition 3. (i) An assignmentρ k-satisfiesa constraintτ ≤ τ ′, writtenρ .k τ ≤ τ ′,
if ρ(τ)|k ≤tree ρ(τ ′)|k.

(ii) ρ satisfiesτ ≤ τ ′ (ρ . τ ≤ τ ′, alsoρ is asolutionof τ ≤ τ ′) if ρ .k τ ≤ τ ′ for each
k ∈ N.

(iii) The above properties are extended over a set of constraintsC if they hold for each
constraint in the set.

Regular trees may now be used to define the theoryC |= τ ≤ τ ′.

Definition 4. (i) C |= τ ≤ τ ′ if for every assignmentρ on FTV(C ∪ {τ ≤ τ ′}), if
ρ . C, thenρ . τ ≤ τ ′.

(ii) C |= C ′ if FTV(C ′) ⊆ FTV(C) and for each solutionρ of C there is a solutionρ′

of C ′ which agrees withρ onFTV(C ′).
(iii) C andC ′ areequivalentif C |= C ′ andC ′ |= C.

Lemma 5. C and Cl(C) are equivalent. Thus, ifC is satisfiable, then Cl(C) is consis-
tent.

We leave open the decidability ofC |= τ ≤ τ ′, and in the sequel we develop
decidable approximations to it.

3.2 Constraint Map Representation

We now defineconstraint mapsas an equivalent form for representing consistent closed
constraint sets. Closed constraint sets may contain significant redundant information.
To a constraint set{τ1→τ ′1 ≤ τ2→τ ′2} the closure adds{τ2 ≤ τ1, τ

′
1 ≤ τ ′2}, and the

original constraint between functions is completely captured by the additions and can be
removed. Constraint maps in fact do not allow constraints between two constructed types,
since they can always be expressed by an equivalent family of constraints, provided the
constraint set was consistent to begin with. We reuse some of the notation previously
defined for constraint setsC on constraint mapsK.

Definition 6. A constraint mapis a finite mapK ∈ TyVar→ (2Typ)2, assigning sets of
upper and lower bounds to each type variable in its domain; we use the more intuitive
notationt ≤ τ ∈ K andt ≥ τ ′ ∈ K for τ ∈ π1(K(t)) andτ ′ ∈ π2(K(t)), respectively,
and(K, t ≤ τ), (K, t ≥ τ) for the maps extending the setsπ1(K(t)), respectively
π2(K(t)), to containτ . We writet ≥ τ instead ofτ ≤ t sinceK is not required to be
antisymmetric,i.e. t′ ∈ π1(K(t)) does not implyt ∈ π2(K(t′)); we uset = τ ∈ K for
the pairt ≤ τ ∈ K, t ≥ τ ∈ K.

(⊥) K ` ⊥ ≤ τ (>) K ` τ ≤ >

(=) K ` t ≤ t, t ∈ Dom(K) (→)
K ` τ ′1 ≤ τ1 K ` τ2 ≤ τ ′2

K ` τ1→τ2 ≤ τ ′1→τ ′2

(↑) (K, t ≤ τ, t ≤ τ ′) ` τ ≤ τ ′

(K, t ≤ τ) ` t ≤ τ ′ (↓) (K, t ≥ τ, t ≥ τ ′) ` τ ′ ≤ τ
(K, t ≥ τ) ` τ ′ ≤ t

if (K, t ≤ τ, t ≤ τ ′) is contractive if(K, t ≥ τ, t ≥ τ ′) is contractive

Fig. 1.Rules for primitive subtyping

Definition 7. Thekernel Ker(C) of a constraint setC is the constraint map defined by
the set of constraints{τ ≤ τ ′ ∈ Cl(C) | {τ, τ ′} ∩ TyVar 6= ∅}; a constraint of the form
t ≤ t′ sets the appropriate bounds on both variables.

For example, since the closure of the constraint setC = {(>→t)→t ≤ t→t→⊥}
is Cl(C) = {(>→ t)→ t ≤ t→ t→⊥, t ≤ >→ t, t ≤ t→⊥}, the kernel ofC is
Ker(C) = (t ≤ >→t, t ≤ t→⊥).

Proposition 8. For consistent constraint setC, Ker(C) andC are equivalent.

The kernel form of a constraint set has significant advantages from an implementation
perspective: a type inference algorithm may maintain constraint sets in their equivalent
kernel form, which is considerably more compact than the closure.

3.3 Rules for Primitive Subtyping

We take advantage of the equivalent constraint map representationK of a constraint set
C, and with the rules in Fig. 1 define a decidable sound approximationK ` τ ≤ τ ′ of
the theoryC |= τ ≤ τ ′.

An implicit requirement forK ` τ ≤ τ ′ is FTV(τ) ∪ FTV(τ ′) ⊆ Dom(K). As is
usually the case in the presence of recursive types, a notion of contractiveness plays an
important role in detecting ill-defined constraint maps.

