Library Coq.Numbers.Natural.Abstract.NAdd
Require
Export
NBase
.
Module
NAddProp
(
Import
N
:
NAxiomsMiniSig´
).
Include
NBaseProp
N
.
For theorems about
add
that are both valid for
N
and
Z
, see
NZAdd
Now comes theorems valid for natural numbers but not for Z
Theorem
eq_add_0
:
forall
n
m
,
n
+
m
==
0
<->
n
==
0
/\
m
==
0.
Theorem
eq_add_succ
:
forall
n
m
,
(
exists
p
,
n
+
m
==
S
p
)
<->
(
exists
n´
,
n
==
S
n´
)
\/
(
exists
m´
,
m
==
S
m´
)
.
Theorem
eq_add_1
:
forall
n
m
,
n
+
m
==
1 ->
n
==
1
/\
m
==
0
\/
n
==
0
/\
m
==
1.
Theorem
succ_add_discr
:
forall
n
m
,
m
~=
S
(
n
+
m
).
Theorem
add_pred_l
:
forall
n
m
,
n
~=
0 ->
P
n
+
m
==
P
(
n
+
m
).
Theorem
add_pred_r
:
forall
n
m
,
m
~=
0 ->
n
+
P
m
==
P
(
n
+
m
).
End
NAddProp
.