Library mcertikos.mm.MPTInit
*********************************************************************** * * * The CertiKOS Certified Kit Operating System * * * * The FLINT Group, Yale University * * * * Copyright The FLINT Group, Yale University. All rights reserved. * * This file is distributed under the terms of the Yale University * * Non-Commercial License Agreement. * * * ***********************************************************************
This file defines the abstract data and the primitives for the MPTInit layer, which will initialize the page tables and enable the paging mechanism
Require Import Coqlib.
Require Import Maps.
Require Import ASTExtra.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Stacklayout.
Require Import Globalenvs.
Require Import AsmX.
Require Import Smallstep.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import FlatMemory.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import RealParams.
Require Import PrimSemantics.
Require Import LAsm.
Require Import LoadStoreSem2.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import CalRealPTPool.
Require Import CalRealPT.
Require Import CalRealIDPDE.
Require Import CalRealInitPTE.
Require Import INVLemmaContainer.
Require Import INVLemmaMemory.
Require Import INVLemmaDevice.
Require Import FutureTactic.
Require Import AbstractDataType.
Require Export ObjCPU.
Require Export ObjFlatMem.
Require Export ObjContainer.
Require Export ObjPMM.
Require Export ObjVMM.
Require Export ObjLMM.
Require Export ObjSerialDevice.
Require Export ObjInterruptController.
Require Import OracleInstances.
Require Import DeviceStateDataType.
Section WITHMEM.
Local Open Scope Z_scope.
Locate flatmem_copy_spec.
Context `{real_params: RealParams}.
Require Import Maps.
Require Import ASTExtra.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Stacklayout.
Require Import Globalenvs.
Require Import AsmX.
Require Import Smallstep.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import FlatMemory.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import RealParams.
Require Import PrimSemantics.
Require Import LAsm.
Require Import LoadStoreSem2.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import CalRealPTPool.
Require Import CalRealPT.
Require Import CalRealIDPDE.
Require Import CalRealInitPTE.
Require Import INVLemmaContainer.
Require Import INVLemmaMemory.
Require Import INVLemmaDevice.
Require Import FutureTactic.
Require Import AbstractDataType.
Require Export ObjCPU.
Require Export ObjFlatMem.
Require Export ObjContainer.
Require Export ObjPMM.
Require Export ObjVMM.
Require Export ObjLMM.
Require Export ObjSerialDevice.
Require Export ObjInterruptController.
Require Import OracleInstances.
Require Import DeviceStateDataType.
Section WITHMEM.
Local Open Scope Z_scope.
Locate flatmem_copy_spec.
Context `{real_params: RealParams}.
Record high_level_invariant (abd: RData) :=
mkInvariant {
valid_nps: pg abd = true → kern_low ≤ nps abd ≤ maxpage;
valid_AT_kern: pg abd = true → LAT_kern (LAT abd) (nps abd);
valid_AT_usr: pg abd = true → LAT_usr (LAT abd) (nps abd);
valid_kern: ipt abd = false → pg abd = true;
valid_iptt: ipt abd = true → ikern abd = true;
valid_iptf: ikern abd = false → ipt abd = false;
valid_ihost: ihost abd = false → pg abd = true ∧ ikern abd = true;
valid_container: Container_valid (AC abd);
valid_pperm_ppage: Lconsistent_ppage (LAT abd) (pperm abd) (nps abd);
init_pperm: pg abd = false → (pperm abd) = ZMap.init PGUndef;
valid_PMap: pg abd = true →
(∀ i, 0≤ i < num_proc →
PMap_valid (ZMap.get i (ptpool abd)));
valid_PT_kern: pg abd = true → ipt abd = true → (PT abd) = 0;
valid_PMap_kern: pg abd = true → PMap_kern (ZMap.get 0 (ptpool abd));
valid_PT: pg abd = true → 0≤ PT abd < num_proc;
valid_dirty: dirty_ppage (pperm abd) (HP abd);
valid_idpde: pg abd = true → IDPDE_init (idpde abd);
valid_pperm_pmap: consistent_pmap (ptpool abd) (pperm abd) (LAT abd) (nps abd);
valid_pmap_domain: consistent_pmap_domain (ptpool abd) (pperm abd) (LAT abd) (nps abd);
valid_lat_domain: consistent_lat_domain (ptpool abd) (LAT abd) (nps abd);
valid_LATable_nil: LATable_nil (LAT abd);
valid_pg_init: pg abd = init abd;
valid_cons_buf_rpos: 0 ≤ rpos (console abd) < CONSOLE_BUFFER_SIZE;
valid_cons_buf_length: 0 ≤ Zlength (cons_buf (console abd)) < CONSOLE_BUFFER_SIZE
}.
