Library compcert.flocq.Core.Fcore_defs
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2010-2013 Sylvie Boldo
Copyright (C) 2010-2013 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
Copyright (C) 2010-2013 Guillaume Melquiond
Basic definitions: float and rounding property
Definition of a floating-point number
Record float (beta : radix) := Float { Fnum : Z ; Fexp : Z }.
Implicit Arguments Fnum [[beta]].
Implicit Arguments Fexp [[beta]].
Variable beta : radix.
Definition F2R (f : float beta) :=
(Z2R (Fnum f) * bpow beta (Fexp f))%R.
Implicit Arguments Fnum [[beta]].
Implicit Arguments Fexp [[beta]].
Variable beta : radix.
Definition F2R (f : float beta) :=
(Z2R (Fnum f) * bpow beta (Fexp f))%R.
Requirements on a rounding mode
Definition round_pred_total (P : R -> R -> Prop) :=
forall x, exists f, P x f.
Definition round_pred_monotone (P : R -> R -> Prop) :=
forall x y f g, P x f -> P y g -> (x <= y)%R -> (f <= g)%R.
Definition round_pred (P : R -> R -> Prop) :=
round_pred_total P /\
round_pred_monotone P.
End Def.
Implicit Arguments Fnum [[beta]].
Implicit Arguments Fexp [[beta]].
Implicit Arguments F2R [[beta]].
Section RND.
forall x, exists f, P x f.
Definition round_pred_monotone (P : R -> R -> Prop) :=
forall x y f g, P x f -> P y g -> (x <= y)%R -> (f <= g)%R.
Definition round_pred (P : R -> R -> Prop) :=
round_pred_total P /\
round_pred_monotone P.
End Def.
Implicit Arguments Fnum [[beta]].
Implicit Arguments Fexp [[beta]].
Implicit Arguments F2R [[beta]].
Section RND.
property of being a round toward -inf
Definition Rnd_DN_pt (F : R -> Prop) (x f : R) :=
F f /\ (f <= x)%R /\
forall g : R, F g -> (g <= x)%R -> (g <= f)%R.
Definition Rnd_DN (F : R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_DN_pt F x (rnd x).
F f /\ (f <= x)%R /\
forall g : R, F g -> (g <= x)%R -> (g <= f)%R.
Definition Rnd_DN (F : R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_DN_pt F x (rnd x).
property of being a round toward +inf
Definition Rnd_UP_pt (F : R -> Prop) (x f : R) :=
F f /\ (x <= f)%R /\
forall g : R, F g -> (x <= g)%R -> (f <= g)%R.
Definition Rnd_UP (F : R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_UP_pt F x (rnd x).
F f /\ (x <= f)%R /\
forall g : R, F g -> (x <= g)%R -> (f <= g)%R.
Definition Rnd_UP (F : R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_UP_pt F x (rnd x).
property of being a round toward zero
Definition Rnd_ZR_pt (F : R -> Prop) (x f : R) :=
( (0 <= x)%R -> Rnd_DN_pt F x f ) /\
( (x <= 0)%R -> Rnd_UP_pt F x f ).
Definition Rnd_ZR (F : R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_ZR_pt F x (rnd x).
( (0 <= x)%R -> Rnd_DN_pt F x f ) /\
( (x <= 0)%R -> Rnd_UP_pt F x f ).
Definition Rnd_ZR (F : R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_ZR_pt F x (rnd x).
property of being a round to nearest
Definition Rnd_N_pt (F : R -> Prop) (x f : R) :=
F f /\
forall g : R, F g -> (Rabs (f - x) <= Rabs (g - x))%R.
Definition Rnd_N (F : R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_N_pt F x (rnd x).
Definition Rnd_NG_pt (F : R -> Prop) (P : R -> R -> Prop) (x f : R) :=
Rnd_N_pt F x f /\
( P x f \/ forall f2 : R, Rnd_N_pt F x f2 -> f2 = f ).
Definition Rnd_NG (F : R -> Prop) (P : R -> R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_NG_pt F P x (rnd x).
Definition Rnd_NA_pt (F : R -> Prop) (x f : R) :=
Rnd_N_pt F x f /\
forall f2 : R, Rnd_N_pt F x f2 -> (Rabs f2 <= Rabs f)%R.
Definition Rnd_NA (F : R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_NA_pt F x (rnd x).
End RND.
F f /\
forall g : R, F g -> (Rabs (f - x) <= Rabs (g - x))%R.
Definition Rnd_N (F : R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_N_pt F x (rnd x).
Definition Rnd_NG_pt (F : R -> Prop) (P : R -> R -> Prop) (x f : R) :=
Rnd_N_pt F x f /\
( P x f \/ forall f2 : R, Rnd_N_pt F x f2 -> f2 = f ).
Definition Rnd_NG (F : R -> Prop) (P : R -> R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_NG_pt F P x (rnd x).
Definition Rnd_NA_pt (F : R -> Prop) (x f : R) :=
Rnd_N_pt F x f /\
forall f2 : R, Rnd_N_pt F x f2 -> (Rabs f2 <= Rabs f)%R.
Definition Rnd_NA (F : R -> Prop) (rnd : R -> R) :=
forall x : R, Rnd_NA_pt F x (rnd x).
End RND.