Library mcertikos.mm.MShareIntro
*********************************************************************** * * * The CertiKOS Certified Kit Operating System * * * * The FLINT Group, Yale University * * * * Copyright The FLINT Group, Yale University. All rights reserved. * * This file is distributed under the terms of the Yale University * * Non-Commercial License Agreement. * * * ***********************************************************************
This file defines the abstract data and the primitives for the PIPCIntro layer,
which will introduce the primtives of thread
Require Import Coqlib.
Require Import Maps.
Require Import ASTExtra.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Stacklayout.
Require Import Globalenvs.
Require Import AsmX.
Require Import Smallstep.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import FlatMemory.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import RealParams.
Require Import PrimSemantics.
Require Import LAsm.
Require Import LoadStoreSem2.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import CalRealPTPool.
Require Import CalRealPT.
Require Import CalRealIDPDE.
Require Import CalRealInitPTE.
Require Import CalRealPTB.
Require Import CalRealSMSPool.
Require Import INVLemmaContainer.
Require Import INVLemmaMemory.
Require Import INVLemmaDevice.
Require Import AbstractDataType.
Require Import DeviceStateDataType.
Require Export ObjCPU.
Require Export ObjFlatMem.
Require Export ObjContainer.
Require Export ObjVMM.
Require Export ObjLMM.
Require Export ObjShareMem.
Require Export ObjSerialDevice.
Require Export ObjConsole.
Require Export ObjInterruptController.
Require Import OracleInstances.
Require Import FutureTactic.
Require Import Maps.
Require Import ASTExtra.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Stacklayout.
Require Import Globalenvs.
Require Import AsmX.
Require Import Smallstep.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import FlatMemory.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import RealParams.
Require Import PrimSemantics.
Require Import LAsm.
Require Import LoadStoreSem2.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import CalRealPTPool.
Require Import CalRealPT.
Require Import CalRealIDPDE.
Require Import CalRealInitPTE.
Require Import CalRealPTB.
Require Import CalRealSMSPool.
Require Import INVLemmaContainer.
Require Import INVLemmaMemory.
Require Import INVLemmaDevice.
Require Import AbstractDataType.
Require Import DeviceStateDataType.
Require Export ObjCPU.
Require Export ObjFlatMem.
Require Export ObjContainer.
Require Export ObjVMM.
Require Export ObjLMM.
Require Export ObjShareMem.
Require Export ObjSerialDevice.
Require Export ObjConsole.
Require Export ObjInterruptController.
Require Import OracleInstances.
Require Import FutureTactic.
Record high_level_invariant (abd: RData) :=
mkInvariant {
valid_nps: pg abd = true → kern_low ≤ nps abd ≤ maxpage;
valid_AT_kern: pg abd = true → LAT_kern (LAT abd) (nps abd);
valid_AT_usr: pg abd = true → LAT_usr (LAT abd) (nps abd);
valid_kern: ipt abd = false → pg abd = true;
valid_iptt: ipt abd = true → ikern abd = true;
valid_iptf: ikern abd = false → ipt abd = false;
valid_ihost: ihost abd = false → pg abd = true ∧ ikern abd = true;
valid_container: Container_valid (AC abd);
valid_pperm_ppage: Lconsistent_ppage (LAT abd) (pperm abd) (nps abd);
init_pperm: pg abd = false → (pperm abd) = ZMap.init PGUndef;
valid_PMap: pg abd = true →
(∀ i, 0≤ i < num_proc →
PMap_valid (ZMap.get i (ptpool abd)));
valid_PT_kern: pg abd = true → ipt abd = true → (PT abd) = 0;
valid_PMap_kern: pg abd = true → PMap_kern (ZMap.get 0 (ptpool abd));
valid_PT: pg abd = true → 0≤ PT abd < num_proc;
valid_dirty: dirty_ppage (pperm abd) (HP abd);
valid_idpde: pg abd = true → IDPDE_init (idpde abd);
valid_pperm_pmap: consistent_pmap (ptpool abd) (pperm abd) (LAT abd) (nps abd);
valid_pmap_domain: consistent_pmap_domain (ptpool abd) (pperm abd) (LAT abd) (nps abd);
valid_lat_domain: consistent_lat_domain (ptpool abd) (LAT abd) (nps abd);
valid_PTB: pg abd = true → (ZMap.get 0 (pb abd)) = PTTrue;
valid_PTBR: pg abd = true → PTB_defined (pb abd) 0 num_proc;
valid_PTB_AC:
∀ i, 0 ≤ i < num_id →
(ZMap.get i (pb abd) = PTTrue ↔ cused (ZMap.get i (AC abd)) = true);
valid_cons_buf_rpos: 0 ≤ rpos (console abd) < CONSOLE_BUFFER_SIZE;
valid_cons_buf_length: 0 ≤ Zlength (cons_buf (console abd)) < CONSOLE_BUFFER_SIZE
}.