Definition 9. A constraint mapK iscontractiveif π1◦K andπ2◦K as relations onTyVar
have no cycles,i.e. if there do not exist variables{t1, . . . , tn} ⊆ Dom(K) such that
tn = t1 andti ≤ ti+1 ∈ K (respectivelyti ≥ ti+1 ∈ K) for eachi ∈ {1, . . . , n− 1}.

For instance, neither(t ≤ t) nor(t ≥ t′, t′ ≥ t) is contractive, while(t ≥ t′, t ≤ t′)
is (recall a constraint map is not necessarily symmetric on type variables). However note
that contractiveness of constraint maps, as opposed to regular systems, does not entail
satisfiability,e.g.(t ≤ ⊥, t ≥ >) is a contractive map with no solutions. Contractiveness
is required in order to ensure soundness by disallowing proofs in whiche.g.a constraint
introduced toK by one rule(↑) is used in another(↑) with no intervening uses of(→).

Rules(⊥), (>), (→), and(=) for reflexivity of the relation on type variables are
standard. The novel rules(↑) and(↓) provide the only access to constraints inK; in
fact, were the constraint map in its premise identical to the one in its conclusion, rule
(↑) would have been just the standard rule for proving an upper bound on a type variable

in a system of rules with eliminated transitivity. With the extra assumption these are
induction rules, similar to the (FIX) rule of [11].

Some standard subtyping rules [3] are derivable from those given in Fig. 1 and thus
omited, for instance general reflexivity (K ` τ ≤ τ is always provable forFTV(τ) ⊆
Dom(K), and(K, t ≤ τ) ` t ≤ τ is provable by(↑) and general reflexivity. In contrast,
transitivity only holds for consistent constraint maps.

Definition 10. A constraint mapK is consistentif for eacht, τ , andτ ′, if t ≥ τ ∈ K
andt ≤ τ ′ ∈ K, thenK ` τ ≤ τ ′.

The following lemma shows that a kernel contains all of the information of a
consistent setC, and that computing the closure ofC is equivalent to the construction
of a constraint mapK such thatK ` C.

Lemma 11. If Cl(C) is a consistent constraint set, then Ker(C) is a consistent constraint
map, and Ker(C) ` Cl(C).

3.4 Soundness and Decidability of Primitive Subtyping

Next we establish soundness of the proof system` with respect to the relation|=; the
main idea is to show that all assignments which approximate solutions of a constraint
mapK also approximate solutions of all subtyping constraints provable fromK.

Lemma 12. If K is contractive,K ` τ ≤ τ ′ has a proof, and the assignmentρ
k-satisfiesK, then

(i) if the proof ofK ` τ ≤ τ ′ has an instance of a rule other than(↑) or (↓) at its
root, thenρ .k+1 τ ≤ τ ′;

(ii) if there is an instance of(↑) or (↓) at the root of the proof ofK ` τ ≤ τ ′, then
ρ .k τ ≤ τ ′.

Theorem 13 (Soundness).If K is contractive andK ` τ ≤ τ ′, thenK |= τ ≤ τ ′.

The system̀ is incomplete with respect to the relation|=; it is not even possible to
prove that(t ≤ t→⊥, t ≤ >→t) ` t ≤ >→⊥ since the bound we need is stronger
than each of the two given. However` is useful because of the following property.

Lemma 14. The relationK ` τ ≤ τ ′ is decidable.

3.5 Canonical Constraint Maps

We can obtain a stronger proof system if we place the constraints in an equivalent
canonical form that has pre-computed least upper and greatest lower bounds. In a
canonical constraint map each variable has exactly one constructed upper and one
constructed lower bound. For instance, a canonical equivalent of(t ≤ t→⊥, t ≤ >→t)
is K = (t ≥ ⊥, t ≤ >→⊥). The upper boundst→⊥ and>→ t on t have the lub
>→⊥ computed for them. For this set we can indeed proveK ` t ≤ >→⊥. The
canonicalization process also has potential as an implementation technique.

Definition 15. A constraint mapK is canonicalif

– K assigns exactly one upper and one lower constructed bound (canonicalbounds)
to each type variable in its domain (with no restriction on the number of variable
bounds);

– if t ≤ t′ ∈ K andt′ ≤ t′′ ∈ K, thent ≤ t′′ ∈ K, and
– for each(t ≤ t′, t ≤ τ, t′ ≤ τ ′) ⊆ K, where{τ, τ ′} ∩ TyVar = ∅, we have
K ` τ ≤ τ ′, and similarly for the lower bounds.

Clearly ifK andK ′ are equivalent onFTV(τ) ∪ FTV(τ ′) thenK |= τ ≤ τ ′ if and
only if K ′ |= τ ≤ τ ′. This allows us to upgrade our system by converting each mapK
to an equivalent canonical mapCan(K) and then provingCan(K) ` τ ≤ τ ′ instead of
the originalK ` τ ≤ τ ′. Here we provide an algorithm for computing an equivalent
canonical formCan(K) of a mapK.

Algorithm 16 Can(K) is computed as follows.

