Library Coq.Reals.Rseries
Require Import Rbase.
Require Import Rfunctions.
Require Import Compare.
Local Open Scope R_scope.
Implicit Type r :
R.
Definition of sequence and properties
Section sequence.
Variable Un :
nat ->
R.
Fixpoint Rmax_N (
N:
nat) :
R :=
match N with
|
O =>
Un 0
|
S n =>
Rmax (
Un (
S n)) (
Rmax_N n)
end.
Definition EUn r :
Prop :=
exists i :
nat, r = Un i.
Definition Un_cv (
l:
R) :
Prop :=
forall eps:
R,
eps > 0 ->
exists N :
nat, (forall n:
nat, (
n >= N)%
nat ->
R_dist (
Un n)
l < eps).
Definition Cauchy_crit :
Prop :=
forall eps:
R,
eps > 0 ->
exists N :
nat,
(forall n m:
nat,
(
n >= N)%
nat -> (
m >= N)%
nat ->
R_dist (
Un n) (
Un m)
< eps).
Definition Un_growing :
Prop :=
forall n:
nat,
Un n <= Un (
S n).
Lemma EUn_noempty :
exists r :
R, EUn r.
Lemma Un_in_EUn :
forall n:
nat,
EUn (
Un n).
Lemma Un_bound_imp :
forall x:
R, (
forall n:
nat,
Un n <= x) ->
is_upper_bound EUn x.
Lemma growing_prop :
forall n m:
nat,
Un_growing -> (
n >= m)%
nat ->
Un n >= Un m.
Lemma Un_cv_crit_lub :
Un_growing ->
forall l,
is_lub EUn l ->
Un_cv l.
Lemma Un_cv_crit :
Un_growing ->
bound EUn ->
exists l :
R, Un_cv l.
Lemma finite_greater :
forall N:
nat,
exists M :
R, (forall n:
nat, (
n <= N)%
nat ->
Un n <= M).
Lemma cauchy_bound :
Cauchy_crit ->
bound EUn.
End sequence.
Definition of Power Series and properties