mkInvariant {
valid_nps: pg abd = true → kern_low ≤ nps abd ≤ maxpage;
valid_AT_kern: pg abd = true → LAT_kern (LAT abd) (nps abd);
valid_AT_usr: pg abd = true → LAT_usr (LAT abd) (nps abd);
valid_kern: ipt abd = false → pg abd = true;
valid_iptt: ipt abd = true → ikern abd = true;
valid_iptf: ikern abd = false → ipt abd = false;
valid_ihost: ihost abd = false → pg abd = true ∧ ikern abd = true;
valid_container: Container_valid (AC abd);
valid_pperm_ppage: Lconsistent_ppage (LAT abd) (pperm abd) (nps abd);
init_pperm: pg abd = false → (pperm abd) = ZMap.init PGUndef;
valid_PMap: pg abd = true →
(∀ i, 0≤ i < num_proc →
PMap_valid (ZMap.get i (ptpool abd)));
valid_PT_kern: pg abd = true → ipt abd = true → (PT abd) = 0;
valid_PMap_kern: pg abd = true → PMap_kern (ZMap.get 0 (ptpool abd));
valid_PT: pg abd = true → 0≤ PT abd < num_proc;
valid_dirty: dirty_ppage (pperm abd) (HP abd);
valid_idpde: pg abd = true → IDPDE_init (idpde abd);
valid_pperm_pmap: consistent_pmap (ptpool abd) (pperm abd) (LAT abd) (nps abd);
valid_pmap_domain: consistent_pmap_domain (ptpool abd) (pperm abd) (LAT abd) (nps abd);
valid_lat_domain: consistent_lat_domain (ptpool abd) (LAT abd) (nps abd);
valid_PTB: pg abd = true → (ZMap.get 0 (pb abd)) = PTTrue;
valid_PTBR: pg abd = true → PTB_defined (pb abd) 0 num_proc;
valid_PTB_AC:
∀ i, 0 ≤ i < num_id →
(ZMap.get i (pb abd) = PTTrue ↔ cused (ZMap.get i (AC abd)) = true);
valid_cons_buf_rpos: 0 ≤ rpos (console abd) < CONSOLE_BUFFER_SIZE;
valid_cons_buf_length: 0 ≤ Zlength (cons_buf (console abd)) < CONSOLE_BUFFER_SIZE
}.
Global Instance mshareintro_data_ops : CompatDataOps RData :=
{
empty_data := init_adt;
high_level_invariant := high_level_invariant;
low_level_invariant := low_level_invariant;
kernel_mode adt := ikern adt = true ∧ ihost adt = true
}.
{
empty_data := init_adt;
high_level_invariant := high_level_invariant;
low_level_invariant := low_level_invariant;
kernel_mode adt := ikern adt = true ∧ ihost adt = true
}.
Section Property_Abstract_Data.
Lemma empty_data_high_level_invariant:
high_level_invariant init_adt.
Proof.
constructor; simpl; intros; auto; try inv H; try solve_list; try omega.
- apply empty_container_valid.
- eapply Lconsistent_ppage_init.
- eapply dirty_ppage_init.
- eapply consistent_pmap_init.
- eapply consistent_pmap_domain_init.
- eapply consistent_lat_domain_init.
- repeat rewrite ZMap.gi; intuition.
Qed.
Lemma empty_data_high_level_invariant:
high_level_invariant init_adt.
Proof.
constructor; simpl; intros; auto; try inv H; try solve_list; try omega.
- apply empty_container_valid.
- eapply Lconsistent_ppage_init.
- eapply dirty_ppage_init.
- eapply consistent_pmap_init.
- eapply consistent_pmap_domain_init.
- eapply consistent_lat_domain_init.
- repeat rewrite ZMap.gi; intuition.
Qed.
Global Instance mshareintro_data_prf : CompatData RData.
Proof.
constructor.
- apply low_level_invariant_incr.
- apply empty_data_low_level_invariant.
- apply empty_data_high_level_invariant.
Qed.
End Property_Abstract_Data.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModel}.
Context `{Hmwd: UseMemWithData mem}.
Proof.
constructor.
- apply low_level_invariant_incr.
- apply empty_data_low_level_invariant.
- apply empty_data_high_level_invariant.
Qed.
End Property_Abstract_Data.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModel}.
Context `{Hmwd: UseMemWithData mem}.
Section INV.
Global Instance flatmem_copy_inv: PreservesInvariants flatmem_copy_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant;
try eapply dirty_ppage_gss_copy; eauto.
Qed.
Section PALLOC.
Lemma palloc_high_level_inv:
∀ d d´ i n,
palloc_spec i d = Some (d´, n) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; simpl; eauto.
- intros; eapply LAT_kern_norm; eauto. eapply _x.
- intros; eapply LAT_usr_norm; eauto.
- eapply alloc_container_valid´; eauto.
- eapply Lconsistent_ppage_norm_alloc; eauto.
- intros; congruence.
- eapply dirty_ppage_gso_alloc; eauto.
- eapply consistent_pmap_gso_at_false; eauto. apply _x.
- eapply consistent_pmap_domain_gso_at_false; eauto. apply _x.
- eapply consistent_lat_domain_gss_nil; eauto.
- subst cur c; intros; eapply container_alloc_PTB_AC_valid; eauto.
Qed.
