Library compcert.backend.RTL
The RTL intermediate language: abstract syntax and semantics.
RTL stands for "Register Transfer Language". This is the first
intermediate language after Cminor and CminorSel.
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Events.
Require Import Memory.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Registers.
Abstract syntax
No operation -- just branch to the successor.
Iop op args dest succ performs the arithmetic operation op
over the values of registers args, stores the result in dest,
and branches to succ.
Iload chunk addr args dest succ loads a chunk quantity from
the address determined by the addressing mode addr and the
values of the args registers, stores the quantity just read
into dest, and branches to succ.
Istore chunk addr args src succ stores the value of register
src in the chunk quantity at the
the address determined by the addressing mode addr and the
values of the args registers, then branches to succ.
Icall sig fn args dest succ invokes the function determined by
fn (either a function pointer found in a register or a
function name), giving it the values of registers args
as arguments. It stores the return value in dest and branches
to succ.
Itailcall sig fn args performs a function invocation
in tail-call position.
Ibuiltin ef args dest succ calls the built-in function
identified by ef, giving it the values of args as arguments.
It stores the return value in dest and branches to succ.
Icond cond args ifso ifnot evaluates the boolean condition
cond over the values of registers args. If the condition
is true, it transitions to ifso. If the condition is false,
it transitions to ifnot.
Ijumptable arg tbl transitions to the node that is the n-th
element of the list tbl, where n is the signed integer
value of register arg.
Ireturn terminates the execution of the current function
(it has no successor). It returns the value of the given
register, or Vundef if none is given.
Definition code: Type := PTree.t instruction.
Record function: Type := mkfunction {
fn_sig: signature;
fn_params: list reg;
fn_stacksize: Z;
fn_code: code;
fn_entrypoint: node
}.
A function description comprises a control-flow graph (CFG) fn_code
(a partial finite mapping from nodes to instructions). As in Cminor,
fn_sig is the function signature and fn_stacksize the number of bytes
for its stack-allocated activation record. fn_params is the list
of registers that are bound to the values of arguments at call time.
fn_entrypoint is the node of the first instruction of the function
in the CFG. fn_code_wf asserts that all instructions of the function
have nodes no greater than fn_nextpc.
Definition fundef := AST.fundef function.
Definition program := AST.program fundef unit.
Definition funsig (fd: fundef) :=
match fd with
| Internal f => fn_sig f
| External ef => ef_sig ef
end.
Definition genv := Genv.t fundef unit.
Definition regset := Regmap.t val.
Fixpoint init_regs (vl: list val) (rl: list reg) {struct rl} : regset :=
match rl, vl with
| r1 :: rs, v1 :: vs => Regmap.set r1 v1 (init_regs vs rs)
| _, _ => Regmap.init Vundef
end.
The dynamic semantics of RTL is given in small-step style, as a
set of transitions between states. A state captures the current
point in the execution. Three kinds of states appear in the transitions:
- State cs f sp pc rs m describes an execution point within a function. f is the current function. sp is the pointer to the stack block for its current activation (as in Cminor). pc is the current program point (CFG node) within the code c. rs gives the current values for the pseudo-registers. m is the current memory state.
- Callstate cs f args m is an intermediate state that appears during function calls. f is the function definition that we are calling. args (a list of values) are the arguments for this call. m is the current memory state.
- Returnstate cs v m is an intermediate state that appears when a function terminates and returns to its caller. v is the return value and m the current memory state.
Inductive stackframe : Type :=
| Stackframe:
forall (res: reg)
(f: function)
(sp: val)
(pc: node)
(rs: regset),
stackframe.
CompCertX:test-compcert-param-memory The state now depends on the type mem for
memory states, which is an implicit argument. To have Coq
guess the right one, we make state also depend on memory operations.
