Library Coq.Numbers.Natural.Abstract.NMulOrder
Require
Export
NAddOrder
.
Module
NMulOrderProp
(
Import
N
:
NAxiomsMiniSig´
).
Include
NAddOrderProp
N
.
Theorems that are either not valid on Z or have different proofs on N and Z
Theorem
square_lt_mono
:
forall
n
m
,
n
<
m
<->
n
*
n
<
m
*
m
.
Theorem
square_le_mono
:
forall
n
m
,
n
<=
m
<->
n
*
n
<=
m
*
m
.
Theorem
mul_le_mono_l
:
forall
n
m
p
,
n
<=
m
->
p
*
n
<=
p
*
m
.
Theorem
mul_le_mono_r
:
forall
n
m
p
,
n
<=
m
->
n
*
p
<=
m
*
p
.
Theorem
mul_lt_mono
:
forall
n
m
p
q
,
n
<
m
->
p
<
q
->
n
*
p
<
m
*
q
.
Theorem
mul_le_mono
:
forall
n
m
p
q
,
n
<=
m
->
p
<=
q
->
n
*
p
<=
m
*
q
.
Theorem
lt_0_mul´
:
forall
n
m
,
n
*
m
>
0
<->
n
>
0
/\
m
>
0.
Notation
mul_pos
:=
lt_0_mul´
(
only
parsing
).
Theorem
eq_mul_1
:
forall
n
m
,
n
*
m
==
1
<->
n
==
1
/\
m
==
1.
Alternative name :
Definition
mul_eq_1
:=
eq_mul_1
.
End
NMulOrderProp
.