mkInvariant {
valid_nps: pg abd = true → kern_low ≤ nps abd ≤ maxpage;
valid_AT_kern: pg abd = true → LAT_kern (LAT abd) (nps abd);
valid_AT_usr: pg abd = true → LAT_usr (LAT abd) (nps abd);
valid_kern: ipt abd = false → pg abd = true;
valid_iptt: ipt abd = true → ikern abd = true;
valid_iptf: ikern abd = false → ipt abd = false;
valid_ihost: ihost abd = false → pg abd = true ∧ ikern abd = true;
valid_container: Container_valid (AC abd);
valid_pperm_ppage: Lconsistent_ppage (LAT abd) (pperm abd) (nps abd);
init_pperm: pg abd = false → (pperm abd) = ZMap.init PGUndef;
valid_PMap: pg abd = true →
(∀ i, 0≤ i < num_proc →
PMap_valid (ZMap.get i (ptpool abd)));
valid_PT_kern: pg abd = true → ipt abd = true → (PT abd) = 0;
valid_PMap_kern: pg abd = true → PMap_kern (ZMap.get 0 (ptpool abd));
valid_PT: pg abd = true → 0≤ PT abd < num_proc;
valid_dirty: dirty_ppage (pperm abd) (HP abd);
valid_idpde: pg abd = true → IDPDE_init (idpde abd);
valid_pperm_pmap: consistent_pmap (ptpool abd) (pperm abd) (LAT abd) (nps abd);
valid_pmap_domain: consistent_pmap_domain (ptpool abd) (pperm abd) (LAT abd) (nps abd);
valid_lat_domain: consistent_lat_domain (ptpool abd) (LAT abd) (nps abd);
valid_LATable_nil: LATable_nil (LAT abd);
valid_pg_init: pg abd = init abd;
valid_cons_buf_rpos: 0 ≤ rpos (console abd) < CONSOLE_BUFFER_SIZE;
valid_cons_buf_length: 0 ≤ Zlength (cons_buf (console abd)) < CONSOLE_BUFFER_SIZE
}.
Global Instance mptinit_data_ops : CompatDataOps RData :=
{
empty_data := init_adt;
high_level_invariant := high_level_invariant;
low_level_invariant := low_level_invariant;
kernel_mode adt := ikern adt = true ∧ ihost adt = true
}.
{
empty_data := init_adt;
high_level_invariant := high_level_invariant;
low_level_invariant := low_level_invariant;
kernel_mode adt := ikern adt = true ∧ ihost adt = true
}.
Section Property_Abstract_Data.
Lemma empty_data_high_level_invariant:
high_level_invariant init_adt.
Proof.
constructor; simpl; intros; auto; try inv H; try solve_list; try omega.
- apply empty_container_valid.
- eapply Lconsistent_ppage_init.
- eapply dirty_ppage_init.
- eapply consistent_pmap_init.
- eapply consistent_pmap_domain_init.
- eapply consistent_lat_domain_init.
- eapply LATable_nil_int.
Qed.
End Property_Abstract_Data.
Lemma empty_data_high_level_invariant:
high_level_invariant init_adt.
Proof.
constructor; simpl; intros; auto; try inv H; try solve_list; try omega.
- apply empty_container_valid.
- eapply Lconsistent_ppage_init.
- eapply dirty_ppage_init.
- eapply consistent_pmap_init.
- eapply consistent_pmap_domain_init.
- eapply consistent_lat_domain_init.
- eapply LATable_nil_int.
Qed.
End Property_Abstract_Data.
Global Instance mptinit_data_prf : CompatData RData.
Proof.
constructor.
- apply low_level_invariant_incr.
- apply empty_data_low_level_invariant.
- apply empty_data_high_level_invariant.
Qed.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModel}.
Context `{Hmwd: UseMemWithData mem}.
Proof.
constructor.
- apply low_level_invariant_incr.
- apply empty_data_low_level_invariant.
- apply empty_data_high_level_invariant.
Qed.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModel}.
Context `{Hmwd: UseMemWithData mem}.
Section INV.
Section PALLOC.
Lemma palloc_high_level_inv:
∀ d d´ i n,
palloc_spec i d = Some (d´, n) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; simpl; eauto.
- intros; eapply LAT_kern_norm; eauto. eapply _x.
- intros; eapply LAT_usr_norm; eauto.