Start withK ′ = K, and for somet ∈ FTV(K ′) let V be the least set satisfying
V = {t} ∪ {t′ | ∃t′′ ∈ V. t′′ ≤ t′ ∈ K ′}, i.e. the set of upper bounds ont in the
reflexive transitive closure ofK ′ on TyVar; the case of lower bounds is similar. Let
B = {τ ∈ Typ− TyVar| ∃t′ ∈ V. t′ ≤ τ ∈ K ′}, the set of constructed upper bounds
on t. We compute the canonical upper boundτ of t as the greatest lower bound of the
elements ofB, as follows.

If B ⊆ {>}, thenτ = >; if ⊥ ∈ B, thenτ = ⊥. Otherwise let{τi→τ ′i}
be the set of all function types inB, and letτ = t∧T → t∨T ′ , whereT = {τi},
T ′ = {τ ′i}, andt∧T andt∨T ′ are in general auxiliary type variables we associate
with the respective sets of type terms; in the cases whenT is a singleton set

{t′} we lett∧T = t∨T = t′ to ensure termination. Add the bounds(t∧T ≥ τj) (and
similarly for t∨T ′) toK ′.

Replace the constructed upper bounds oft by(t ≤ τ); thus the new bounds ont, namely
(t ≤ τ) and(t ≤ t′) for eacht′ ∈ V , are in canonical form. Continue until all variables
in K ′ are processed. (Adding also all bounds of the form(t∧S ≤ t∧T) and(t∨T ′ ≥ t∨T) if
T ⊂ S, when those auxiliary variables appear in the domain of the map, produces an
even stronger, with respect tò, yet equivalent form.) The resultingK ′ is the value of
Can(K).

The following lemma proves the correctness of this algorithm.

Lemma 17. For each constraint mapK there exists a canonical equivalent Can(K).

For example computing the canonical equivalent ofK = (t ≤ t→⊥, t ≤ >→ t)
starts by introducingt1 = t∨{t,>} andt2 = t∧{⊥, t}, and transformingK intoK ′ = (t ≥
⊥, t ≤ t1→t2, t1 ≥ >, t1 ≤ >, t1 ≥ t, t2 ≥ ⊥, t2 ≤ ⊥, t2 ≤ t). This map is already
in canonical form, and it is possible to proveK ′ ` t ≤ >→⊥. However, even when
` is used on to canonical equivalents it still does not provide proofs for some valid
relations; for instance,(t ≥ ⊥, t ≤ t→>) |= t ≤ (>→⊥)→>.

In the general case, the algorithm implied by Lemma 14 may attempt comparing
τ against each upper bound ont currently inK in the process of searching for a
proof of K ` t ≤ τ . In this process, it may have to backtrack if it fails to find a
proof using a particular bound. However, in the case of canonical maps a more efficient
implementation is possible which has time complexity ofO(n2), wheren is the size
of K ∪ {τ ≤ τ ′}. This algorithm only compares new bounds on a variable against its
canonical bounds (which can be shown to suffice) and uses a form of memoisation to
detect looping; details are omited for lack of space.

A parallel can be drawn between our system of subtyping rules and the system
`AC of Amadio and Cardelli [3], which is based on a relation of equivalence between
recursive types, and on the inductive rule

(µ)
C, t ≤ t′ `AC τ ≤ τ ′

C `AC µt. τ ≤ µt′. τ ′

Since recursive types can be encoded as type variables with identical upper and lower
bounds, the corresponding rule for simple types with constraints is

K, t = τ, t′ = τ ′, t ≤ t′ ` τ ≤ τ ′

K, t = τ, t′ = τ ′ ` t ≤ t′

which is indeed derivable iǹ in a stronger version by successive applications of(↑)
and(↓); furthermore, the steps of the proof ofK, t = τ, t′ = τ ′ ` t ≤ t′ follow
closely the steps of the algorithm for computingC `AC µt. τ ≤ µt′. τ ′ presented in
[3], which also effectively constructs the type contexts necessary in order to establish
type equivalences. Amadio and Cardelli show that their system is complete with respect
to the regular tree model of recursive types under certain conditions onC, τ , andτ ′;
in particular the constraints inC may not be recursive, and no variable may occur in
bothτ andτ ′. An attempt to directly apply the system to prove sequents violating these
conditions shows that it is incomplete in the more general setting considered in this
paper,e.g.t ≤ >→ t 6`AC t ≤ µt′.>→ t′. Our system, while still incomplete with
respect to the model we present, is capable of proving the corresponding forms of all
sequents provable in [3], in addition allowing multiple recursive upper and lower bounds
on type variables,e.g.t ≤ >→t, t′ = >→t′ ` t ≤ t′.

3.6 Satisfiability of Canonical Constraint Maps

A constrained type only has meaning if its constraints describe a non-empty set of
instances, and hence the satisfiability of a constraint map is an important property. In
this section we provide a connection between consistency and satisfiability of canoni-
cal constraint maps. This connection also plays a role in establishing the relationship
between various notions of subtyping on constrained types in Sect. 4.

