Library mcertikos.proc.ThreadIntroGenFresh
*********************************************************************** * * * The CertiKOS Certified Kit Operating System * * * * The FLINT Group, Yale University * * * * Copyright The FLINT Group, Yale University. All rights reserved. * * This file is distributed under the terms of the Yale University * * Non-Commercial License Agreement. * * * ***********************************************************************
This file provide the contextual refinement proof between PKContextNew layer and PThreadIntro layer
Section Refinement.
Section WITHMEM.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModel}.
Context `{Hmwd: UseMemWithData mem}.
Ltac pattern2_refinement_simpl:=
pattern2_refinement_simpl´ (@relate_AbData).
Lemma get_state_spec_ref:
compatsim (crel HDATA LDATA) (gensem get_state_spec) get_state_spec_low.
Proof.
compatsim_simpl (@match_AbData). inv H.
assert(HOS: kernel_mode d2 ∧ 0 ≤ Int.unsigned i < num_proc).
{
simpl; inv match_related.
functional inversion H2; repeat (split; trivial); congruence.
}
destruct HOS as [Hkern HOS].
pose proof H0 as HMem.
specialize (H0 _ HOS). destruct H0 as [v1[v2[v3[HL1[_[HL2[_[HL3[_ HM]]]]]]]]].
assert (HP: v1 = Vint z).
{
functional inversion H2; subst. rewrite H7 in HM; inv HM.
apply ZtoThreadState_correct in H14; inv H14.
rewrite <- Int.repr_unsigned with z; rewrite <- H.
rewrite H9. rewrite Int.repr_unsigned. trivial.
}
refine_split; eauto; econstructor; eauto.
Qed.
Lemma get_prev_spec_ref:
compatsim (crel HDATA LDATA) (gensem get_prev_spec) get_prev_spec_low.
Proof.
compatsim_simpl (@match_AbData). inv H.
assert(HOS: kernel_mode d2 ∧ 0 ≤ Int.unsigned i < num_proc).
{
simpl; inv match_related.
functional inversion H2; repeat (split; trivial); congruence.
}
destruct HOS as [Hkern HOS].
pose proof H0 as HMem.
specialize (H0 _ HOS). destruct H0 as [v1[v2[v3[HL1[_[HL2[_[HL3[_ HM]]]]]]]]].
assert (HP: v2 = Vint z).
{
functional inversion H2; subst. rewrite H7 in HM; inv HM.
rewrite <- Int.repr_unsigned with z. rewrite <- H9.
rewrite Int.repr_unsigned. trivial.
}
refine_split; eauto; econstructor; eauto.
Qed.
Lemma get_next_spec_ref:
compatsim (crel HDATA LDATA) (gensem get_next_spec) get_next_spec_low.
Proof.
compatsim_simpl (@match_AbData). inv H.
assert(HOS: kernel_mode d2 ∧ 0 ≤ Int.unsigned i < num_proc).
{
simpl; inv match_related.
functional inversion H2; repeat (split; trivial); congruence.
}
destruct HOS as [Hkern HOS].
pose proof H0 as HMem.
specialize (H0 _ HOS). destruct H0 as [v1[v2[v3[HL1[_[HL2[_[HL3[_ HM]]]]]]]]].
assert (HP: v3 = Vint z).
{
functional inversion H2; subst. rewrite H7 in HM; inv HM.
rewrite <- Int.repr_unsigned with z. rewrite <- H10.
rewrite Int.repr_unsigned. trivial.
}
refine_split; eauto; econstructor; eauto.
Qed.
Lemma set_state_spec_ref:
compatsim (crel HDATA LDATA) (gensem set_state_spec) set_state_spec_low.
Proof.
compatsim_simpl (@match_AbData).
assert (Hkern: kernel_mode d2 ∧ 0≤ Int.unsigned i < num_proc).
{
inv match_related. functional inversion H1; subst.
repeat (split; trivial); try congruence; eauto.