Inductive state `{memory_model_ops: Mem.MemoryModelOps} : Type :=
| State:
forall (stack: list stackframe)
(f: function)
(sp: val)
(pc: node)
(rs: regset)
(m: mem),
state
| Callstate:
forall (stack: list stackframe)
(f: fundef)
(args: list val)
(m: mem),
state
| Returnstate:
forall (stack: list stackframe)
(v: val)
(m: mem),
state.
| State:
forall (stack: list stackframe)
(f: function)
(sp: val)
(pc: node)
(rs: regset)
(m: mem),
state
| Callstate:
forall (stack: list stackframe)
(f: fundef)
(args: list val)
(m: mem),
state
| Returnstate:
forall (stack: list stackframe)
(v: val)
(m: mem),
state.
CompCertX:test-compcert-param-memory We create section WITHMEM and associated
contexts to parameterize the proof over the memory model. CompCertX:test-compcert-param-extcall Actually, we also need to parameterize
over external functions. To this end, we created a CompilerConfiguration class
(cf. Events) which is designed to be the single class on which the whole CompCert is to be
parameterized. It includes all operations and properties on which CompCert depends:
memory model, semantics of external functions and their preservation through
compilation.
CompCertX:test-compcert-protect-stack-arg We also parameterize over a way to mark blocks writable.
Context `{writable_block_ops: WritableBlockOps}.
Variable ge: genv.
Definition find_function
(ros: reg + ident) (rs: regset) : option fundef :=
match ros with
| inl r => Genv.find_funct ge rs#r
| inr symb =>
match Genv.find_symbol ge symb with
| None => None
| Some b => Genv.find_funct_ptr ge b
end
end.
Variable ge: genv.
Definition find_function
(ros: reg + ident) (rs: regset) : option fundef :=
match ros with
| inl r => Genv.find_funct ge rs#r
| inr symb =>
match Genv.find_symbol ge symb with
| None => None
| Some b => Genv.find_funct_ptr ge b
end
end.
The transitions are presented as an inductive predicate
step ge st1 t st2, where ge is the global environment,
st1 the initial state, st2 the final state, and t the trace
of system calls performed during this transition.
Inductive step: state -> trace -> state -> Prop :=
| exec_Inop:
forall s f sp pc rs m pc´,
(fn_code f)!pc = Some(Inop pc´) ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ rs m)
| exec_Iop:
forall s f sp pc rs m op args res pc´ v,
(fn_code f)!pc = Some(Iop op args res pc´) ->
eval_operation ge sp op rs##args m = Some v ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ (rs#res <- v) m)
| exec_Iload:
forall s f sp pc rs m chunk addr args dst pc´ a v,
(fn_code f)!pc = Some(Iload chunk addr args dst pc´) ->
eval_addressing ge sp addr rs##args = Some a ->
Mem.loadv chunk m a = Some v ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ (rs#dst <- v) m)
| exec_Istore:
forall s f sp pc rs m chunk addr args src pc´ a m´,
(fn_code f)!pc = Some(Istore chunk addr args src pc´) ->
eval_addressing ge sp addr rs##args = Some a ->
Mem.storev chunk m a rs#src = Some m´ ->
forall WRITABLE: forall b o, a = Vptr b o -> writable_block ge b,
step (State s f sp pc rs m)
E0 (State s f sp pc´ rs m´)
| exec_Icall:
forall s f sp pc rs m sig ros args res pc´ fd,
(fn_code f)!pc = Some(Icall sig ros args res pc´) ->
find_function ros rs = Some fd ->
funsig fd = sig ->
step (State s f sp pc rs m)
E0 (Callstate (Stackframe res f sp pc´ rs :: s) fd rs##args m)
| exec_Itailcall:
forall s f stk pc rs m sig ros args fd m´,
(fn_code f)!pc = Some(Itailcall sig ros args) ->
find_function ros rs = Some fd ->
funsig fd = sig ->
Mem.free m stk 0 f.(fn_stacksize) = Some m´ ->
step (State s f (Vptr stk Int.zero) pc rs m)
E0 (Callstate s fd rs##args m´)
| exec_Ibuiltin:
forall s f sp pc rs m ef args res pc´ t v m´,
(fn_code f)!pc = Some(Ibuiltin ef args res pc´) ->
external_call ef (writable_block ge) ge rs##args m t v m´ ->
CompCertX:test-compcert-disable-extcall-as-builtin We may need
to disallow the use of external function calls (EF_external) as
builtins. This is already the case in assembly generation
(PrintAsm.ml), but not in the semantics of languages, which we propose
to fix through providing a switch in the compiler configuration, hence
the CompilerConfigOps class, and this new clause in the operational
semantics.