Definition 18. The canonical mapK ′ is asubmapof a canonical mapK if K ′ ⊆ K.
Note that constraints on variables inDom(K) − Dom(K ′) may involve variables in
Dom(K ′), butFTV(Codom(K ′)) ⊆ Dom(K ′).

Lemma 19. If K ′ is a submap ofK, andK is consistent and canonical, then every
solution ofK ′ can be extended to a solution ofK. Thus, considering the special case of
K ′ = ∅, every consistent canonical constraint mapK is satisfiable.

Combining these results with canonicalization and soundness of` with respect to
|=, we can reason about canonical maps instead of their equivalent constraint sets.

Definition 20. C ` τ ≤ τ ′ if Can(Ker(C)) ` τ ≤ τ ′.

4 Subtyping Constrained Types

In this section we define three concrete≤∀ relations of subtyping on constrained types:
≤∀obs,≤∀sem, and≤∀dec, as promised in the introduction.

4.1 Operational Subtyping

For an initial definition of≤∀ we rely on operational notions as a basis. The basic idea
is simple, but we could not find any precedent for it in the literature. Expressions of

constrained type∀t. A ⇒ τ \C are also of type∀t′. A′ ⇒ τ ′ \C ′ if for all possible
uses of expressions of the latter type that are consistent, use of the former type is also
consistent. Relation≤∀obs is defined by this means. The difficult issue is how a “use”
of a type should be defined. Informally, each use is a typing proof context, in analogy
with Morris/Plotkin expression contexts. We give a particular version of typing proof
context which is one of many reasonable and equivalent notions: a “use” is a set of
constraints of the form that could be added by the inference rules. The constraints added
by the inference rules may only introduce upper bounds on the root types, and dually
only lower bounds on the types in the context. As a consequence one may obtain a valid
typing derivation after replacing a subterm by another term whose constrained type
yields a consistent system when those bounds are added. This leads us to the following
observational definition of a subtyping relation on constrained types. (We letA ≤ A′

abbreviate the set of constraints{A(x) ≤ A′(x) |x ∈ Dom(A′)}, defined only when
Dom(A) ⊇ Dom(A′).3)

Definition 21. For closed constrained types,∀t′. A′⇒ τ ′ \C ′ ≤∀obs ∀t′′. A′′⇒ τ ′′ \C ′′

if for each∀t. A⇒ τ \C such that{t} is disjoint from{t′}and{t′′}, if Cl(C∪C ′′∪(A ≤
A′′) ∪ {τ ′′ ≤ τ}) is consistent, thenCl(C ∪ C ′ ∪ (A ≤ A′) ∪ {τ ′ ≤ τ}) is consistent.

3 This “subtyping rule” for contexts is similar to standard record subtyping [6]; the clo-

sure conversion[[x]] = λE.E.x, [[λx. e]] = λE. λx. [[e]]{ xi =E.xi|xi∈FV(e)−{x}, x=x } ,
and [[e e′]] = λE. [[e]]E ([[e′]]E) makes the environment explicit and maps terms of type
∀t. 〈xi : τi〉 ⇒ τ \C to closed terms of type∀t. 〈〉 ⇒ { xi : τi } →τ \C.

4.2 Semantic Subtyping

Next, a semantic notion≤∀sem is defined, via the regular tree model: two polymorphic
constrained types are ordered if their sets of regular tree instances are ordered.

The context componentA of a constrained type corresponds to a finite mapΦ from
variables to regular trees; the relation≤tree can be extended on such maps as follows:
Φ ≤tree Φ′ if Dom(Φ) ⊇ Dom(Φ′) andΦ(x) ≤tree Φ′(x) for eachx ∈ Dom(Φ′). An
instanceof the constrained typeκ = ∀t. A ⇒ τ \C is a pair writtenΦ ⇒ ϕ where
Φ = ρ ◦ A andϕ = ρτ for some assignmentρ on {t} that satisfiesC. The set of
instances ofκ is Inst(κ). As in the definition of≤∀obs, the natural order on instances is
Φ⇒ ϕ ≤tree Φ′ ⇒ ϕ′ if Φ′ ≤tree Φ andϕ ≤tree ϕ′. We can now define a semantical
notion of subtyping on constrained types.

Definition 22. κ′ ≤∀sem κ′′ if for each instance ofκ′′ there is a smaller instance ofκ′.

We may now prove the equivalence of≤∀sem and≤∀obs, demonstrating the appropri-
ateness of the regular tree interpretation.

Theorem 23 (Full Type Abstraction). The relations≤∀sem and≤∀obs agree.

