Library Coq.Arith.Peano_dec
Require
Import
Decidable
.
Require
Eqdep_dec
.
Require
Import
Le
Lt
.
Local
Open
Scope
nat_scope
.
Implicit
Types
m
n
x
y
:
nat
.
Theorem
O_or_S
:
forall
n
,
{
m
:
nat
|
S
m
=
n
}
+
{
0
=
n
}
.
Theorem
eq_nat_dec
:
forall
n
m
,
{
n
=
m
}
+
{
n
<>
m
}
.
Hint Resolve
O_or_S
eq_nat_dec
:
arith
.
Theorem
dec_eq_nat
:
forall
n
m
,
decidable
(
n
=
m
).
Definition
UIP_nat
:=
Eqdep_dec.UIP_dec
eq_nat_dec
.
Lemma
le_unique
:
forall
m
n
(
h1
h2
:
m
<=
n
),
h1
=
h2
.