- eapply alloc_container_valid´; eauto.
- eapply Lconsistent_ppage_norm_alloc; eauto.
- intros; congruence.
- eapply dirty_ppage_gso_alloc; eauto.
- eapply consistent_pmap_gso_at_false; eauto. apply _x.
- eapply consistent_pmap_domain_gso_at_false; eauto. apply _x.
- eapply consistent_lat_domain_gss_nil; eauto.
- eapply LATable_nil_gss_nil; eauto.
Qed.
Lemma palloc_low_level_inv:
∀ d d´ n n´ i,
palloc_spec i d = Some (d´, n) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma palloc_kernel_mode:
∀ d d´ i n,
palloc_spec i d = Some (d´, n) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
Global Instance palloc_inv: PreservesInvariants palloc_spec.
Proof.
preserves_invariants_simpl´.
- eapply palloc_low_level_inv; eassumption.
- eapply palloc_high_level_inv; eassumption.
- eapply palloc_kernel_mode; eassumption.
Qed.
End PALLOC.
Global Instance pfree_inv: PreservesInvariants pfree_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; auto.
- intros; eapply LAT_kern_norm; eauto.
- intros; eapply LAT_usr_norm; eauto.
- eapply Lconsistent_ppage_norm_undef; eauto.
- eapply dirty_ppage_gso_undef; eauto.
- eapply consistent_pmap_gso_pperm_alloc; eauto.
- eapply consistent_pmap_domain_gso_at_0; eauto.
- eapply consistent_lat_domain_gss_nil; eauto.
- eapply LATable_nil_gss_nil; eauto.
Qed.
Global Instance container_split_inv: PreservesInvariants container_split_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; auto.
rewrite <- H0 in H2.
exploit split_container_valid; eauto.
Qed.
Section PALLOC.
Lemma palloc_high_level_inv:
∀ d d´ i n,
palloc_spec i d = Some (d´, n) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; simpl; eauto.
- intros; eapply LAT_kern_norm; eauto. eapply _x.
- intros; eapply LAT_usr_norm; eauto.
- eapply alloc_container_valid´; eauto.
- eapply Lconsistent_ppage_norm_alloc; eauto.
- intros; congruence.
- eapply dirty_ppage_gso_alloc; eauto.
- eapply consistent_pmap_gso_at_false; eauto. apply _x.
- eapply consistent_pmap_domain_gso_at_false; eauto. apply _x.
- eapply consistent_lat_domain_gss_nil; eauto.
- eapply LATable_nil_gss_nil; eauto.
Qed.
Lemma palloc_low_level_inv:
∀ d d´ n n´ i,
palloc_spec i d = Some (d´, n) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma palloc_kernel_mode:
∀ d d´ i n,
palloc_spec i d = Some (d´, n) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
Global Instance palloc_inv: PreservesInvariants palloc_spec.
Proof.
preserves_invariants_simpl´.
- eapply palloc_low_level_inv; eassumption.
- eapply palloc_high_level_inv; eassumption.
- eapply palloc_kernel_mode; eassumption.
Qed.
End PALLOC.
Global Instance pfree_inv: PreservesInvariants pfree_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; auto.
- intros; eapply LAT_kern_norm; eauto.
- intros; eapply LAT_usr_norm; eauto.
- eapply Lconsistent_ppage_norm_undef; eauto.
- eapply dirty_ppage_gso_undef; eauto.
- eapply consistent_pmap_gso_pperm_alloc; eauto.
- eapply consistent_pmap_domain_gso_at_0; eauto.
- eapply consistent_lat_domain_gss_nil; eauto.
- eapply LATable_nil_gss_nil; eauto.
Qed.
Global Instance container_split_inv: PreservesInvariants container_split_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; auto.
rewrite <- H0 in H2.
exploit split_container_valid; eauto.
Qed.
device primitives
Require Export ObjInterruptController.
Global Instance cli_inv: PreservesInvariants cli_spec.
Proof.
preserves_invariants_direct low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance sti_inv: PreservesInvariants sti_spec.
Proof.
preserves_invariants_direct low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjConsole.
Require Import INVLemmaDriver.
Global Instance cons_buf_read_inv:
PreservesInvariants cons_buf_read_spec.
Proof.
preserves_invariants_nested low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjSerialDriver.
Global Instance serial_putc_inv:
PreservesInvariants serial_putc_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjInterruptManagement.
Require Import INVLemmaInterrupt.
Global Instance serial_intr_disable_inv: PreservesInvariants serial_intr_disable_spec.
