Library compcert.lib.Postorder
Postorder numbering of a directed graph.
Require Import Wellfounded.
Require Import Permutation.
Require Import Mergesort.
Require Import Coqlib.
Require Import Maps.
Require Import Iteration.
The graph is presented as a finite map from nodes (of type positive)
to the lists of their successors.
A sorting function over lists of positives. While not necessary for
correctness, we process the successors of a node in increasing order.
This preserves more of the shape of the original graph and is good for
our CFG linearization heuristic.
Module PositiveOrd.
Definition t := positive.
Definition leb (x y: t): bool := if plt y x then false else true.
Theorem leb_total : forall x y, is_true (leb x y) \/ is_true (leb y x).
Proof.
unfold leb, is_true; intros.
destruct (plt x y); auto. destruct (plt y x); auto.
elim (Plt_strict x). eapply Plt_trans; eauto.
Qed.
End PositiveOrd.
Module Sort := Mergesort.Sort(PositiveOrd).
The traversal is presented as an iteration that modifies the following state.
Record state : Type := mkstate {
gr: graph;
wrk: list (node * list node);
map: PTree.t positive;
next: positive
}.
Definition init_state (g: graph) (root: node) :=
match g!root with
| Some succs =>
{| gr := PTree.remove root g;
wrk := (root, Sort.sort succs) :: nil;
map := PTree.empty positive;
next := 1%positive |}
| None =>
{| gr := g;
wrk := nil;
map := PTree.empty positive;
next := 1%positive |}
end.
Definition transition (s: state) : PTree.t positive + state :=
match s.(wrk) with
| nil =>
inl _ s.(map)
| (x, nil) :: l =>
inr _ {| gr := s.(gr);
wrk := l;
map := PTree.set x s.(next) s.(map);
next := Psucc s.(next) |}
| (x, y :: succs_x) :: l =>
match s.(gr)!y with
| None =>
inr _ {| gr := s.(gr);
wrk := (x, succs_x) :: l;
map := s.(map);
next := s.(next) |}
| Some succs_y =>
inr _ {| gr := PTree.remove y s.(gr);
wrk := (y, Sort.sort succs_y) :: (x, succs_x) :: l;
map := s.(map);
next := s.(next) |}
end
end.
Section POSTORDER.
Variable ginit: graph.
Variable root: node.
Inductive invariant (s: state) : Prop :=
Invariant
(SUB: forall x y, s.(gr)!x = Some y -> ginit!x = Some y)
(ROOT: s.(gr)!root = None)
(BELOW: forall x y, s.(map)!x = Some y -> Plt y s.(next))
(INJ: forall x1 x2 y, s.(map)!x1 = Some y -> s.(map)!x2 = Some y -> x1 = x2)
(REM: forall x y, s.(gr)!x = Some y -> s.(map)!x = None)
(COLOR: forall x succs n y,
ginit!x = Some succs -> s.(map)!x = Some n ->
In y succs -> s.(gr)!y = None)
(WKLIST: forall x l, In (x, l) s.(wrk) ->
s.(gr)!x = None /\
exists l´, ginit!x = Some l´
/\ forall y, In y l´ -> ~In y l -> s.(gr)!y = None)
(GREY: forall x, ginit!x <> None -> s.(gr)!x = None -> s.(map)!x = None ->
exists l, In (x,l) s.(wrk)).
Inductive postcondition (map: PTree.t positive) : Prop :=
Postcondition
(INJ: forall x1 x2 y, map!x1 = Some y -> map!x2 = Some y -> x1 = x2)
(ROOT: ginit!root <> None -> map!root <> None)
(SUCCS: forall x succs y, ginit!x = Some succs -> map!x <> None -> In y succs -> ginit!y <> None -> map!y <> None).
Remark In_sort:
forall x l, In x l <-> In x (Sort.sort l).
Proof.
intros; split; intros.
apply Permutation_in with l. apply Sort.Permuted_sort. auto.
apply Permutation_in with (Sort.sort l). apply Permutation_sym. apply Sort.Permuted_sort. auto.
Qed.
Lemma transition_spec:
forall s, invariant s ->
match transition s with inr s´ => invariant s´ | inl m => postcondition m end.
Proof.
intros. inv H. unfold transition. destruct (wrk s) as [ | [x succ_x] l].
constructor; intros.
eauto.
caseEq (s.(map)!root); intros. congruence. exploit GREY; eauto. intros [? ?]; contradiction.
destruct (s.(map)!x) eqn:?; try congruence.
destruct (s.(map)!y) eqn:?; try congruence.
exploit COLOR; eauto. intros. exploit GREY; eauto. intros [? ?]; contradiction.
destruct succ_x as [ | y succ_x ].
constructor; simpl; intros.
eauto.
eauto.
rewrite PTree.gsspec in H. destruct (peq x0 x). inv H.
apply Plt_succ.
apply Plt_trans_succ. eauto.
rewrite PTree.gsspec in H. rewrite PTree.gsspec in H0.
destruct (peq x1 x); destruct (peq x2 x); subst.
auto.
inv H. exploit BELOW; eauto. intros. eelim Plt_strict; eauto.
inv H0. exploit BELOW; eauto. intros. eelim Plt_strict; eauto.
eauto.
intros. rewrite PTree.gso; eauto. red; intros; subst x0.
exploit (WKLIST x nil); auto with coqlib. intros [A B]. congruence.
rewrite PTree.gsspec in H0. destruct (peq x0 x).
inv H0. exploit (WKLIST x nil); auto with coqlib.
intros [A [l´ [B C]]].
assert (l´ = succs) by congruence. subst l´.
apply C; auto.
eauto.
apply WKLIST. auto with coqlib.
