Library compcertx.backend.TunnelingproofX
Require compcert.backend.Tunnelingproof.
Require LTLX.
Import Coqlib.
Import Globalenvs.
Import Events.
Import Smallstep.
Import LTLX.
Import Tunneling.
Export Tunnelingproof.
Section WITHCONFIG.
Context `{compiler_config: CompilerConfiguration}.
Variable prog: program.
Let tprog := tunnel_program prog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma transf_initial_states:
∀ init_ls i sg args m,
∀ st1, initial_state init_ls prog i sg args m st1 →
∃ st2, initial_state init_ls tprog i sg args m st2 ∧ match_states st1 st2.
Proof.
intros. inversion H.
econstructor; split.
econstructor.
unfold tprog. rewrite symbols_preserved; eauto.
unfold tprog. erewrite function_ptr_translated; eauto.
subst. symmetry; eauto using sig_preserved.
assumption.
constructor; auto. constructor.
Qed.
Lemma transf_final_states:
∀ init_ls,
∀ sg,
∀ st1 st2 r,
match_states st1 st2 → final_state init_ls sg st1 r → final_state init_ls sg st2 r.
Proof.
intros. inv H0. inv H. inv H4. econstructor; eauto.
Qed.
Theorem transf_program_correct:
∀ init_ls i sg args m,
forward_simulation (semantics init_ls prog i sg args m) (semantics init_ls tprog i sg args m).
Proof.
intros.
eapply forward_simulation_opt.
apply symbols_preserved.
apply transf_initial_states.
apply transf_final_states.
apply tunnel_step_correct.
typeclasses eauto.
Qed.
End WITHCONFIG.
Require LTLX.
Import Coqlib.
Import Globalenvs.
Import Events.
Import Smallstep.
Import LTLX.
Import Tunneling.
Export Tunnelingproof.
Section WITHCONFIG.
Context `{compiler_config: CompilerConfiguration}.
Variable prog: program.
Let tprog := tunnel_program prog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma transf_initial_states:
∀ init_ls i sg args m,
∀ st1, initial_state init_ls prog i sg args m st1 →
∃ st2, initial_state init_ls tprog i sg args m st2 ∧ match_states st1 st2.
Proof.
intros. inversion H.
econstructor; split.
econstructor.
unfold tprog. rewrite symbols_preserved; eauto.
unfold tprog. erewrite function_ptr_translated; eauto.
subst. symmetry; eauto using sig_preserved.
assumption.
constructor; auto. constructor.
Qed.
Lemma transf_final_states:
∀ init_ls,
∀ sg,
∀ st1 st2 r,
match_states st1 st2 → final_state init_ls sg st1 r → final_state init_ls sg st2 r.
Proof.
intros. inv H0. inv H. inv H4. econstructor; eauto.
Qed.
Theorem transf_program_correct:
∀ init_ls i sg args m,
forward_simulation (semantics init_ls prog i sg args m) (semantics init_ls tprog i sg args m).
Proof.
intros.
eapply forward_simulation_opt.
apply symbols_preserved.
apply transf_initial_states.
apply transf_final_states.
apply tunnel_step_correct.
typeclasses eauto.
Qed.
End WITHCONFIG.