Proof.
constructor; simpl; intros; inv_generic_sem H;
inversion H0; econstructor; generalize (serial_intr_disable_preserves_all d d´ H2);
intros Hpre; blast Hpre; eauto 2 with serial_intr_disable_invariantdb.
Qed.
Global Instance serial_intr_enable_inv: PreservesInvariants serial_intr_enable_spec.
Proof.
constructor; simpl; intros; inv_generic_sem H;
inversion H0; econstructor; generalize (serial_intr_enable_preserves_all d d´ H2);
intros Hpre; blast Hpre; eauto 2 with serial_intr_enable_invariantdb.
Qed.
Global Instance trapin_inv: PrimInvariants trapin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance trapout_inv: PrimInvariants trapout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance hostin_inv: PrimInvariants hostin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance hostout_inv: PrimInvariants hostout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance ptin_inv: PrimInvariants ptin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance ptout_inv: PrimInvariants ptout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance fstore_inv: PreservesInvariants fstore_spec.
Proof.
split; intros; inv_generic_sem H; inv H0; functional inversion H2.
- functional inversion H. split; trivial.
- functional inversion H.
split; subst; simpl;
try (eapply dirty_ppage_store_unmaped; try reflexivity; try eassumption); trivial.
- functional inversion H0.
split; simpl; try assumption.
Qed.
Global Instance setPT_inv: PreservesInvariants setPT_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; auto.
Qed.
Global Instance pt_init_inv: PreservesInvariants pt_init_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant.
- apply real_nps_range.
- apply real_lat_kern_valid.
- apply real_lat_usr_valid.
- apply AC_init_container_valid.
- rewrite init_pperm0; try assumption.
apply Lreal_pperm_valid.
- eapply real_pt_PMap_valid; eauto.
- apply real_pt_PMap_kern.
- omega.
- assumption.
- apply real_idpde_init.
- apply real_pt_consistent_pmap.
- apply real_pt_consistent_pmap_domain.
- apply Lreal_at_consistent_lat_domain.
- eapply LATable_nil_real; eauto.
Qed.
Global Instance ptRmv_inv: PreservesInvariants ptRmv0_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto;
try (rewrite ZMap.gso; eauto; fail).
- intros; eapply LAT_kern_norm; eauto.
- intros; eapply LAT_usr_norm; eauto.
- eapply Lconsistent_ppage_norm; eassumption.
- eapply PMap_valid_gso_unp; eauto.
- functional inversion H1.
eapply PMap_kern_gso; eauto.
- functional inversion H1.
eapply consistent_pmap_at_ptp_same; try eassumption; omega.
- eapply consistent_pmap_domain_remove; eauto.
- functional inversion H1.
eapply consistent_lat_domain_gss_remove; eauto; omega.
- eapply LATable_nil_gso_true; eauto.
Qed.
Section PTINSERT.
Section PTINSERT_PTE.
Lemma ptInsertPTE_high_level_inv:
∀ d d´ n vadr padr p,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0; constructor_gso_simpl_tac; intros.
- eapply LAT_kern_norm; eauto.
- eapply LAT_usr_norm; eauto.
- eapply Lconsistent_ppage_norm; eassumption.
- eapply PMap_valid_gso_valid; eauto.
- functional inversion H2. functional inversion H1.
eapply PMap_kern_gso; eauto.
- functional inversion H2. functional inversion H0.
eapply consistent_pmap_ptp_same; try eassumption.
eapply consistent_pmap_gso_pperm_alloc´; eassumption.
- functional inversion H2.
eapply consistent_pmap_domain_append; eauto.
destruct (ZMap.get pti pdt); try contradiction;
red; intros (v0 & p0 & He); contra_inv.
- eapply consistent_lat_domain_gss_append; eauto.
subst pti; destruct (ZMap.get (PTX vadr) pdt); try contradiction;
red; intros (v0 & p0 & He); contra_inv.
- eapply LATable_nil_gso_true; eauto.
Qed.
Lemma ptInsertPTE_low_level_inv:
∀ d d´ n vadr padr p n´,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma ptInsertPTE_kernel_mode:
∀ d d´ n vadr padr p,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
End PTINSERT_PTE.
Section PTPALLOCPDE.
Lemma ptAllocPDE_high_level_inv:
∀ d d´ n vadr v,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0; constructor_gso_simpl_tac; intros.
- eapply LAT_kern_norm; eauto. eapply _x.
- eapply LAT_usr_norm; eauto.
- eapply alloc_container_valid´; eauto.