Lemma palloc_low_level_inv:
∀ d d´ i n n´,
palloc_spec i d = Some (d´, n) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma palloc_kernel_mode:
∀ d d´ i n,
palloc_spec i d = Some (d´, n) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
Global Instance palloc_inv: PreservesInvariants palloc_spec.
Proof.
preserves_invariants_simpl´.
- eapply palloc_low_level_inv; eassumption.
- eapply palloc_high_level_inv; eassumption.
- eapply palloc_kernel_mode; eassumption.
Qed.
End PALLOC.
Global Instance pfree_inv: PreservesInvariants pfree_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
- intros; eapply LAT_kern_norm; eauto.
- intros; eapply LAT_usr_norm; eauto.
- eapply Lconsistent_ppage_norm_undef; eauto.
- eapply dirty_ppage_gso_undef; eauto.
- eapply consistent_pmap_gso_pperm_alloc; eauto.
- eapply consistent_pmap_domain_gso_at_0; eauto.
- eapply consistent_lat_domain_gss_nil; eauto.
Qed.
Global Instance flatmem_copy_inv: PreservesInvariants flatmem_copy_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant;
try eapply dirty_ppage_gss_copy; eauto.
Qed.
Section PALLOC.
Lemma palloc_high_level_inv:
∀ d d´ i n,
palloc_spec i d = Some (d´, n) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; simpl; eauto.
- intros; eapply LAT_kern_norm; eauto. eapply _x.
- intros; eapply LAT_usr_norm; eauto.
- eapply alloc_container_valid´; eauto.
- eapply Lconsistent_ppage_norm_alloc; eauto.
- intros; congruence.
- eapply dirty_ppage_gso_alloc; eauto.
- eapply consistent_pmap_gso_at_false; eauto. apply _x.
- eapply consistent_pmap_domain_gso_at_false; eauto. apply _x.
- eapply consistent_lat_domain_gss_nil; eauto.
- subst cur c; intros; eapply container_alloc_PTB_AC_valid; eauto.
Qed.
Lemma palloc_low_level_inv:
∀ d d´ i n n´,
palloc_spec i d = Some (d´, n) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma palloc_kernel_mode:
∀ d d´ i n,
palloc_spec i d = Some (d´, n) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
Global Instance palloc_inv: PreservesInvariants palloc_spec.
Proof.
preserves_invariants_simpl´.
- eapply palloc_low_level_inv; eassumption.
- eapply palloc_high_level_inv; eassumption.
- eapply palloc_kernel_mode; eassumption.
Qed.
End PALLOC.
Global Instance pfree_inv: PreservesInvariants pfree_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
- intros; eapply LAT_kern_norm; eauto.
- intros; eapply LAT_usr_norm; eauto.
- eapply Lconsistent_ppage_norm_undef; eauto.
- eapply dirty_ppage_gso_undef; eauto.
- eapply consistent_pmap_gso_pperm_alloc; eauto.
- eapply consistent_pmap_domain_gso_at_0; eauto.
- eapply consistent_lat_domain_gss_nil; eauto.
Qed.
device primitives
Require Import FutureTactic.
Require Export ObjInterruptController.
Global Instance cli_inv: PreservesInvariants cli_spec.
Proof.
preserves_invariants_direct low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance sti_inv: PreservesInvariants sti_spec.
Proof.
preserves_invariants_direct low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjConsole.
Require Import INVLemmaDriver.
Global Instance cons_buf_read_inv:
PreservesInvariants cons_buf_read_spec.
Proof.
preserves_invariants_nested low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjSerialDriver.
Global Instance serial_putc_inv:
PreservesInvariants serial_putc_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjInterruptManagement.
Require Import INVLemmaInterrupt.
Global Instance serial_intr_disable_inv: PreservesInvariants serial_intr_disable_spec.
Proof.
constructor; simpl; intros; inv_generic_sem H;
inversion H0; econstructor; generalize (serial_intr_disable_preserves_all d d´ H2);
intros Hpre; blast Hpre; eauto 2 with serial_intr_disable_invariantdb.
Qed.
Global Instance serial_intr_enable_inv: PreservesInvariants serial_intr_enable_spec.
Proof.
constructor; simpl; intros; inv_generic_sem H;
inversion H0; econstructor; generalize (serial_intr_enable_preserves_all d d´ H2);
intros Hpre; blast Hpre; eauto 2 with serial_intr_enable_invariantdb.
Qed.
Global Instance trapin_inv: PrimInvariants trapin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance trapout_inv: PrimInvariants trapout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance hostin_inv: PrimInvariants hostin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance hostout_inv: PrimInvariants hostout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance ptin_inv: PrimInvariants ptin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance ptout_inv: PrimInvariants ptout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance fstore_inv: PreservesInvariants fstore_spec.
Proof.
split; intros; inv_generic_sem H; inv H0; functional inversion H2.
- functional inversion H. split; trivial.
- functional inversion H.
split; subst; simpl;
try (eapply dirty_ppage_store_unmaped; try reflexivity; try eassumption); trivial.
- functional inversion H0.
split; simpl; try assumption.
Qed.
Global Instance setPT_inv: PreservesInvariants setPT_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance pmap_init_inv: PreservesInvariants pmap_init_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant.