}
destruct Hkern as [Hkern HOS].
inv H. rename H0 into HMem; destruct (HMem _ HOS) as [v1[v2[v3[HL1[HV1[HL2[HV2[HL3[HV3 HM]]]]]]]]].
specialize (Mem.valid_access_store _ _ _ _ (Vint i0) HV1); intros [m´ HST].
refine_split.
- econstructor; eauto.
instantiate (2:= m´).
instantiate (1:= d2).
simpl; lift_trivial. subrewrite´.
- constructor.
- pose proof H1 as Hspec.
functional inversion Hspec; subst.
split; eauto; pattern2_refinement_simpl.
rewrite H8 in HM. inv HM.
econstructor; simpl; eauto.
econstructor; eauto; intros.
destruct (zeq ofs (Int.unsigned i)); subst.
+
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
eapply Mem.load_store_same; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL2; eauto.
simpl; right; right. reflexivity.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL3; eauto.
simpl; right; right. omega.
rewrite ZMap.gss. simpl.
constructor. assumption.
+
specialize (HMem _ H).
destruct HMem as [v1´[v2´[v3´[HL1´[HV1´[HL2´[HV2´[HL3´[HV3´ HM´]]]]]]]]].
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL1´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL2´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL3´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite ZMap.gso; trivial.
- apply inject_incr_refl.
Qed.
Lemma set_prev_spec_ref:
compatsim (crel HDATA LDATA) (gensem set_prev_spec) set_prev_spec_low.
Proof.
compatsim_simpl (@match_AbData).
assert (Hkern: kernel_mode d2 ∧ 0 ≤ Int.unsigned i < num_proc).
{
inv match_related. functional inversion H1; subst.
repeat (split; trivial); try congruence; eauto.
}
destruct Hkern as [Hkern HOS].
inv H. rename H0 into HMem; destruct (HMem _ HOS) as [v1[v2[v3[HL1[HV1[HL2[HV2[HL3[HV3 HM]]]]]]]]].
specialize (Mem.valid_access_store _ _ _ _ (Vint i0) HV2); intros [m´ HST].
refine_split.
- econstructor; eauto.
instantiate (2:= m´).
instantiate (1:= d2).
simpl; lift_trivial. subrewrite´.
- constructor.
- pose proof H1 as Hspec.
functional inversion Hspec; subst.
split; eauto; pattern2_refinement_simpl.
rewrite H8 in HM. inv HM.
econstructor; simpl; eauto.
econstructor; eauto; intros.
destruct (zeq ofs (Int.unsigned i)); subst.
+
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL1; eauto.
simpl; right; left. reflexivity.
eapply Mem.load_store_same; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL3; eauto.
simpl; right; right. omega.
rewrite ZMap.gss. simpl.
constructor. assumption.
+
specialize (HMem _ H).
destruct HMem as [v1´[v2´[v3´[HL1´[HV1´[HL2´[HV2´[HL3´[HV3´ HM´]]]]]]]]].
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL1´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL2´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL3´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite ZMap.gso; trivial.
- apply inject_incr_refl.
Qed.
Lemma set_next_spec_ref:
compatsim (crel HDATA LDATA) (gensem set_next_spec) set_next_spec_low.
Proof.
compatsim_simpl (@match_AbData).
assert (Hkern: kernel_mode d2 ∧ 0 ≤ Int.unsigned i < num_proc).
{
inv match_related. functional inversion H1; subst.
repeat (split; trivial); try congruence; eauto.
}
destruct Hkern as [Hkern HOS].
inv H. rename H0 into HMem; destruct (HMem _ HOS) as [v1[v2[v3[HL1[HV1[HL2[HV2[HL3[HV3 HM]]]]]]]]].
specialize (Mem.valid_access_store _ _ _ _ (Vint i0) HV3); intros [m´ HST].
refine_split.
- econstructor; eauto.
instantiate (2:= m´).
instantiate (1:= d2).
simpl; lift_trivial. subrewrite´.
- constructor.
- pose proof H1 as Hspec.
functional inversion Hspec; subst.
split; eauto; pattern2_refinement_simpl.
rewrite H8 in HM. inv HM.
econstructor; simpl; eauto.
econstructor; eauto; intros.
destruct (zeq ofs (Int.unsigned i)); subst.