rewrite PTree.gsspec in H1. destruct (peq x0 x). inv H1.
exploit GREY; eauto. intros [l´ A]. simpl in A; destruct A.
congruence.
exists l´; auto.
destruct ((gr s)!y) as [ succs_y | ] eqn:?.
constructor; simpl; intros.
rewrite PTree.grspec in H. destruct (PTree.elt_eq x0 y); eauto. inv H.
rewrite PTree.gro. auto. congruence.
eauto.
eauto.
rewrite PTree.grspec in H. destruct (PTree.elt_eq x0 y); eauto. inv H.
rewrite PTree.grspec. destruct (PTree.elt_eq y0 y); eauto.
destruct H.
inv H. split. apply PTree.grs. exists succs_y; split. eauto.
intros. rewrite In_sort in H. tauto.
destruct H.
inv H. exploit WKLIST; eauto with coqlib. intros [A [l´ [B C]]].
split. rewrite PTree.grspec. destruct (PTree.elt_eq x0 y); auto.
exists l´; split. auto. intros. rewrite PTree.grspec. destruct (PTree.elt_eq y0 y); auto.
apply C; auto. simpl. intuition congruence.
exploit (WKLIST x0 l0); eauto with coqlib. intros [A [l´ [B C]]].
split. rewrite PTree.grspec. destruct (PTree.elt_eq x0 y); auto.
exists l´; split; auto. intros.
rewrite PTree.grspec. destruct (PTree.elt_eq y0 y); auto.
rewrite PTree.grspec in H0. destruct (PTree.elt_eq x0 y) in H0.
subst. exists (Sort.sort succs_y); auto with coqlib.
exploit GREY; eauto. simpl. intros [l1 A]. destruct A.
inv H2. exists succ_x; auto.
exists l1; auto.
constructor; simpl; intros; eauto.
destruct H. inv H.
exploit (WKLIST x0); eauto with coqlib. intros [A [l´ [B C]]].
split. auto. exists l´; split. auto.
intros. destruct (peq y y0). congruence. apply C; auto. simpl. intuition congruence.
eapply WKLIST; eauto with coqlib.
exploit GREY; eauto. intros [l1 A]. simpl in A. destruct A.
inv H2. exists succ_x; auto.
exists l1; auto.
Qed.
Lemma initial_state_spec:
invariant (init_state ginit root).
Proof.
unfold init_state. destruct (ginit!root) as [succs|] eqn:?.
constructor; simpl; intros.
rewrite PTree.grspec in H. destruct (PTree.elt_eq x root). inv H. auto.
apply PTree.grs.
rewrite PTree.gempty in H; inv H.
rewrite PTree.gempty in H; inv H.
apply PTree.gempty.
rewrite PTree.gempty in H0; inv H0.
destruct H; inv H.
split. apply PTree.grs. exists succs; split; auto.
intros. rewrite In_sort in H. intuition.
rewrite PTree.grspec in H0. destruct (PTree.elt_eq x root).
subst. exists (Sort.sort succs); auto.
contradiction.
constructor; simpl; intros.
auto.
auto.
rewrite PTree.gempty in H; inv H.
rewrite PTree.gempty in H; inv H.
apply PTree.gempty.
rewrite PTree.gempty in H0; inv H0.
contradiction.
contradiction.
Qed.
Termination criterion.
Fixpoint size_worklist (w: list (positive * list positive)) : nat :=
match w with
| nil => 0%nat
| (x, succs) :: w´ => (S (List.length succs) + size_worklist w´)%nat
end.
Definition lt_state (s1 s2: state) : Prop :=
lex_ord lt lt (PTree_Properties.cardinal s1.(gr), size_worklist s1.(wrk))
(PTree_Properties.cardinal s2.(gr), size_worklist s2.(wrk)).
Lemma lt_state_wf: well_founded lt_state.
Proof.
set (f := fun s => (PTree_Properties.cardinal s.(gr), size_worklist s.(wrk))).
change (well_founded (fun s1 s2 => lex_ord lt lt (f s1) (f s2))).
apply wf_inverse_image.
apply wf_lex_ord.
apply lt_wf. apply lt_wf.
Qed.
Lemma transition_decreases:
forall s s´, transition s = inr _ s´ -> lt_state s´ s.
Proof.
unfold transition, lt_state; intros.
destruct (wrk s) as [ | [x succs] l].
discriminate.
destruct succs as [ | y succs ].
inv H. simpl. apply lex_ord_right. omega.
destruct ((gr s)!y) as [succs´|] eqn:?.
inv H. simpl. apply lex_ord_left. eapply PTree_Properties.cardinal_remove; eauto.
inv H. simpl. apply lex_ord_right. omega.
Qed.
End POSTORDER.
Definition postorder (g: graph) (root: node) :=
WfIter.iterate _ _ transition lt_state lt_state_wf transition_decreases (init_state g root).
Inductive reachable (g: graph) (root: positive) : positive -> Prop :=
| reachable_root:
reachable g root root
| reachable_succ: forall x succs y,
reachable g root x -> g!x = Some succs -> In y succs ->
reachable g root y.
Theorem postorder_correct:
forall g root,
let m := postorder g root in
(forall x1 x2 y, m!x1 = Some y -> m!x2 = Some y -> x1 = x2)
/\ (forall x, reachable g root x -> g!x <> None -> m!x <> None).
Proof.
intros.
assert (postcondition g root m).
unfold m. unfold postorder.
apply WfIter.iterate_prop with (P := invariant g root).
apply transition_spec.
apply initial_state_spec.
inv H.
split. auto.
induction 1; intros.
apply ROOT; auto.
eapply SUCCS; eauto. apply IHreachable. congruence.
Qed.