forall BUILTIN_ENABLED: builtin_enabled ef,
step (State s f sp pc rs m)
t (State s f sp pc´ (rs#res <- v) m´)
| exec_Icond:
forall s f sp pc rs m cond args ifso ifnot b pc´,
(fn_code f)!pc = Some(Icond cond args ifso ifnot) ->
eval_condition cond rs##args m = Some b ->
pc´ = (if b then ifso else ifnot) ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ rs m)
| exec_Ijumptable:
forall s f sp pc rs m arg tbl n pc´,
(fn_code f)!pc = Some(Ijumptable arg tbl) ->
rs#arg = Vint n ->
list_nth_z tbl (Int.unsigned n) = Some pc´ ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ rs m)
| exec_Ireturn:
forall s f stk pc rs m or m´,
(fn_code f)!pc = Some(Ireturn or) ->
Mem.free m stk 0 f.(fn_stacksize) = Some m´ ->
step (State s f (Vptr stk Int.zero) pc rs m)
E0 (Returnstate s (regmap_optget or Vundef rs) m´)
| exec_function_internal:
forall s f args m m´ stk,
Mem.alloc m 0 f.(fn_stacksize) = (m´, stk) ->
step (Callstate s (Internal f) args m)
E0 (State s
f
(Vptr stk Int.zero)
f.(fn_entrypoint)
(init_regs args f.(fn_params))
m´)
| exec_function_external:
forall s ef args res t m m´,
external_call ef (writable_block ge) ge args m t res m´ ->
step (Callstate s (External ef) args m)
t (Returnstate s res m´)
| exec_return:
forall res f sp pc rs s vres m,
step (Returnstate (Stackframe res f sp pc rs :: s) vres m)
E0 (State s f sp pc (rs#res <- vres) m).
Lemma exec_Iop´:
forall s f sp pc rs m op args res pc´ rs´ v,
(fn_code f)!pc = Some(Iop op args res pc´) ->
eval_operation ge sp op rs##args m = Some v ->
rs´ = (rs#res <- v) ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ rs´ m).
Proof.
intros. subst rs´. eapply exec_Iop; eauto.
Qed.
Lemma exec_Iload´:
forall s f sp pc rs m chunk addr args dst pc´ rs´ a v,
(fn_code f)!pc = Some(Iload chunk addr args dst pc´) ->
eval_addressing ge sp addr rs##args = Some a ->
Mem.loadv chunk m a = Some v ->
rs´ = (rs#dst <- v) ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ rs´ m).
Proof.
intros. subst rs´. eapply exec_Iload; eauto.
Qed.
End RELSEM.