+
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL1; eauto.
simpl; right; left. omega.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL2; eauto.
simpl; right; left. omega.
eapply Mem.load_store_same; eauto.
rewrite ZMap.gss. simpl.
constructor. assumption.
+
specialize (HMem _ H).
destruct HMem as [v1´[v2´[v3´[HL1´[HV1´[HL2´[HV2´[HL3´[HV3´ HM´]]]]]]]]].
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL1´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL2´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL3´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite ZMap.gso; trivial.
- apply inject_incr_refl.
Qed.
Lemma tcb_init_spec_ref:
compatsim (crel HDATA LDATA) (gensem tcb_init_spec) tcb_init_spec_low.
Proof.
compatsim_simpl (@match_AbData).
assert (Hkern: kernel_mode d2 ∧ 0≤ Int.unsigned i < num_proc).
{
inv match_related. functional inversion H1; subst.
repeat (split; trivial); try congruence; eauto.
}
destruct Hkern as [Hkern HOS].
inv H. rename H0 into HMem; destruct (HMem _ HOS) as [v1[v2[v3[HL1[HV1[HL2[HV2[HL3[HV3 HM]]]]]]]]].
specialize (Mem.valid_access_store _ _ _ _ (Vint (Int.repr 3)) HV1); intros [m´1 HST1].
apply (Mem.store_valid_access_1 _ _ _ _ _ _ HST1) in HV2.
specialize (Mem.valid_access_store _ _ _ _ (Vint (Int.repr num_proc)) HV2); intros [m´2 HST2].
apply (Mem.store_valid_access_1 _ _ _ _ _ _ HST1) in HV3.
apply (Mem.store_valid_access_1 _ _ _ _ _ _ HST2) in HV3.
specialize (Mem.valid_access_store _ _ _ _ (Vint (Int.repr num_proc)) HV3); intros [m´3 HST3].
refine_split.
- econstructor; eauto.
instantiate (1:= (m´1, d2)).
simpl; lift_trivial. subrewrite´.
instantiate (1:= (m´2, d2)).
simpl; lift_trivial. subrewrite´.
instantiate (1:= d2).
instantiate (1:= m´3).
simpl; lift_trivial. subrewrite´.
- constructor.
- pose proof H1 as Hspec.
functional inversion Hspec; subst.
split; eauto; pattern2_refinement_simpl.
econstructor; simpl; eauto.
econstructor; eauto; intros.
destruct (zeq ofs (Int.unsigned i)); subst.
+
refine_split´; eauto;
repeat (eapply Mem.store_valid_access_1; eauto).
erewrite (Mem.load_store_other _ _ _ _ _ _ HST3); eauto; [|right; left; simpl; omega].
erewrite (Mem.load_store_other _ _ _ _ _ _ HST2); eauto; [|right; left; simpl; omega].
eapply Mem.load_store_same; eauto.
erewrite (Mem.load_store_other _ _ _ _ _ _ HST3); eauto; [|right; left; simpl; omega].
eapply Mem.load_store_same; eauto.
eapply Mem.load_store_same; eauto.
rewrite ZMap.gss.
replace 64 with (Int.unsigned (Int.repr 64)).
constructor; trivial.
apply Int.unsigned_repr. rewrite int_max; omega.
+
specialize (HMem _ H).
destruct HMem as [v1´[v2´[v3´[HL1´[HV1´[HL2´[HV2´[HL3´[HV3´ HM´]]]]]]]]].
repeat (erewrite (Mem.load_store_other _ _ _ _ _ _ HST3); [|load_other_simpl ofs i]).
repeat (erewrite (Mem.load_store_other _ _ _ _ _ _ HST2); [|load_other_simpl ofs i]).
repeat (erewrite (Mem.load_store_other _ _ _ _ _ _ HST1); [|load_other_simpl ofs i]).
refine_split´; eauto;
repeat (eapply Mem.store_valid_access_1; eauto).
rewrite ZMap.gso; auto.