To contrast≤∀sem with the ideal model ordering≤∀ideal, consider the following
example, in which we omit contexts and quantifiers when empty. In the regular tree model
the only solution ofC = {>→⊥ ≤ t, t ≤ >→>, t ≤ ⊥→⊥} is ρ = [t 7→ >→⊥],
which satisfies alsot ≤ >→⊥; hence(>→⊥)→>→⊥\∅ ≤∀sem ∀t. t→ t \C. But
this fails for≤∀ideal since in the ideal modele.g. [t 7→ ∀t′. t′→ t′] is a solution ofC
which does not satisfyt ≤ >→⊥. As a consequence the ideal model ordering does not
offer full type abstraction with respect to the operational subtyping≤∀obs.

4.3 Decidable Subtyping

The question of decidability of≤∀sem is open; we show how it may be approximated by
a powerful decidable relation. The material of the previous section is used to define this
decidable relation.

The informal idea leading to the decidable relation is simple: observe that adding
constraints to a set may only shrink the set of its solutions. For constrained typesκ′ =
∀t′. A′⇒ τ ′ \C ′ andκ′′ = ∀t′′. A′′⇒ τ ′′ \C ′′, Definition 22 states thatκ′ ≤∀sem κ′′ if
a certain relation holds foreachinstance ofκ′′ (that is, for the unrestricted set of solutions
ofC ′′) andsomecorresponding instance ofκ′ (that is, an element of a possibly restricted

subset of solutions ofC ′). Thus, assumming that{t′} and{t′′} are disjoint, we would
have a proof ofκ′ ≤ κ′′ if we could show that the relationsτ ′ ≤ τ ′′ and(A′′ ≤ A′)
hold underC ′′ andC ′ together with some setC of constraints which do not “constrain

further” the type variablest′′ (but possibly add constraints ont′).
Applying the machinery developed in Sect. 3, these ideas are formalized in the

following definition of a relation approximating≤∀sem.

Definition 24. κ′ ≤∀dec κ′′ if κ′ = ∀t′. A′ ⇒ τ ′ \C ′ andκ′′ = ∀t′′. A′′ ⇒ τ ′′ \C ′′

for some{t′} ∩ {t′′} = ∅, and there exists a consistent canonical mapK such that
K ` C ′ ∪ (A′′ ≤ A′) ∪ {τ ′ ≤ τ ′′} andCan(Ker(C ′′)) is a submap ofK.

Here the mapK represents the union ofC ′′, C ′, andC of our informal discussion:

it hasCan(Ker(C ′′)) as a submap (meaning{t′} are not further constrained), it entails

C ′, and its constraints on{t′} may be stronger that those inC ′ in order to ensure that
the relations between root types and contexts hold. The following theorem shows that
≤∀dec is indeed an approximation to≤∀sem.

Theorem 25. If κ′ ≤∀dec κ′′, thenκ′ ≤∀sem κ′′.

Although the incompleteness of`with respect to|= implies incompleteness of≤∀dec
with respect to≤∀sem, the relation≤∀dec is still quite powerful: it subsumes the relation of
instantiation between type schemes in the Hindley/Milner system, the subtyping relation
between recursive types in the Amadio/Cardelli system, and their union on recursive
polymorphic types in shallow (prenex) form. Consider Hindley/Milner subtyping in

more detail. The type scheme∀t′′. τ ′′ is an instance of∀t′. τ ′ if τ ′′ = στ ′, whereσ

is a simple type substitution on{t′} = FTV(τ ′), and{t′′} = FTV(τ ′′); then we have

∀t′. 〈〉 ⇒ τ ′ \ ∅ ≤∀dec ∀t′′. 〈〉 ⇒ τ ′′ \ ∅ by Definition 24, as evidenced by the canonical

constraint mapK = (t′ ≤ σ(t′), t′ ≥ σ(t′)), which entailsτ ′ ≤ σ(τ ′) and is obviously
consistent. Closed recursive types can also be represented as constrained types, with
the constraint set effectively encoding a regular system; when restricted to these types,
≤∀dec is equivalent to the system of Amadio and Cardelli.

Furthermore,≤∀dec is sufficiently strong to allow proving correctness of many useful
simplifications of types inferred by the system. For example,≤∀dec can be used to show
the soundness of the constraint set simplification “garbage collection” of [9], which
allows the removal of “unreachable” constraints.

Definition 26. Given a constrained type∀t. A ⇒ τ \K, whereK is a canonical con-
straint map, a type variablet is positively reachableif t occurs positively inτ , or
negatively inA, or positively in the canonical lower bound inK of some positively
reachablet′, or negatively in the constructed upper bound inK of some negatively
reachablet′′; negative reachabilityis defined symmetrically. (Recall that an occurrence
of a variable in a simple type ispositive(resp.negative) if it occurs inside an even (odd)
number of type subterms in argument position of→.)

A constraintt ≤ τ ′ ∈ K (resp.t ≥ τ ′ ∈ K) is reachableif t is negatively
(positively) reachable;t ≤ t′ ∈ K is reachable ift is negatively andt′ is positively
reachable.