step (State s f sp pc rs m)
t (State s f sp pc´ (rs#res <- v) m´)
| exec_Icond:
forall s f sp pc rs m cond args ifso ifnot b pc´,
(fn_code f)!pc = Some(Icond cond args ifso ifnot) ->
eval_condition cond rs##args m = Some b ->
pc´ = (if b then ifso else ifnot) ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ rs m)
| exec_Ijumptable:
forall s f sp pc rs m arg tbl n pc´,
(fn_code f)!pc = Some(Ijumptable arg tbl) ->
rs#arg = Vint n ->
list_nth_z tbl (Int.unsigned n) = Some pc´ ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ rs m)
| exec_Ireturn:
forall s f stk pc rs m or m´,
(fn_code f)!pc = Some(Ireturn or) ->
Mem.free m stk 0 f.(fn_stacksize) = Some m´ ->
step (State s f (Vptr stk Int.zero) pc rs m)
E0 (Returnstate s (regmap_optget or Vundef rs) m´)
| exec_function_internal:
forall s f args m m´ stk,
Mem.alloc m 0 f.(fn_stacksize) = (m´, stk) ->
step (Callstate s (Internal f) args m)
E0 (State s
f
(Vptr stk Int.zero)
f.(fn_entrypoint)
(init_regs args f.(fn_params))
m´)
| exec_function_external:
forall s ef args res t m m´,
external_call ef (writable_block ge) ge args m t res m´ ->
step (Callstate s (External ef) args m)
t (Returnstate s res m´)
| exec_return:
forall res f sp pc rs s vres m,
step (Returnstate (Stackframe res f sp pc rs :: s) vres m)
E0 (State s f sp pc (rs#res <- vres) m).
Lemma exec_Iop´:
forall s f sp pc rs m op args res pc´ rs´ v,
(fn_code f)!pc = Some(Iop op args res pc´) ->
eval_operation ge sp op rs##args m = Some v ->
rs´ = (rs#res <- v) ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ rs´ m).
Proof.
intros. subst rs´. eapply exec_Iop; eauto.
Qed.
Lemma exec_Iload´:
forall s f sp pc rs m chunk addr args dst pc´ rs´ a v,
(fn_code f)!pc = Some(Iload chunk addr args dst pc´) ->
eval_addressing ge sp addr rs##args = Some a ->
Mem.loadv chunk m a = Some v ->
rs´ = (rs#dst <- v) ->
step (State s f sp pc rs m)
E0 (State s f sp pc´ rs´ m).
Proof.
intros. subst rs´. eapply exec_Iload; eauto.
Qed.
End RELSEM.
Execution of whole programs are described as sequences of transitions
from an initial state to a final state. An initial state is a Callstate
corresponding to the invocation of the ``main'' function of the program
without arguments and with an empty call stack.
Inductive initial_state (p: program): state -> Prop :=
| initial_state_intro: forall b f m0,
let ge := Genv.globalenv p in
Genv.init_mem p = Some m0 ->
Genv.find_symbol ge p.(prog_main) = Some b ->
Genv.find_funct_ptr ge b = Some f ->
funsig f = signature_main ->
initial_state p (Callstate nil f nil m0).
A final state is a Returnstate with an empty call stack.
Inductive final_state: state -> int -> Prop :=
| final_state_intro: forall r m,
final_state (Returnstate nil (Vint r) m) r.
The small-step semantics for a program.
CompCertX:test-compcert-protect-stack-arg For whole programs, all blocks are writable.
Section WRITABLEBLOCKALWAYS.
Local Existing Instance writable_block_always_ops.
Definition semantics (p: program) :=
Semantics step (initial_state p) final_state (Genv.globalenv p).
Local Existing Instance writable_block_always_ops.
Definition semantics (p: program) :=
Semantics step (initial_state p) final_state (Genv.globalenv p).
This semantics is receptive to changes in events.
Lemma semantics_receptive:
forall (p: program), receptive (semantics p).
Proof.
intros. constructor; simpl; intros.
assert (t1 = E0 -> exists s2, step (Genv.globalenv p) s t2 s2).
intros. subst. inv H0. exists s1; auto.
inversion H; subst; auto.
exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]].
exists (State s0 f sp pc´ (rs#res <- vres2) m2). eapply exec_Ibuiltin; eauto.
exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]].
exists (Returnstate s0 vres2 m2). econstructor; eauto.
red; intros; inv H; simpl; try omega.
eapply external_call_trace_length; eauto.
eapply external_call_trace_length; eauto.
Qed.
End WRITABLEBLOCKALWAYS.
Operations on RTL abstract syntax
Section TRANSF.
Variable transf: node -> instruction -> instruction.