- apply Lconsistent_ppage_norm_hide; try assumption.
- congruence.
- eapply PMap_valid_gso_pde_unp; eauto.
eapply real_init_PTE_defined.
- functional inversion H3.
eapply PMap_kern_gso; eauto.
- eapply dirty_ppage_gss; eauto.
- eapply consistent_pmap_ptp_gss; eauto; apply _x.
- eapply consistent_pmap_domain_gso_at_false; eauto; try apply _x.
eapply consistent_pmap_domain_ptp_unp; eauto.
apply real_init_PTE_unp.
- apply consistent_lat_domain_gss_nil; eauto.
apply consistent_lat_domain_gso_p; eauto.
- eapply LATable_nil_gso_true; eauto.
Qed.
Lemma ptAllocPDE_low_level_inv:
∀ d d´ n vadr v n´,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma ptAllocPDE_kernel_mode:
∀ d d´ n vadr v,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
End PTPALLOCPDE.
Lemma ptInsert_high_level_inv:
∀ d d´ n vadr padr p v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_high_level_inv; eassumption.
- eapply ptAllocPDE_high_level_inv; eassumption.
- eapply ptInsertPTE_high_level_inv; try eassumption.
eapply ptAllocPDE_high_level_inv; eassumption.
Qed.
Lemma ptInsert_low_level_inv:
∀ d d´ n vadr padr p n´ v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_low_level_inv; eassumption.
- eapply ptAllocPDE_low_level_inv; eassumption.
- eapply ptInsertPTE_low_level_inv; try eassumption.
eapply ptAllocPDE_low_level_inv; eassumption.
Qed.
Lemma ptInsert_kernel_mode:
∀ d d´ n vadr padr p v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_kernel_mode; eassumption.
- eapply ptAllocPDE_kernel_mode; eassumption.
- eapply ptInsertPTE_kernel_mode; try eassumption.
eapply ptAllocPDE_kernel_mode; eassumption.
Qed.
Global Instance ptInsert_inv: PreservesInvariants ptInsert0_spec.
Proof.
preserves_invariants_simpl´.
- eapply ptInsert_low_level_inv; eassumption.
- eapply ptInsert_high_level_inv; eassumption.
- eapply ptInsert_kernel_mode; eassumption.
Qed.
End PTINSERT.
Global Instance ptFreePDE_inv: PreservesInvariants ptFreePDE0_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto;
try (rewrite ZMap.gso; eauto; fail); intros.
- functional inversion H0.
eapply LAT_kern_consistent_pmap; try eassumption; eauto; omega.
- eapply LAT_usr_norm; eauto.
- apply Lconsistent_ppage_norm_undef; try assumption.
- eapply PMap_valid_gss_pde_unp; eauto.
- functional inversion H0.
eapply PMap_kern_gso; eauto.
- eapply dirty_ppage_gso_undef; eauto.
- functional inversion H0.
eapply consistent_pmap_ptp_gss´; eauto; omega.
- eapply consistent_pmap_domain_gso_at_0.
eapply consistent_pmap_domain_ptp_pde_unp; eauto.
functional inversion H0.
eapply valid_pperm_pmap0; try eassumption; omega.
- apply consistent_lat_domain_gss_nil; eauto.
eapply consistent_lat_domain_gso_free; eauto.
- eapply LATable_nil_gss_nil; eauto.
Qed.
Global Instance flatmem_copy_inv: PreservesInvariants flatmem_copy_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant;
try eapply dirty_ppage_gss_copy; eauto.
Qed.
End INV.
Global Instance cli_inv: PreservesInvariants cli_spec.
Proof.
preserves_invariants_direct low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance sti_inv: PreservesInvariants sti_spec.
Proof.
preserves_invariants_direct low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjConsole.
Require Import INVLemmaDriver.
Global Instance cons_buf_read_inv:
PreservesInvariants cons_buf_read_spec.
Proof.
preserves_invariants_nested low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjSerialDriver.
Global Instance serial_putc_inv:
PreservesInvariants serial_putc_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjInterruptManagement.
Require Import INVLemmaInterrupt.
Global Instance serial_intr_disable_inv: PreservesInvariants serial_intr_disable_spec.
Proof.
constructor; simpl; intros; inv_generic_sem H;
inversion H0; econstructor; generalize (serial_intr_disable_preserves_all d d´ H2);
intros Hpre; blast Hpre; eauto 2 with serial_intr_disable_invariantdb.
Qed.
Global Instance serial_intr_enable_inv: PreservesInvariants serial_intr_enable_spec.