This notion of reachability is motivated by the type rules (Sect. 5, Fig. 2), which
only set upper bounds on types of subterms. Thus for instance a type variablet in the
typeκ of a terme can only obtain new upper bounds (whene is used as a subterm)
if t is positively reachable inκ; in this caset’s lower bounds may be the source of an
inconsistency (via transitivity). Conversely, however, ift is not reachable positively, its
lower bounds are not going to cause inconsistency in any use ofe—hence they may
safely be ignored; for example,

∀t. 〈〉 ⇒ t \ {>→t ≤ t, t ≤ t→>} ≤∀dec ∀t. 〈〉 ⇒ t \ {>→t ≤ t}.

Proposition 27. If GC(κ) is the constrained type obtained by removing the unreachable
constraints inκ, thenGC(κ) ≤∀dec κ andκ ≤∀dec GC(κ).

Pottier [20] offers an alternative definition of reachability which ignores the polarity
of the occurences of type variables. Our experience with applications of constrained type
systems to object-oriented languages [10, 9] shows that keeping track of polarity makes
a significant difference when simplifying types inferred for new objects (which are fixed
points of classes). Type variables associated with objects have upper bounds inherited
from the class definition (before taking the fixed point); they are often unreachable
by our definition but not by Pottier’s. Additionally, removing more constraints often
enables other simplifications,e.g.unifying a type variable with its bound.

We present an outline of an algorithm for computing∀t′. A′ ⇒ τ ′ \C ′ ≤∀dec
∀t′′. A′′ ⇒ τ ′′ \C ′′. The algorithm either fails, if the subtyping does not hold, or it

produces a set of constraintsC which only put bounds on the type variables in{t′}; the
constraint mapK required by Definition 24 can then be obtained by extendingCan(C ′′)
with Can(Ker(C ′∪C)). The algorithm is very similar to the one for computing closure
of a constraint set; in fact it is a generalization of the latter.

Algorithm 28 ∀t′. A′⇒ τ ′ \C ′ ≤∀dec ∀t′′. A′′⇒ τ ′′ \C ′′ is computed as follows.

We start by computingK ′′ = Can(C ′′) and with an initially empty setC0 of new

constraints on variables in{t′′}which are “pending proof,” and proceed as in computing
the closure ofC ′∪{τ ′ ≤ τ ′′}∪ (A′′ ≤ A′), namely, failing on inconsistent constraints,
and reducing consistent ones between constructed types to constraints on variables, of

the formt ≤ τ (or τ ≤ t). Whent ∈ {t′}, if the constraint is already inC ′ ∪ C, the
search succeeds; otherwise we add these constraints toC and continue as in the closure
computation by searching for a proof ofτL ≤ τ (resp.τ ≤ τU), whereτL and τU
represent the lower and upper bound(s) ont in C ′ ∪C so far. However, whent ∈ {t′′},
we instead attempt toprove that this constraint is implied (by the rules for primitive
subtyping) by the constraints ont in K ′′. The proof search goes much as described in
Sect. 3.4: ifτ is already an upper (lower) bound oft inK ′′∪C0, it succeeds, otherwise
the new constraint is added toC0, and we search for a proof of the constraintτU ≤ τ
(resp.τ ≤ τL), whereτU andτL are the canonical upper and lower bounds ont inK ′′.

Thus, the algorithm treats variables in{t′} and{t′′} differently, but symmetrically: it
compares new upper bounds on at′ with its old lower bounds, but new upper bounds on
a t′′ with its old (canonical) upper bound. (The reader may have noticed that converting
C ′ to a canonical constraint map is not necessary for this algorithm; however it may
improve its performance.)

Theorem 29. The relation≤∀dec is decidable.

5 Soundness of the Type System and Completeness of Inference

The typing rules shown in Fig. 2 infer sequents of the formΓ `T e : κ; the type
environmentΓ only assigns constrained types tolet-bound variables, while the types

(VAR) Γ `T x : ∀t. 〈xi : τi, x : τ〉 ⇒ τ \C, {t} ⊇
⋃
i
FTV(τi, τ, C)

(ABS)
Γ `T e : ∀t. 〈xi : τi, x : τ〉 ⇒ τ ′ \C
Γ `T λx. e : ∀t. 〈xi : τi〉 ⇒ τ→τ ′ \C

(APP)
Γ `T e′ : ∀t. A⇒ τ ′′→τ \C Γ `T e′′ : ∀t. A⇒ τ ′′ \C

Γ `T e′ e′′ : ∀t. A⇒ τ \C

(LETVAR) Γ `T X : Γ (X), X ∈ Dom(Γ)

(LET)
Γ `T e : κ Γ, X : κ `T e′ : κ′

Γ `T let X = e in e′ : κ′

(SUB)
Γ `T e : κ κ ≤∀ κ′

Γ `T e : κ′

Note: the closures of the constraint sets in all conclusions must be consistent.