- apply inject_incr_refl.
Qed.
End WITHMEM.
End Refinement.
Section WITHMEM.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModel}.
Context `{Hmwd: UseMemWithData mem}.
Ltac pattern2_refinement_simpl:=
pattern2_refinement_simpl´ (@relate_AbData).
Lemma get_state_spec_ref:
compatsim (crel HDATA LDATA) (gensem get_state_spec) get_state_spec_low.
Proof.
compatsim_simpl (@match_AbData). inv H.
assert(HOS: kernel_mode d2 ∧ 0 ≤ Int.unsigned i < num_proc).
{
simpl; inv match_related.
functional inversion H2; repeat (split; trivial); congruence.
}
destruct HOS as [Hkern HOS].
pose proof H0 as HMem.
specialize (H0 _ HOS). destruct H0 as [v1[v2[v3[HL1[_[HL2[_[HL3[_ HM]]]]]]]]].
assert (HP: v1 = Vint z).
{
functional inversion H2; subst. rewrite H7 in HM; inv HM.
apply ZtoThreadState_correct in H14; inv H14.
rewrite <- Int.repr_unsigned with z; rewrite <- H.
rewrite H9. rewrite Int.repr_unsigned. trivial.
}
refine_split; eauto; econstructor; eauto.
Qed.
Lemma get_prev_spec_ref:
compatsim (crel HDATA LDATA) (gensem get_prev_spec) get_prev_spec_low.
Proof.
compatsim_simpl (@match_AbData). inv H.
assert(HOS: kernel_mode d2 ∧ 0 ≤ Int.unsigned i < num_proc).
{
simpl; inv match_related.
functional inversion H2; repeat (split; trivial); congruence.
}
destruct HOS as [Hkern HOS].
pose proof H0 as HMem.
specialize (H0 _ HOS). destruct H0 as [v1[v2[v3[HL1[_[HL2[_[HL3[_ HM]]]]]]]]].
assert (HP: v2 = Vint z).
{
functional inversion H2; subst. rewrite H7 in HM; inv HM.
rewrite <- Int.repr_unsigned with z. rewrite <- H9.
rewrite Int.repr_unsigned. trivial.
}
refine_split; eauto; econstructor; eauto.
Qed.
Lemma get_next_spec_ref:
compatsim (crel HDATA LDATA) (gensem get_next_spec) get_next_spec_low.
Proof.
compatsim_simpl (@match_AbData). inv H.
assert(HOS: kernel_mode d2 ∧ 0 ≤ Int.unsigned i < num_proc).
{
simpl; inv match_related.
functional inversion H2; repeat (split; trivial); congruence.
}
destruct HOS as [Hkern HOS].
pose proof H0 as HMem.
specialize (H0 _ HOS). destruct H0 as [v1[v2[v3[HL1[_[HL2[_[HL3[_ HM]]]]]]]]].
assert (HP: v3 = Vint z).
{
functional inversion H2; subst. rewrite H7 in HM; inv HM.
rewrite <- Int.repr_unsigned with z. rewrite <- H10.
rewrite Int.repr_unsigned. trivial.
}
refine_split; eauto; econstructor; eauto.
Qed.
Lemma set_state_spec_ref:
compatsim (crel HDATA LDATA) (gensem set_state_spec) set_state_spec_low.
Proof.
compatsim_simpl (@match_AbData).
assert (Hkern: kernel_mode d2 ∧ 0≤ Int.unsigned i < num_proc).
{
inv match_related. functional inversion H1; subst.
repeat (split; trivial); try congruence; eauto.
}
destruct Hkern as [Hkern HOS].
inv H. rename H0 into HMem; destruct (HMem _ HOS) as [v1[v2[v3[HL1[HV1[HL2[HV2[HL3[HV3 HM]]]]]]]]].
specialize (Mem.valid_access_store _ _ _ _ (Vint i0) HV1); intros [m´ HST].
refine_split.
- econstructor; eauto.
instantiate (2:= m´).
instantiate (1:= d2).
simpl; lift_trivial. subrewrite´.