- apply real_nps_range.
- apply real_lat_kern_valid.
- apply real_lat_usr_valid.
- apply AC_init_container_valid.
- rewrite init_pperm0; try assumption.
apply Lreal_pperm_valid.
- eapply real_pt_PMap_valid; eauto.
- apply real_pt_PMap_kern.
- omega.
- assumption.
- apply real_idpde_init.
- apply real_pt_consistent_pmap.
- apply real_pt_consistent_pmap_domain.
- apply Lreal_at_consistent_lat_domain.
- apply real_PTB_0_valid.
- apply real_PTB_valid.
- eapply real_PTB_AC_valid; eauto.
Qed.
Section PTINSERT.
Section PTINSERT_PTE.
Lemma ptInsertPTE_high_level_inv:
∀ d d´ n vadr padr p,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0; constructor_gso_simpl_tac; intros.
- eapply LAT_kern_norm; eauto.
- eapply LAT_usr_norm; eauto.
- eapply Lconsistent_ppage_norm; eassumption.
- eapply PMap_valid_gso_valid; eauto.
- functional inversion H2. functional inversion H1.
eapply PMap_kern_gso; eauto.
- functional inversion H2. functional inversion H0.
eapply consistent_pmap_ptp_same; try eassumption.
eapply consistent_pmap_gso_pperm_alloc´; eassumption.
- functional inversion H2.
eapply consistent_pmap_domain_append; eauto.
destruct (ZMap.get pti pdt); try contradiction;
red; intros (v0 & p0 & He); contra_inv.
- eapply consistent_lat_domain_gss_append; eauto.
subst pti; destruct (ZMap.get (PTX vadr) pdt); try contradiction;
red; intros (v0 & p0 & He); contra_inv.
Qed.
Lemma ptInsertPTE_low_level_inv:
∀ d d´ n vadr padr p n´,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma ptInsertPTE_kernel_mode:
∀ d d´ n vadr padr p,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
End PTINSERT_PTE.
Section PTPALLOCPDE.
Lemma ptAllocPDE_high_level_inv:
∀ d d´ n vadr v,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0; constructor_gso_simpl_tac; intros.
- eapply LAT_kern_norm; eauto. eapply _x.
- eapply LAT_usr_norm; eauto.
- eapply alloc_container_valid´; eauto.
- apply Lconsistent_ppage_norm_hide; try assumption.
- congruence.
- eapply PMap_valid_gso_pde_unp; eauto.
eapply real_init_PTE_defined.
- functional inversion H3.
eapply PMap_kern_gso; eauto.
- eapply dirty_ppage_gss; eauto.
- eapply consistent_pmap_ptp_gss; eauto; apply _x.
- eapply consistent_pmap_domain_gso_at_false; eauto; try apply _x.
eapply consistent_pmap_domain_ptp_unp; eauto.
apply real_init_PTE_unp.
- apply consistent_lat_domain_gss_nil; eauto.
apply consistent_lat_domain_gso_p; eauto.
- subst cur c; eapply container_alloc_PTB_AC_valid; eauto.
Qed.
Lemma ptAllocPDE_low_level_inv:
∀ d d´ n vadr v n´,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma ptAllocPDE_kernel_mode:
∀ d d´ n vadr v,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
End PTPALLOCPDE.
Lemma ptInsert_high_level_inv:
∀ d d´ n vadr padr p v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_high_level_inv; eassumption.
- eapply ptAllocPDE_high_level_inv; eassumption.
- eapply ptInsertPTE_high_level_inv; try eassumption.
eapply ptAllocPDE_high_level_inv; eassumption.
Qed.
Lemma ptInsert_low_level_inv:
∀ d d´ n vadr padr p n´ v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_low_level_inv; eassumption.
- eapply ptAllocPDE_low_level_inv; eassumption.
- eapply ptInsertPTE_low_level_inv; try eassumption.
eapply ptAllocPDE_low_level_inv; eassumption.
Qed.
Lemma ptInsert_kernel_mode:
∀ d d´ n vadr padr p v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_kernel_mode; eassumption.
- eapply ptAllocPDE_kernel_mode; eassumption.
- eapply ptInsertPTE_kernel_mode; try eassumption.
eapply ptAllocPDE_kernel_mode; eassumption.
Qed.
End PTINSERT.
Section PTRESV.
Lemma ptResv_high_level_inv:
∀ d d´ n vadr p v,
ptResv_spec n vadr p d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
eapply ptInsert_high_level_inv; try eassumption.
eapply palloc_high_level_inv; eassumption.
Qed.
Lemma ptResv_low_level_inv:
∀ d d´ n vadr p n´ v,
ptResv_spec n vadr p d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
eapply ptInsert_low_level_inv; try eassumption.
eapply palloc_low_level_inv; eassumption.
Qed.
Lemma ptResv_kernel_mode:
∀ d d´ n vadr p v,
ptResv_spec n vadr p d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
eapply ptInsert_kernel_mode; try eassumption.
eapply palloc_kernel_mode; eassumption.
Qed.
Global Instance ptResv_inv: PreservesInvariants ptResv_spec.