Proof.
constructor; simpl; intros; inv_generic_sem H;
inversion H0; econstructor; generalize (serial_intr_enable_preserves_all d d´ H2);
intros Hpre; blast Hpre; eauto 2 with serial_intr_enable_invariantdb.
Qed.
Global Instance trapin_inv: PrimInvariants trapin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance trapout_inv: PrimInvariants trapout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance hostin_inv: PrimInvariants hostin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance hostout_inv: PrimInvariants hostout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance ptin_inv: PrimInvariants ptin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance ptout_inv: PrimInvariants ptout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance fstore_inv: PreservesInvariants fstore_spec.
Proof.
split; intros; inv_generic_sem H; inv H0; functional inversion H2.
- functional inversion H. split; trivial.
- functional inversion H.
split; subst; simpl;
try (eapply dirty_ppage_store_unmaped; try reflexivity; try eassumption); trivial.
- functional inversion H0.
split; simpl; try assumption.
Qed.
Global Instance setPT_inv: PreservesInvariants setPT_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; auto.
Qed.
Global Instance pt_init_inv: PreservesInvariants pt_init_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant.
- apply real_nps_range.
- apply real_lat_kern_valid.
- apply real_lat_usr_valid.
- apply AC_init_container_valid.
- rewrite init_pperm0; try assumption.
apply Lreal_pperm_valid.
- eapply real_pt_PMap_valid; eauto.
- apply real_pt_PMap_kern.
- omega.
- assumption.
- apply real_idpde_init.
- apply real_pt_consistent_pmap.
- apply real_pt_consistent_pmap_domain.
- apply Lreal_at_consistent_lat_domain.
- eapply LATable_nil_real; eauto.
Qed.
Global Instance ptRmv_inv: PreservesInvariants ptRmv0_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto;
try (rewrite ZMap.gso; eauto; fail).
- intros; eapply LAT_kern_norm; eauto.
- intros; eapply LAT_usr_norm; eauto.
- eapply Lconsistent_ppage_norm; eassumption.
- eapply PMap_valid_gso_unp; eauto.
- functional inversion H1.
eapply PMap_kern_gso; eauto.
- functional inversion H1.
eapply consistent_pmap_at_ptp_same; try eassumption; omega.
- eapply consistent_pmap_domain_remove; eauto.
- functional inversion H1.
eapply consistent_lat_domain_gss_remove; eauto; omega.
- eapply LATable_nil_gso_true; eauto.
Qed.
Section PTINSERT.
Section PTINSERT_PTE.
Lemma ptInsertPTE_high_level_inv:
∀ d d´ n vadr padr p,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0; constructor_gso_simpl_tac; intros.
- eapply LAT_kern_norm; eauto.
- eapply LAT_usr_norm; eauto.
- eapply Lconsistent_ppage_norm; eassumption.
- eapply PMap_valid_gso_valid; eauto.
- functional inversion H2. functional inversion H1.
eapply PMap_kern_gso; eauto.
- functional inversion H2. functional inversion H0.
eapply consistent_pmap_ptp_same; try eassumption.
eapply consistent_pmap_gso_pperm_alloc´; eassumption.
- functional inversion H2.
eapply consistent_pmap_domain_append; eauto.
destruct (ZMap.get pti pdt); try contradiction;
red; intros (v0 & p0 & He); contra_inv.
- eapply consistent_lat_domain_gss_append; eauto.
subst pti; destruct (ZMap.get (PTX vadr) pdt); try contradiction;
red; intros (v0 & p0 & He); contra_inv.
- eapply LATable_nil_gso_true; eauto.
Qed.
Lemma ptInsertPTE_low_level_inv:
∀ d d´ n vadr padr p n´,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma ptInsertPTE_kernel_mode:
∀ d d´ n vadr padr p,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
End PTINSERT_PTE.
Section PTPALLOCPDE.
Lemma ptAllocPDE_high_level_inv:
∀ d d´ n vadr v,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0; constructor_gso_simpl_tac; intros.
- eapply LAT_kern_norm; eauto. eapply _x.
- eapply LAT_usr_norm; eauto.
- eapply alloc_container_valid´; eauto.
- apply Lconsistent_ppage_norm_hide; try assumption.
- congruence.
- eapply PMap_valid_gso_pde_unp; eauto.
eapply real_init_PTE_defined.
- functional inversion H3.
eapply PMap_kern_gso; eauto.
- eapply dirty_ppage_gss; eauto.
- eapply consistent_pmap_ptp_gss; eauto; apply _x.