Definition transf_function (f: function) : function :=
mkfunction
f.(fn_sig)
f.(fn_params)
f.(fn_stacksize)
(PTree.map transf f.(fn_code))
f.(fn_entrypoint).
End TRANSF.
Computation of the possible successors of an instruction.
This is used in particular for dataflow analyses.
Definition successors_instr (i: instruction) : list node :=
match i with
| Inop s => s :: nil
| Iop op args res s => s :: nil
| Iload chunk addr args dst s => s :: nil
| Istore chunk addr args src s => s :: nil
| Icall sig ros args res s => s :: nil
| Itailcall sig ros args => nil
| Ibuiltin ef args res s => s :: nil
| Icond cond args ifso ifnot => ifso :: ifnot :: nil
| Ijumptable arg tbl => tbl
| Ireturn optarg => nil
end.
Definition successors_map (f: function) : PTree.t (list node) :=
PTree.map1 successors_instr f.(fn_code).
The registers used by an instruction
Definition instr_uses (i: instruction) : list reg :=
match i with
| Inop s => nil
| Iop op args res s => args
| Iload chunk addr args dst s => args
| Istore chunk addr args src s => src :: args
| Icall sig (inl r) args res s => r :: args
| Icall sig (inr id) args res s => args
| Itailcall sig (inl r) args => r :: args
| Itailcall sig (inr id) args => args
| Ibuiltin ef args res s => args
| Icond cond args ifso ifnot => args
| Ijumptable arg tbl => arg :: nil
| Ireturn None => nil
| Ireturn (Some arg) => arg :: nil
end.
The register defined by an instruction, if any
Definition instr_defs (i: instruction) : option reg :=
match i with
| Inop s => None
| Iop op args res s => Some res
| Iload chunk addr args dst s => Some dst
| Istore chunk addr args src s => None
| Icall sig ros args res s => Some res
| Itailcall sig ros args => None
| Ibuiltin ef args res s => Some res
| Icond cond args ifso ifnot => None
| Ijumptable arg tbl => None
| Ireturn optarg => None
end.
Maximum PC (node number) in the CFG of a function. All nodes of
the CFG of f are between 1 and max_pc_function f (inclusive).
Definition max_pc_function (f: function) :=
PTree.fold (fun m pc i => Pmax m pc) f.(fn_code) 1%positive.
Lemma max_pc_function_sound:
forall f pc i, f.(fn_code)!pc = Some i -> Ple pc (max_pc_function f).
Proof.
intros until i. unfold max_pc_function.
apply PTree_Properties.fold_rec with (P := fun c m => c!pc = Some i -> Ple pc m).
intros. apply H0. rewrite H; auto.
rewrite PTree.gempty. congruence.
intros. rewrite PTree.gsspec in H2. destruct (peq pc k).
inv H2. xomega.
apply Ple_trans with a. auto. xomega.
Qed.
Maximum pseudo-register mentioned in a function. All results or arguments
of an instruction of f, as well as all parameters of f, are between
1 and max_reg_function (inclusive).
Definition max_reg_instr (m: positive) (pc: node) (i: instruction) :=
match i with
| Inop s => m
| Iop op args res s => fold_left Pmax args (Pmax res m)
| Iload chunk addr args dst s => fold_left Pmax args (Pmax dst m)
| Istore chunk addr args src s => fold_left Pmax args (Pmax src m)
| Icall sig (inl r) args res s => fold_left Pmax args (Pmax r (Pmax res m))
| Icall sig (inr id) args res s => fold_left Pmax args (Pmax res m)
| Itailcall sig (inl r) args => fold_left Pmax args (Pmax r m)
| Itailcall sig (inr id) args => fold_left Pmax args m
| Ibuiltin ef args res s => fold_left Pmax args (Pmax res m)
| Icond cond args ifso ifnot => fold_left Pmax args m
| Ijumptable arg tbl => Pmax arg m
| Ireturn None => m
| Ireturn (Some arg) => Pmax arg m
end.