Proof.
preserves_invariants_simpl´.
- eapply ptResv_low_level_inv; eassumption.
- eapply ptResv_high_level_inv; eassumption.
- eapply ptResv_kernel_mode; eassumption.
Qed.
End PTRESV.
Section PTRESV2.
Lemma ptResv2_high_level_inv:
∀ d d´ n vadr p n´ vadr´ p´ v,
ptResv2_spec n vadr p n´ vadr´ p´ d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros; functional inversion H; subst; eauto;
eapply ptInsert_high_level_inv; try eassumption.
- eapply palloc_high_level_inv; eassumption.
- eapply ptInsert_high_level_inv; try eassumption.
eapply palloc_high_level_inv; eassumption.
Qed.
Lemma ptResv2_low_level_inv:
∀ d d´ n vadr p n´ vadr´ p´ l v,
ptResv2_spec n vadr p n´ vadr´ p´ d = Some (d´, v) →
low_level_invariant l d →
low_level_invariant l d´.
Proof.
intros; functional inversion H; subst; eauto;
eapply ptInsert_low_level_inv; try eassumption.
- eapply palloc_low_level_inv; eassumption.
- eapply ptInsert_low_level_inv; try eassumption.
eapply palloc_low_level_inv; eassumption.
Qed.
Lemma ptResv2_kernel_mode:
∀ d d´ n vadr p n´ vadr´ p´ v,
ptResv2_spec n vadr p n´ vadr´ p´ d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros; functional inversion H; subst; eauto;
eapply ptInsert_kernel_mode; try eassumption.
- eapply palloc_kernel_mode; eassumption.
- eapply ptInsert_kernel_mode; try eassumption.
eapply palloc_kernel_mode; eassumption.
Qed.
Global Instance ptResv2_inv: PreservesInvariants ptResv2_spec.
Proof.
preserves_invariants_simpl´.
- eapply ptResv2_low_level_inv; eassumption.
- eapply ptResv2_high_level_inv; eassumption.
- eapply ptResv2_kernel_mode; eassumption.
Qed.
End PTRESV2.
Global Instance pt_new_inv: PreservesInvariants pt_new_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2;
rename i into id, i0 into q, z into i.
- exploit split_container_valid; eauto.
assert (Htmp:= _x1); decompose [and] Htmp; eapply container_split_some; eauto.
auto.
- eapply ptb_true_set_true; eauto.
- eapply PTB_defined_defined_true; eauto.
- eapply container_split_PTB_AC_valid; eauto.
Qed.
Global Instance set_shared_mem_state_inv:
PreservesInvariants set_shared_mem_state_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance set_shared_mem_seen_inv:
PreservesInvariants set_shared_mem_seen_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance set_shared_mem_loc_inv:
PreservesInvariants set_shared_mem_loc_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance clear_shared_mem_inv:
PreservesInvariants clear_shared_mem_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
End INV.
Require Export ObjInterruptController.
Global Instance cli_inv: PreservesInvariants cli_spec.
Proof.
preserves_invariants_direct low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance sti_inv: PreservesInvariants sti_spec.
Proof.
preserves_invariants_direct low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjConsole.
Require Import INVLemmaDriver.
Global Instance cons_buf_read_inv:
PreservesInvariants cons_buf_read_spec.
Proof.
preserves_invariants_nested low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjSerialDriver.
Global Instance serial_putc_inv:
PreservesInvariants serial_putc_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Require Export ObjInterruptManagement.
Require Import INVLemmaInterrupt.
Global Instance serial_intr_disable_inv: PreservesInvariants serial_intr_disable_spec.
Proof.
constructor; simpl; intros; inv_generic_sem H;
inversion H0; econstructor; generalize (serial_intr_disable_preserves_all d d´ H2);
intros Hpre; blast Hpre; eauto 2 with serial_intr_disable_invariantdb.
Qed.
Global Instance serial_intr_enable_inv: PreservesInvariants serial_intr_enable_spec.
Proof.
constructor; simpl; intros; inv_generic_sem H;
inversion H0; econstructor; generalize (serial_intr_enable_preserves_all d d´ H2);
intros Hpre; blast Hpre; eauto 2 with serial_intr_enable_invariantdb.
Qed.
Global Instance trapin_inv: PrimInvariants trapin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance trapout_inv: PrimInvariants trapout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance hostin_inv: PrimInvariants hostin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance hostout_inv: PrimInvariants hostout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance ptin_inv: PrimInvariants ptin_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance ptout_inv: PrimInvariants ptout_spec.
Proof.
PrimInvariants_simpl H H0.
Qed.
Global Instance fstore_inv: PreservesInvariants fstore_spec.
Proof.
split; intros; inv_generic_sem H; inv H0; functional inversion H2.
- functional inversion H. split; trivial.
- functional inversion H.
split; subst; simpl;
try (eapply dirty_ppage_store_unmaped; try reflexivity; try eassumption); trivial.
- functional inversion H0.
split; simpl; try assumption.
Qed.
Global Instance setPT_inv: PreservesInvariants setPT_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance pmap_init_inv: PreservesInvariants pmap_init_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant.