- eapply consistent_pmap_domain_gso_at_false; eauto; try apply _x.
eapply consistent_pmap_domain_ptp_unp; eauto.
apply real_init_PTE_unp.
- apply consistent_lat_domain_gss_nil; eauto.
apply consistent_lat_domain_gso_p; eauto.
- eapply LATable_nil_gso_true; eauto.
Qed.
Lemma ptAllocPDE_low_level_inv:
∀ d d´ n vadr v n´,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma ptAllocPDE_kernel_mode:
∀ d d´ n vadr v,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
End PTPALLOCPDE.
Lemma ptInsert_high_level_inv:
∀ d d´ n vadr padr p v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_high_level_inv; eassumption.
- eapply ptAllocPDE_high_level_inv; eassumption.
- eapply ptInsertPTE_high_level_inv; try eassumption.
eapply ptAllocPDE_high_level_inv; eassumption.
Qed.
Lemma ptInsert_low_level_inv:
∀ d d´ n vadr padr p n´ v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_low_level_inv; eassumption.
- eapply ptAllocPDE_low_level_inv; eassumption.
- eapply ptInsertPTE_low_level_inv; try eassumption.
eapply ptAllocPDE_low_level_inv; eassumption.
Qed.
Lemma ptInsert_kernel_mode:
∀ d d´ n vadr padr p v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_kernel_mode; eassumption.
- eapply ptAllocPDE_kernel_mode; eassumption.
- eapply ptInsertPTE_kernel_mode; try eassumption.
eapply ptAllocPDE_kernel_mode; eassumption.
Qed.
Global Instance ptInsert_inv: PreservesInvariants ptInsert0_spec.
Proof.
preserves_invariants_simpl´.
- eapply ptInsert_low_level_inv; eassumption.
- eapply ptInsert_high_level_inv; eassumption.
- eapply ptInsert_kernel_mode; eassumption.
Qed.
End PTINSERT.
Global Instance ptFreePDE_inv: PreservesInvariants ptFreePDE0_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto;
try (rewrite ZMap.gso; eauto; fail); intros.
- functional inversion H0.
eapply LAT_kern_consistent_pmap; try eassumption; eauto; omega.
- eapply LAT_usr_norm; eauto.
- apply Lconsistent_ppage_norm_undef; try assumption.
- eapply PMap_valid_gss_pde_unp; eauto.
- functional inversion H0.
eapply PMap_kern_gso; eauto.
- eapply dirty_ppage_gso_undef; eauto.
- functional inversion H0.
eapply consistent_pmap_ptp_gss´; eauto; omega.
- eapply consistent_pmap_domain_gso_at_0.
eapply consistent_pmap_domain_ptp_pde_unp; eauto.
functional inversion H0.
eapply valid_pperm_pmap0; try eassumption; omega.
- apply consistent_lat_domain_gss_nil; eauto.
eapply consistent_lat_domain_gso_free; eauto.
- eapply LATable_nil_gss_nil; eauto.
Qed.
Global Instance flatmem_copy_inv: PreservesInvariants flatmem_copy_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant;
try eapply dirty_ppage_gss_copy; eauto.
Qed.
End INV.
Definition exec_loadex {F V} := exec_loadex2 (F := F) (V := V).
Definition exec_storeex {F V} := exec_storeex2 (flatmem_store:= flatmem_store) (F := F) (V := V).
Global Instance flatmem_store_inv: FlatmemStoreInvariant (flatmem_store:= flatmem_store).
Proof.
split; inversion 1; intros.
- functional inversion H0. split; trivial.
- functional inversion H1.
split; simpl; try (eapply dirty_ppage_store_unmaped´; try reflexivity; try eassumption); trivial.
Qed.
Global Instance trapinfo_set_inv: TrapinfoSetInvariant.
Proof.
split; inversion 1; intros; constructor; auto.
Qed.
Definition exec_storeex {F V} := exec_storeex2 (flatmem_store:= flatmem_store) (F := F) (V := V).
Global Instance flatmem_store_inv: FlatmemStoreInvariant (flatmem_store:= flatmem_store).
Proof.
split; inversion 1; intros.
- functional inversion H0. split; trivial.
- functional inversion H1.
split; simpl; try (eapply dirty_ppage_store_unmaped´; try reflexivity; try eassumption); trivial.
Qed.
Global Instance trapinfo_set_inv: TrapinfoSetInvariant.
Proof.
split; inversion 1; intros; constructor; auto.
Qed.