Definition max_reg_function (f: function) :=
Pmax
(PTree.fold max_reg_instr f.(fn_code) 1%positive)
(fold_left Pmax f.(fn_params) 1%positive).
Remark max_reg_instr_ge:
forall m pc i, Ple m (max_reg_instr m pc i).
Proof.
intros.
assert (X: forall l n, Ple m n -> Ple m (fold_left Pmax l n)).
{ induction l; simpl; intros.
auto.
apply IHl. xomega. }
destruct i; simpl; try (destruct s0); try (apply X); try xomega.
destruct o; xomega.
Qed.
Remark max_reg_instr_def:
forall m pc i r, instr_defs i = Some r -> Ple r (max_reg_instr m pc i).
Proof.
intros.
assert (X: forall l n, Ple r n -> Ple r (fold_left Pmax l n)).
{ induction l; simpl; intros. xomega. apply IHl. xomega. }
destruct i; simpl in *; inv H.
- apply X. xomega.
- apply X. xomega.
- destruct s0; apply X; xomega.
- apply X. xomega.
Qed.
Remark max_reg_instr_uses:
forall m pc i r, In r (instr_uses i) -> Ple r (max_reg_instr m pc i).
Proof.
intros.
assert (X: forall l n, In r l \/ Ple r n -> Ple r (fold_left Pmax l n)).
{ induction l; simpl; intros.
tauto.
apply IHl. destruct H0 as [[A|A]|A]. right; subst; xomega. auto. right; xomega. }
destruct i; simpl in *; try (destruct s0); try (apply X; auto).
- contradiction.
- destruct H. right; subst; xomega. auto.
- destruct H. right; subst; xomega. auto.
- destruct H. right; subst; xomega. auto.
- intuition. subst; xomega.
- destruct o; simpl in H; intuition. subst; xomega.
Qed.
Lemma max_reg_function_def:
forall f pc i r,
f.(fn_code)!pc = Some i -> instr_defs i = Some r -> Ple r (max_reg_function f).
Proof.
intros.
assert (Ple r (PTree.fold max_reg_instr f.(fn_code) 1%positive)).
{ revert H.
apply PTree_Properties.fold_rec with
(P := fun c m => c!pc = Some i -> Ple r m).
- intros. rewrite H in H1; auto.
- rewrite PTree.gempty; congruence.
- intros. rewrite PTree.gsspec in H3. destruct (peq pc k).
+ inv H3. eapply max_reg_instr_def; eauto.
+ apply Ple_trans with a. auto. apply max_reg_instr_ge.
}
unfold max_reg_function. xomega.
Qed.
Lemma max_reg_function_use:
forall f pc i r,
f.(fn_code)!pc = Some i -> In r (instr_uses i) -> Ple r (max_reg_function f).
Proof.
intros.
assert (Ple r (PTree.fold max_reg_instr f.(fn_code) 1%positive)).
{ revert H.
apply PTree_Properties.fold_rec with
(P := fun c m => c!pc = Some i -> Ple r m).
- intros. rewrite H in H1; auto.
- rewrite PTree.gempty; congruence.
- intros. rewrite PTree.gsspec in H3. destruct (peq pc k).
+ inv H3. eapply max_reg_instr_uses; eauto.
+ apply Ple_trans with a. auto. apply max_reg_instr_ge.
}
unfold max_reg_function. xomega.
Qed.
Lemma max_reg_function_params:
forall f r, In r f.(fn_params) -> Ple r (max_reg_function f).
Proof.
intros.
assert (X: forall l n, In r l \/ Ple r n -> Ple r (fold_left Pmax l n)).
{ induction l; simpl; intros.
tauto.
apply IHl. destruct H0 as [[A|A]|A]. right; subst; xomega. auto. right; xomega. }
assert (Y: Ple r (fold_left Pmax f.(fn_params) 1%positive)).
{ apply X; auto. }
unfold max_reg_function. xomega.
Qed.
End WITHCONFIG.