- apply real_nps_range.
- apply real_lat_kern_valid.
- apply real_lat_usr_valid.
- apply AC_init_container_valid.
- rewrite init_pperm0; try assumption.
apply Lreal_pperm_valid.
- eapply real_pt_PMap_valid; eauto.
- apply real_pt_PMap_kern.
- omega.
- assumption.
- apply real_idpde_init.
- apply real_pt_consistent_pmap.
- apply real_pt_consistent_pmap_domain.
- apply Lreal_at_consistent_lat_domain.
- apply real_PTB_0_valid.
- apply real_PTB_valid.
- eapply real_PTB_AC_valid; eauto.
Qed.
Section PTINSERT.
Section PTINSERT_PTE.
Lemma ptInsertPTE_high_level_inv:
∀ d d´ n vadr padr p,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0; constructor_gso_simpl_tac; intros.
- eapply LAT_kern_norm; eauto.
- eapply LAT_usr_norm; eauto.
- eapply Lconsistent_ppage_norm; eassumption.
- eapply PMap_valid_gso_valid; eauto.
- functional inversion H2. functional inversion H1.
eapply PMap_kern_gso; eauto.
- functional inversion H2. functional inversion H0.
eapply consistent_pmap_ptp_same; try eassumption.
eapply consistent_pmap_gso_pperm_alloc´; eassumption.
- functional inversion H2.
eapply consistent_pmap_domain_append; eauto.
destruct (ZMap.get pti pdt); try contradiction;
red; intros (v0 & p0 & He); contra_inv.
- eapply consistent_lat_domain_gss_append; eauto.
subst pti; destruct (ZMap.get (PTX vadr) pdt); try contradiction;
red; intros (v0 & p0 & He); contra_inv.
Qed.
Lemma ptInsertPTE_low_level_inv:
∀ d d´ n vadr padr p n´,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma ptInsertPTE_kernel_mode:
∀ d d´ n vadr padr p,
ptInsertPTE0_spec n vadr padr p d = Some d´ →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
End PTINSERT_PTE.
Section PTPALLOCPDE.
Lemma ptAllocPDE_high_level_inv:
∀ d d´ n vadr v,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0; constructor_gso_simpl_tac; intros.
- eapply LAT_kern_norm; eauto. eapply _x.
- eapply LAT_usr_norm; eauto.
- eapply alloc_container_valid´; eauto.
- apply Lconsistent_ppage_norm_hide; try assumption.
- congruence.
- eapply PMap_valid_gso_pde_unp; eauto.
eapply real_init_PTE_defined.
- functional inversion H3.
eapply PMap_kern_gso; eauto.
- eapply dirty_ppage_gss; eauto.
- eapply consistent_pmap_ptp_gss; eauto; apply _x.
- eapply consistent_pmap_domain_gso_at_false; eauto; try apply _x.
eapply consistent_pmap_domain_ptp_unp; eauto.
apply real_init_PTE_unp.
- apply consistent_lat_domain_gss_nil; eauto.
apply consistent_lat_domain_gso_p; eauto.
- subst cur c; eapply container_alloc_PTB_AC_valid; eauto.
Qed.
Lemma ptAllocPDE_low_level_inv:
∀ d d´ n vadr v n´,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma ptAllocPDE_kernel_mode:
∀ d d´ n vadr v,
ptAllocPDE0_spec n vadr d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
End PTPALLOCPDE.
Lemma ptInsert_high_level_inv:
∀ d d´ n vadr padr p v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_high_level_inv; eassumption.
- eapply ptAllocPDE_high_level_inv; eassumption.
- eapply ptInsertPTE_high_level_inv; try eassumption.
eapply ptAllocPDE_high_level_inv; eassumption.
Qed.
Lemma ptInsert_low_level_inv:
∀ d d´ n vadr padr p n´ v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_low_level_inv; eassumption.
- eapply ptAllocPDE_low_level_inv; eassumption.
- eapply ptInsertPTE_low_level_inv; try eassumption.
eapply ptAllocPDE_low_level_inv; eassumption.
Qed.
Lemma ptInsert_kernel_mode:
∀ d d´ n vadr padr p v,
ptInsert0_spec n vadr padr p d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_kernel_mode; eassumption.
- eapply ptAllocPDE_kernel_mode; eassumption.
- eapply ptInsertPTE_kernel_mode; try eassumption.
eapply ptAllocPDE_kernel_mode; eassumption.
Qed.
End PTINSERT.
Section PTRESV.
Lemma ptResv_high_level_inv:
∀ d d´ n vadr p v,
ptResv_spec n vadr p d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
eapply ptInsert_high_level_inv; try eassumption.
eapply palloc_high_level_inv; eassumption.
Qed.
Lemma ptResv_low_level_inv:
∀ d d´ n vadr p n´ v,
ptResv_spec n vadr p d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
eapply ptInsert_low_level_inv; try eassumption.
eapply palloc_low_level_inv; eassumption.
Qed.
Lemma ptResv_kernel_mode:
∀ d d´ n vadr p v,
ptResv_spec n vadr p d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
eapply ptInsert_kernel_mode; try eassumption.
eapply palloc_kernel_mode; eassumption.