- constructor.
- pose proof H1 as Hspec.
functional inversion Hspec; subst.
split; eauto; pattern2_refinement_simpl.
rewrite H8 in HM. inv HM.
econstructor; simpl; eauto.
econstructor; eauto; intros.
destruct (zeq ofs (Int.unsigned i)); subst.
+
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
eapply Mem.load_store_same; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL2; eauto.
simpl; right; right. reflexivity.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL3; eauto.
simpl; right; right. omega.
rewrite ZMap.gss. simpl.
constructor. assumption.
+
specialize (HMem _ H).
destruct HMem as [v1´[v2´[v3´[HL1´[HV1´[HL2´[HV2´[HL3´[HV3´ HM´]]]]]]]]].
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL1´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL2´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL3´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite ZMap.gso; trivial.
- apply inject_incr_refl.
Qed.
Lemma set_prev_spec_ref:
compatsim (crel HDATA LDATA) (gensem set_prev_spec) set_prev_spec_low.
Proof.
compatsim_simpl (@match_AbData).
assert (Hkern: kernel_mode d2 ∧ 0 ≤ Int.unsigned i < num_proc).
{
inv match_related. functional inversion H1; subst.
repeat (split; trivial); try congruence; eauto.
}
destruct Hkern as [Hkern HOS].
inv H. rename H0 into HMem; destruct (HMem _ HOS) as [v1[v2[v3[HL1[HV1[HL2[HV2[HL3[HV3 HM]]]]]]]]].
specialize (Mem.valid_access_store _ _ _ _ (Vint i0) HV2); intros [m´ HST].
refine_split.
- econstructor; eauto.
instantiate (2:= m´).
instantiate (1:= d2).
simpl; lift_trivial. subrewrite´.
- constructor.
- pose proof H1 as Hspec.
functional inversion Hspec; subst.
split; eauto; pattern2_refinement_simpl.
rewrite H8 in HM. inv HM.
econstructor; simpl; eauto.
econstructor; eauto; intros.
destruct (zeq ofs (Int.unsigned i)); subst.
+
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL1; eauto.
simpl; right; left. reflexivity.
eapply Mem.load_store_same; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL3; eauto.
simpl; right; right. omega.
rewrite ZMap.gss. simpl.
constructor. assumption.
+
specialize (HMem _ H).
destruct HMem as [v1´[v2´[v3´[HL1´[HV1´[HL2´[HV2´[HL3´[HV3´ HM´]]]]]]]]].
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL1´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL2´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL3´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite ZMap.gso; trivial.
- apply inject_incr_refl.
Qed.
Lemma set_next_spec_ref:
compatsim (crel HDATA LDATA) (gensem set_next_spec) set_next_spec_low.
Proof.
compatsim_simpl (@match_AbData).
assert (Hkern: kernel_mode d2 ∧ 0 ≤ Int.unsigned i < num_proc).
{
inv match_related. functional inversion H1; subst.
repeat (split; trivial); try congruence; eauto.
}
destruct Hkern as [Hkern HOS].
inv H. rename H0 into HMem; destruct (HMem _ HOS) as [v1[v2[v3[HL1[HV1[HL2[HV2[HL3[HV3 HM]]]]]]]]].
specialize (Mem.valid_access_store _ _ _ _ (Vint i0) HV3); intros [m´ HST].
refine_split.
- econstructor; eauto.
instantiate (2:= m´).
instantiate (1:= d2).
simpl; lift_trivial. subrewrite´.
- constructor.
- pose proof H1 as Hspec.
functional inversion Hspec; subst.
split; eauto; pattern2_refinement_simpl.
rewrite H8 in HM. inv HM.
econstructor; simpl; eauto.
econstructor; eauto; intros.
destruct (zeq ofs (Int.unsigned i)); subst.
+
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL1; eauto.
simpl; right; left. omega.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL2; eauto.
simpl; right; left. omega.
eapply Mem.load_store_same; eauto.
rewrite ZMap.gss. simpl.
constructor. assumption.