Fig. 2.Typing rules.

of λ-bound variables are included in the context component ofκ. Each rule has the
implicit side condition that the closure of the constraint set in the constrained type in
its conclusion is consistent. Rule (APP) requires the types of the subterms to share the
contextA, constraint setC, and set of bound variables{t}. Rule (LET) is sound with
respect to the call-by-name semantics;4 constraints on types of variables free ine need
not be reflected inκ′ unlessX occurs free ine′. Finally the subsumption rule (SUB)
replaces the constrained type of a term by a supertype; it is thus the only rule that may
allow the constraint set in the type of a term to be taken into account or modified. The
rules are parametric in the choice of≤∀, for which we considered a number of different
possibilities; the notatioǹ T represents the rules with abstract≤∀, and `T

sem for
instance represents̀T with ≤∀ defined as the concrete relation≤∀sem.

Rules for type inference are presented5 in Fig. 3; there is no rule for subsumption,
and thelet-related rules are the same as in`T and hence omitted.

We may now establish soundness of the typing rules of Fig. 2. In our previous proofs
of soundness of constrained typing systems [10], a direct subject reduction argument
was used. Recent observations concerning the close relation between constrained type
systems and simple type systems [19] allow us to establish soundness based on soundness
of a simple type system. We believe this direct approach to type soundness of constrained
type systems should be applicable to other constrained type languages.

Amadio and Cardelli [3] present a type system̀µ with recursive types (modeled
by regular trees) and a subtyping relation on them equivalent to≤tree. This system can
be applied to thelet-free fragment of our language to produce sequents of the form
Φ `µ e : ϕ, whereΦ is a finite map from variables to regular trees whose role in our
type system`T is played by a contextA.

4 A version sound with respect to call-by-value can be obtained by definingletv X = e in e′ as
let X = e in (X; e′) for type-checking purposes.

5 We write the inference rules with a top-down propagation of the contexts; a bottom-up presen-
tation with synthesized context components is also possible.

(VARI) Γ `I x : ∀ti, t. 〈xi : ti, x : t〉 ⇒ t \ ∅

(ABSI)
Γ `I e : ∀ti, t. 〈xi : ti, x : t〉 ⇒ τ \C
Γ `I λx. e : ∀ti, t. 〈xi : ti〉 ⇒ t→τ \C

, {xi} = FV(λx. e)

(APPI)
Γ `I e′ : ∀t′. A⇒ τ ′ \C′ Γ `I e′′ : ∀t′′. A⇒ τ ′′ \C′′

Γ `I e′ e′′ : ∀t′, t′′, t. A⇒ t \C′ ∪ C′′ ∪ {τ ′ ≤ τ ′′→t}
where{t′} − FTV(A), {t′′} − FTV(A), FTV(A), and{t} are all disjoint

Fig. 3.Typing rules modified for type inference.

We now establish that a typing derivation iǹT
sem can be viewed as a family of

derivations iǹ µ.

Definition 30. The let-expansion LE(e) of a terme is defined as the homomorphic
extension ofLE(let X = e′ in e′′) = (LE(e′); LE(e′′)[LE(e′)/X]), where the postfix[/]
denotes capture-free substituton.

Theorem 31. If ∅ `T
sem e : κ, then∅ `µ LE(e) : ϕ for eachϕ ∈ Inst(κ). If

∅ `µ LE(e) : ϕ, then∅ `T
sem e : κ for someκ such thatϕ ∈ Inst(κ).

Corollary 32. The type system̀ T
sem is sound.

Proof. Implied by the soundness of̀µ [3]: the typability of a terme under `T
sem

implies the typability ofLE(e) under`µ, which by soundness of̀µ implies that the
evaluation ofLE(e) will not cause a run-time error. Since thelet-expansion ofe is
observationally equivalent toe, this implies that the evaluation ofe is free of run-time
errors.

Corollary 33. The type system̀ T
dec is sound.

Theorem 34. The inference system̀I is complete with respect tòT
sem .

6 Related Work

Pottier [20] has independently derived results that are related to some results of this paper.
He defines a syntactic and a semantic notions of entailment on constraint sets, shows they
are equivalent, and presents a type system with subsumption based on this entailment.
He also provides an algorithm for an approximation to the entailment relation, which
appears equivalent toK ` τ ≤ τ ′ for canonicalK; finally, the theory is used as a basis
for proving the soundness of a number of constrained type simplifications. However
the entailment relations do not take into account reachability of type variables, which
depends on the polarity of their occurrences and hence on the root type; in particular
his syntactic entailmentC ′ ` C ′′ requiresC ′′ ∪C to be consistent wheneverC ′ ∪C is,
for anyconstraint setC, including sets that put bounds on unreachable type variables,
which is not possible during type inference. As a consequence both the relation between

constrained types, implied by his subsumption rule, and its decidable approximation are
strictly less powerful than ours.

Jim [13] also defines a notion of≤∀ that relates fewer types than ours but is still
powerful enough to prove some principal typing properties for constrained type systems.

Previous researchers [21, 4] have addressed the problem of subtyping constrained
types in the context of a system where recursive constraints are not allowed. The choice
of whether to allow or disallow recursive constraints greatly changes the theory.