Qed.
Global Instance ptResv_inv: PreservesInvariants ptResv_spec.
Proof.
preserves_invariants_simpl´.
- eapply ptResv_low_level_inv; eassumption.
- eapply ptResv_high_level_inv; eassumption.
- eapply ptResv_kernel_mode; eassumption.
Qed.
End PTRESV.
Section PTRESV2.
Lemma ptResv2_high_level_inv:
∀ d d´ n vadr p n´ vadr´ p´ v,
ptResv2_spec n vadr p n´ vadr´ p´ d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros; functional inversion H; subst; eauto;
eapply ptInsert_high_level_inv; try eassumption.
- eapply palloc_high_level_inv; eassumption.
- eapply ptInsert_high_level_inv; try eassumption.
eapply palloc_high_level_inv; eassumption.
Qed.
Lemma ptResv2_low_level_inv:
∀ d d´ n vadr p n´ vadr´ p´ l v,
ptResv2_spec n vadr p n´ vadr´ p´ d = Some (d´, v) →
low_level_invariant l d →
low_level_invariant l d´.
Proof.
intros; functional inversion H; subst; eauto;
eapply ptInsert_low_level_inv; try eassumption.
- eapply palloc_low_level_inv; eassumption.
- eapply ptInsert_low_level_inv; try eassumption.
eapply palloc_low_level_inv; eassumption.
Qed.
Lemma ptResv2_kernel_mode:
∀ d d´ n vadr p n´ vadr´ p´ v,
ptResv2_spec n vadr p n´ vadr´ p´ d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros; functional inversion H; subst; eauto;
eapply ptInsert_kernel_mode; try eassumption.
- eapply palloc_kernel_mode; eassumption.
- eapply ptInsert_kernel_mode; try eassumption.
eapply palloc_kernel_mode; eassumption.
Qed.
Global Instance ptResv2_inv: PreservesInvariants ptResv2_spec.
Proof.
preserves_invariants_simpl´.
- eapply ptResv2_low_level_inv; eassumption.
- eapply ptResv2_high_level_inv; eassumption.
- eapply ptResv2_kernel_mode; eassumption.
Qed.
End PTRESV2.
Global Instance pt_new_inv: PreservesInvariants pt_new_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2;
rename i into id, i0 into q, z into i.
- exploit split_container_valid; eauto.
assert (Htmp:= _x1); decompose [and] Htmp; eapply container_split_some; eauto.
auto.
- eapply ptb_true_set_true; eauto.
- eapply PTB_defined_defined_true; eauto.
- eapply container_split_PTB_AC_valid; eauto.
Qed.
Global Instance set_shared_mem_state_inv:
PreservesInvariants set_shared_mem_state_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance set_shared_mem_seen_inv:
PreservesInvariants set_shared_mem_seen_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance set_shared_mem_loc_inv:
PreservesInvariants set_shared_mem_loc_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
Global Instance clear_shared_mem_inv:
PreservesInvariants clear_shared_mem_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
Qed.
End INV.
Definition exec_loadex {F V} := exec_loadex2 (F := F) (V := V).
Definition exec_storeex {F V} := exec_storeex2 (flatmem_store:= flatmem_store) (F := F) (V := V).
Global Instance flatmem_store_inv: FlatmemStoreInvariant (flatmem_store:= flatmem_store).
Proof.
split; inversion 1; intros.
- functional inversion H0. split; trivial.
- functional inversion H1.
split; simpl; try (eapply dirty_ppage_store_unmaped´; try reflexivity; try eassumption); trivial.
Qed.
Global Instance trapinfo_set_inv: TrapinfoSetInvariant.
Proof.
split; inversion 1; intros; constructor; auto.
Qed.
Definition exec_storeex {F V} := exec_storeex2 (flatmem_store:= flatmem_store) (F := F) (V := V).
Global Instance flatmem_store_inv: FlatmemStoreInvariant (flatmem_store:= flatmem_store).
Proof.
split; inversion 1; intros.
- functional inversion H0. split; trivial.
- functional inversion H1.
split; simpl; try (eapply dirty_ppage_store_unmaped´; try reflexivity; try eassumption); trivial.
Qed.
Global Instance trapinfo_set_inv: TrapinfoSetInvariant.
Proof.
split; inversion 1; intros; constructor; auto.
Qed.
Definition mshareintro_fresh : compatlayer (cdata RData) :=
clear_shared_mem ↦ gensem clear_shared_mem_spec
⊕ get_shared_mem_state ↦ gensem get_shared_mem_state_spec
⊕ get_shared_mem_seen ↦ gensem get_shared_mem_seen_spec
⊕ get_shared_mem_loc ↦ gensem get_shared_mem_loc_spec
⊕ set_shared_mem_state ↦ gensem set_shared_mem_state_spec
⊕ set_shared_mem_seen ↦ gensem set_shared_mem_seen_spec
⊕ set_shared_mem_loc ↦ gensem set_shared_mem_loc_spec.