+
specialize (HMem _ H).
destruct HMem as [v1´[v2´[v3´[HL1´[HV1´[HL2´[HV2´[HL3´[HV3´ HM´]]]]]]]]].
refine_split´; eauto;
try eapply Mem.store_valid_access_1; eauto.
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL1´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL2´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite <- (Mem.load_store_other _ _ _ _ _ _ HST) in HL3´; eauto.
simpl; right. destruct (zlt ofs (Int.unsigned i)); [left; omega|right; omega].
rewrite ZMap.gso; trivial.
- apply inject_incr_refl.
Qed.
Lemma tcb_init_spec_ref:
compatsim (crel HDATA LDATA) (gensem tcb_init_spec) tcb_init_spec_low.
Proof.
compatsim_simpl (@match_AbData).
assert (Hkern: kernel_mode d2 ∧ 0≤ Int.unsigned i < num_proc).
{
inv match_related. functional inversion H1; subst.
repeat (split; trivial); try congruence; eauto.
}
destruct Hkern as [Hkern HOS].
inv H. rename H0 into HMem; destruct (HMem _ HOS) as [v1[v2[v3[HL1[HV1[HL2[HV2[HL3[HV3 HM]]]]]]]]].
specialize (Mem.valid_access_store _ _ _ _ (Vint (Int.repr 3)) HV1); intros [m´1 HST1].
apply (Mem.store_valid_access_1 _ _ _ _ _ _ HST1) in HV2.
specialize (Mem.valid_access_store _ _ _ _ (Vint (Int.repr num_proc)) HV2); intros [m´2 HST2].
apply (Mem.store_valid_access_1 _ _ _ _ _ _ HST1) in HV3.
apply (Mem.store_valid_access_1 _ _ _ _ _ _ HST2) in HV3.
specialize (Mem.valid_access_store _ _ _ _ (Vint (Int.repr num_proc)) HV3); intros [m´3 HST3].
refine_split.
- econstructor; eauto.
instantiate (1:= (m´1, d2)).
simpl; lift_trivial. subrewrite´.
instantiate (1:= (m´2, d2)).
simpl; lift_trivial. subrewrite´.
instantiate (1:= d2).
instantiate (1:= m´3).
simpl; lift_trivial. subrewrite´.
- constructor.
- pose proof H1 as Hspec.
functional inversion Hspec; subst.
split; eauto; pattern2_refinement_simpl.
econstructor; simpl; eauto.
econstructor; eauto; intros.
destruct (zeq ofs (Int.unsigned i)); subst.
+
refine_split´; eauto;
repeat (eapply Mem.store_valid_access_1; eauto).
erewrite (Mem.load_store_other _ _ _ _ _ _ HST3); eauto; [|right; left; simpl; omega].
erewrite (Mem.load_store_other _ _ _ _ _ _ HST2); eauto; [|right; left; simpl; omega].
eapply Mem.load_store_same; eauto.
erewrite (Mem.load_store_other _ _ _ _ _ _ HST3); eauto; [|right; left; simpl; omega].
eapply Mem.load_store_same; eauto.
eapply Mem.load_store_same; eauto.
rewrite ZMap.gss.
replace 64 with (Int.unsigned (Int.repr 64)).
constructor; trivial.
apply Int.unsigned_repr. rewrite int_max; omega.
+
specialize (HMem _ H).
destruct HMem as [v1´[v2´[v3´[HL1´[HV1´[HL2´[HV2´[HL3´[HV3´ HM´]]]]]]]]].
repeat (erewrite (Mem.load_store_other _ _ _ _ _ _ HST3); [|load_other_simpl ofs i]).
repeat (erewrite (Mem.load_store_other _ _ _ _ _ _ HST2); [|load_other_simpl ofs i]).
repeat (erewrite (Mem.load_store_other _ _ _ _ _ _ HST1); [|load_other_simpl ofs i]).
refine_split´; eauto;
repeat (eapply Mem.store_valid_access_1; eauto).
rewrite ZMap.gso; auto.
- apply inject_incr_refl.
Qed.
End WITHMEM.
End Refinement.