Library Coq.Numbers.Integer.Abstract.ZLt
Instances of earlier theorems for m == 0
Theorems that are either not valid on N or have different proofs
on N and Z
Theorem lt_pred_l :
forall n,
P n < n.
Theorem le_pred_l :
forall n,
P n <= n.
Theorem lt_le_pred :
forall n m,
n < m <-> n <= P m.
Theorem nle_pred_r :
forall n,
~ n <= P n.
Theorem lt_pred_le :
forall n m,
P n < m <-> n <= m.
Theorem lt_lt_pred :
forall n m,
n < m ->
P n < m.
Theorem le_le_pred :
forall n m,
n <= m ->
P n <= m.
Theorem lt_pred_lt :
forall n m,
n < P m ->
n < m.
Theorem le_pred_lt :
forall n m,
n <= P m ->
n <= m.
Theorem pred_lt_mono :
forall n m,
n < m <-> P n < P m.
Theorem pred_le_mono :
forall n m,
n <= m <-> P n <= P m.
Theorem lt_succ_lt_pred :
forall n m,
S n < m <-> n < P m.
Theorem le_succ_le_pred :
forall n m,
S n <= m <-> n <= P m.
Theorem lt_pred_lt_succ :
forall n m,
P n < m <-> n < S m.
Theorem le_pred_lt_succ :
forall n m,
P n <= m <-> n <= S m.
Theorem neq_pred_l :
forall n,
P n ~= n.
Theorem lt_m1_r :
forall n m,
n < m ->
m < 0 ->
n < -1.
End ZOrderProp.