Library Coq.Numbers.Integer.Abstract.ZPow
Properties of the power function
Require
Import
Bool
ZAxioms
ZMulOrder
ZParity
ZSgnAbs
NZPow
.
Module
Type
ZPowProp
(
Import
A
:
ZAxiomsSig´
)
(
Import
B
:
ZMulOrderProp
A
)
(
Import
C
:
ZParityProp
A
B
)
(
Import
D
:
ZSgnAbsProp
A
B
).
Include
NZPowProp
A
A
B
.
A particular case of
pow_add_r
, with no precondition
Lemma
pow_twice_r
a
b
:
a
^(
2
*
b
)
==
a
^
b
*
a
^
b
.
Parity of power
Lemma
even_pow
:
forall
a
b
, 0
<
b
->
even
(
a
^
b
)
=
even
a
.
Lemma
odd_pow
:
forall
a
b
, 0
<
b
->
odd
(
a
^
b
)
=
odd
a
.
Properties of power of negative numbers
Lemma
pow_opp_even
:
forall
a
b
,
Even
b
->
(
-
a
)^
b
==
a
^
b
.
Lemma
pow_opp_odd
:
forall
a
b
,
Odd
b
->
(
-
a
)^
b
==
-(
a
^
b
)
.
Lemma
pow_even_abs
:
forall
a
b
,
Even
b
->
a
^
b
==
(
abs
a
)^
b
.
Lemma
pow_even_nonneg
:
forall
a
b
,
Even
b
-> 0
<=
a
^
b
.
Lemma
pow_odd_abs_sgn
:
forall
a
b
,
Odd
b
->
a
^
b
==
sgn
a
*
(
abs
a
)^
b
.
Lemma
pow_odd_sgn
:
forall
a
b
, 0
<=
b
->
Odd
b
->
sgn
(
a
^
b
)
==
sgn
a
.
Lemma
abs_pow
:
forall
a
b
,
abs
(
a
^
b
)
==
(
abs
a
)^
b
.
End
ZPowProp
.