Definition mptinit_passthrough : compatlayer (cdata RData) :=
fload ↦ gensem fload_spec
⊕ fstore ↦ gensem fstore_spec
⊕ flatmem_copy ↦ gensem flatmem_copy_spec
⊕ vmxinfo_get ↦ gensem vmxinfo_get_spec
⊕ palloc ↦ gensem palloc_spec
⊕ pfree ↦ gensem pfree_spec
⊕ set_pt ↦ gensem setPT_spec
⊕ pt_read ↦ gensem ptRead_spec
⊕ pt_read_pde ↦ gensem ptReadPDE_spec
⊕ pt_free_pde ↦ gensem ptFreePDE0_spec
⊕ pt_insert ↦ gensem ptInsert0_spec
⊕ pt_rmv ↦ gensem ptRmv0_spec
⊕ pt_in ↦ primcall_general_compatsem´ ptin_spec (prim_ident:= pt_in)
⊕ pt_out ↦ primcall_general_compatsem´ ptout_spec (prim_ident:= pt_out)
⊕ container_get_parent ↦ gensem container_get_parent_spec
⊕ container_get_quota ↦ gensem container_get_quota_spec
⊕ container_get_usage ↦ gensem container_get_usage_spec
⊕ container_can_consume ↦ gensem container_can_consume_spec
⊕ container_split ↦ gensem container_split_spec
⊕ cli ↦ gensem cli_spec
⊕ sti ↦ gensem sti_spec
⊕ cons_buf_read ↦ gensem cons_buf_read_spec
⊕ serial_putc ↦ gensem serial_putc_spec
⊕ serial_intr_disable ↦ gensem serial_intr_disable_spec
⊕ serial_intr_enable ↦ gensem serial_intr_enable_spec
⊕ trap_in ↦ primcall_general_compatsem trapin_spec
⊕ trap_out ↦ primcall_general_compatsem trapout_spec
⊕ host_in ↦ primcall_general_compatsem hostin_spec
⊕ host_out ↦ primcall_general_compatsem hostout_spec
⊕ trap_get ↦ primcall_trap_info_get_compatsem trap_info_get_spec
⊕ trap_set ↦ primcall_trap_info_ret_compatsem trap_info_ret_spec
⊕ accessors ↦ {| exec_load := @exec_loadex; exec_store := @exec_storeex |}.
fload ↦ gensem fload_spec
⊕ fstore ↦ gensem fstore_spec
⊕ flatmem_copy ↦ gensem flatmem_copy_spec
⊕ vmxinfo_get ↦ gensem vmxinfo_get_spec
⊕ palloc ↦ gensem palloc_spec
⊕ pfree ↦ gensem pfree_spec
⊕ set_pt ↦ gensem setPT_spec
⊕ pt_read ↦ gensem ptRead_spec
⊕ pt_read_pde ↦ gensem ptReadPDE_spec
⊕ pt_free_pde ↦ gensem ptFreePDE0_spec
⊕ pt_insert ↦ gensem ptInsert0_spec
⊕ pt_rmv ↦ gensem ptRmv0_spec
⊕ pt_in ↦ primcall_general_compatsem´ ptin_spec (prim_ident:= pt_in)
⊕ pt_out ↦ primcall_general_compatsem´ ptout_spec (prim_ident:= pt_out)
⊕ container_get_parent ↦ gensem container_get_parent_spec
⊕ container_get_quota ↦ gensem container_get_quota_spec
⊕ container_get_usage ↦ gensem container_get_usage_spec
⊕ container_can_consume ↦ gensem container_can_consume_spec
⊕ container_split ↦ gensem container_split_spec
⊕ cli ↦ gensem cli_spec
⊕ sti ↦ gensem sti_spec
⊕ cons_buf_read ↦ gensem cons_buf_read_spec
⊕ serial_putc ↦ gensem serial_putc_spec
⊕ serial_intr_disable ↦ gensem serial_intr_disable_spec
⊕ serial_intr_enable ↦ gensem serial_intr_enable_spec
⊕ trap_in ↦ primcall_general_compatsem trapin_spec
⊕ trap_out ↦ primcall_general_compatsem trapout_spec
⊕ host_in ↦ primcall_general_compatsem hostin_spec
⊕ host_out ↦ primcall_general_compatsem hostout_spec
⊕ trap_get ↦ primcall_trap_info_get_compatsem trap_info_get_spec
⊕ trap_set ↦ primcall_trap_info_ret_compatsem trap_info_ret_spec
⊕ accessors ↦ {| exec_load := @exec_loadex; exec_store := @exec_storeex |}.