7 Conclusions

This paper establishes a foundation for constrained type theory, in particular via a
powerful characterization of subtyping on constrained types. We introduce two natu-
ral notions of subtyping, observational≤∀obs and semantic≤∀sem, and prove that they
are equivalent; we further give a decidable approximation≤∀dec to these relations. Both
results represent improvements over recent work on subtyping of constrained types with
recursive constraints [9, 20, 13]. We also introduce a novel closed form of constraint
types with contexts, which eliminates the problems associated with free type variables.
Finally, we present a type system with principal constrained types, and establish its
soundness via reduction to the system of Amadio and Cardelli.

The most generous relations≤∀sem and≤∀obs may be undecidable, but we believe that
≤∀dec is powerful enough to be useful in practice for signature matching and constraint
simplification. Our confidence in the system stems from the fact that≤∀dec subsumes
the Amadio/Cardelli subtyping of recursive types, the type scheme instantiation in the
Hindley/Milner system, and the subtyping relation of [20]. Additionally, it turns out that
the known simplifications of constraint sets do not test the limits of the system based
on≤∀dec; we have shown in this paper that≤∀dec can be used to demonstrate the correct-
ness of simplifications not included in other systems. Similarly, functor signatures may
generally be produced by starting with an inferred constrained type and transforming
it in regular ways, thus avoiding constrained types which≤∀dec does not relate to the
inferred type. We have yet to find a realistic subtyping example which is semantically
sound but is not derivable using≤∀dec, but most convincing would be the performance
of a system that uses it for signature matching and simplifications in practice on real
code; we are in the process of constructing an implementation for this purpose.

AcknowledgementsWe wish to thank Simon Marlow, François Pottier, Didier Rémy,
Philip Wadler, and the anonymous referees for many helpful comments and suggestions.

References

1. A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. InProceed-
ings of the International Conference on Functional Programming Languages and Computer
Architecture, pages 31–41, 1993.

2. A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with conditional types. InCon-
ference Record of the Twenty-First Annual ACM Symposium on Principles of Programming
Languages, pages 163–173, 1994.

3. R. Amadio and L. Cardelli. Subtyping recursive types.ACM Transactions on Programming
Languages and Systems, 15(4):575–631, September 1993. Extended abstract in POPL 1991.

4. François Bourdoncle and Stephan Merz. On the integration of functional program-
ming, class-based object-oriented programming, and multi-methods. Technical Report 26,
Centre des Math́ematiques Appliqúees, Ecole des Mines de Paris, 1996. Available at
http://www.ensmp.fr/˜bourdonc/ .

5. Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T. Leav-
ens, and Benjamin Pierce. On binary methods.Theory and Practice of Object Systems,
1(3):217–238, 1995.

6. L. Cardelli. A semantics of multiple inheritance. InSemantics of Data Types, volume 173
of Lecture notes in Computer Science, pages 51–67. Springer-Verlag, 1984.

7. B. Courcelle. Fundamental properties of infinite trees.Theoretical Computer Science,
25:95–169, 1983.

8. Pavel Curtis. Constrained quantification in polymorphic type analysis. Technical Report
CSL-90-1, XEROX Palo Alto Research Center,CSLPubs.parc@xerox.com , 1990.

9. J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for objects. In
OOPSLA ’95, pages 169–184, 1995.

10. J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively constrained types and
its application to OOP. InProceedings of the 1995 Mathematical Foundations of Program-
ming Semantics Conference, volume 1 ofElectronic Notes in Theoretical Computer Science.
Elsevier, 1995.http://www.elsevier.nl/locate/entcs/volume1.html .

11. J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico. An interpretation of typed OOP in a
language with state.Lisp and Symbolic Computation, 8(4):357–397, 1995.

12. Y.-C. Fuh and P. Mishra. Type inference with subtypes. InEuropean Symposium on Pro-
gramming, 1988.

13. Trevor Jim.Principal typings and type inference. PhD thesis, MIT, 1996. (to appear).
14. S. Kaes. Type inference in the presence of overloading, subtyping and recursive types. In

ACM Conference on Lisp and Functional Programming, pages 193–204, 1992.
15. D. B. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphic types.

Information and Control, 71:95–130, 1986.
16. P. Mishra and U. Reddy. Declaration-free type checking. InConference Record of the

Twelfth Annual ACM Symposium on Principles of Programming Languages, pages 7–21,
1985.

17. John C. Mitchell. Coercion and type inference (summary). InConference Record of the
Eleventh Annual ACM Symposium on Principles of Programming Languages, 1984.

18. John C. Mitchell. Type inference with simple subtypes.Journal of Functional Programming,
1:245–285, 1991.

19. Jens Palsberg and Scott Smith. Constrained types and their expressiveness.TOPLAS, 18(5),
September 1996.

20. François Pottier. Simplifying subtyping constraints. InFirst International Conference on
Functional Programming, pages 122–133, 1996.

21. Geoffrey S. Smith. Principal type schemes for functional programs with overloading and
subtyping.Science of Computer Programming, 23, 1994.