Definition mshareintro_passthrough : compatlayer (cdata RData) :=
fload ↦ gensem fload_spec
⊕ fstore ↦ gensem fstore_spec
⊕ flatmem_copy ↦ gensem flatmem_copy_spec
⊕ vmxinfo_get ↦ gensem vmxinfo_get_spec
⊕ palloc ↦ gensem palloc_spec
⊕ pfree ↦ gensem pfree_spec
⊕ set_pt ↦ gensem setPT_spec
⊕ pt_read ↦ gensem ptRead_spec
⊕ pt_resv ↦ gensem ptResv_spec
⊕ pt_resv2 ↦ gensem ptResv2_spec
⊕ pt_new ↦ gensem pt_new_spec
⊕ pmap_init ↦ gensem pmap_init_spec
⊕ cli ↦ gensem cli_spec
⊕ sti ↦ gensem sti_spec
⊕ cons_buf_read ↦ gensem cons_buf_read_spec
⊕ serial_putc ↦ gensem serial_putc_spec
⊕ serial_intr_disable ↦ gensem serial_intr_disable_spec
⊕ serial_intr_enable ↦ gensem serial_intr_enable_spec
⊕ pt_in ↦ primcall_general_compatsem´ ptin_spec (prim_ident:= pt_in)
⊕ pt_out ↦ primcall_general_compatsem´ ptout_spec (prim_ident:= pt_out)
⊕ container_get_quota ↦ gensem container_get_quota_spec
⊕ container_get_usage ↦ gensem container_get_usage_spec
⊕ container_can_consume ↦ gensem container_can_consume_spec
⊕ trap_in ↦ primcall_general_compatsem trapin_spec
⊕ trap_out ↦ primcall_general_compatsem trapout_spec
⊕ host_in ↦ primcall_general_compatsem hostin_spec
⊕ host_out ↦ primcall_general_compatsem hostout_spec
⊕ trap_get ↦ primcall_trap_info_get_compatsem trap_info_get_spec
⊕ trap_set ↦ primcall_trap_info_ret_compatsem trap_info_ret_spec
⊕ accessors ↦ {| exec_load := @exec_loadex; exec_store := @exec_storeex |}.
Definition mshareintro : compatlayer (cdata RData) := mshareintro_fresh ⊕ mshareintro_passthrough.
End WITHMEM.
clear_shared_mem ↦ gensem clear_shared_mem_spec
⊕ get_shared_mem_state ↦ gensem get_shared_mem_state_spec
⊕ get_shared_mem_seen ↦ gensem get_shared_mem_seen_spec
⊕ get_shared_mem_loc ↦ gensem get_shared_mem_loc_spec
⊕ set_shared_mem_state ↦ gensem set_shared_mem_state_spec
⊕ set_shared_mem_seen ↦ gensem set_shared_mem_seen_spec
⊕ set_shared_mem_loc ↦ gensem set_shared_mem_loc_spec.
Definition mshareintro_passthrough : compatlayer (cdata RData) :=
fload ↦ gensem fload_spec
⊕ fstore ↦ gensem fstore_spec
⊕ flatmem_copy ↦ gensem flatmem_copy_spec
⊕ vmxinfo_get ↦ gensem vmxinfo_get_spec
⊕ palloc ↦ gensem palloc_spec
⊕ pfree ↦ gensem pfree_spec
⊕ set_pt ↦ gensem setPT_spec
⊕ pt_read ↦ gensem ptRead_spec
⊕ pt_resv ↦ gensem ptResv_spec
⊕ pt_resv2 ↦ gensem ptResv2_spec
⊕ pt_new ↦ gensem pt_new_spec
⊕ pmap_init ↦ gensem pmap_init_spec
⊕ cli ↦ gensem cli_spec
⊕ sti ↦ gensem sti_spec
⊕ cons_buf_read ↦ gensem cons_buf_read_spec
⊕ serial_putc ↦ gensem serial_putc_spec
⊕ serial_intr_disable ↦ gensem serial_intr_disable_spec
⊕ serial_intr_enable ↦ gensem serial_intr_enable_spec
⊕ pt_in ↦ primcall_general_compatsem´ ptin_spec (prim_ident:= pt_in)
⊕ pt_out ↦ primcall_general_compatsem´ ptout_spec (prim_ident:= pt_out)
⊕ container_get_quota ↦ gensem container_get_quota_spec
⊕ container_get_usage ↦ gensem container_get_usage_spec
⊕ container_can_consume ↦ gensem container_can_consume_spec
⊕ trap_in ↦ primcall_general_compatsem trapin_spec
⊕ trap_out ↦ primcall_general_compatsem trapout_spec
⊕ host_in ↦ primcall_general_compatsem hostin_spec
⊕ host_out ↦ primcall_general_compatsem hostout_spec
⊕ trap_get ↦ primcall_trap_info_get_compatsem trap_info_get_spec
⊕ trap_set ↦ primcall_trap_info_ret_compatsem trap_info_ret_spec
⊕ accessors ↦ {| exec_load := @exec_loadex; exec_store := @exec_storeex |}.
Definition mshareintro : compatlayer (cdata RData) := mshareintro_fresh ⊕ mshareintro_passthrough.
End WITHMEM.