Library Coq.ZArith.Zmax
THIS FILE IS DEPRECATED.
Require
Export
BinInt
Zcompare
Zorder
.
Local
Open
Scope
Z_scope
.
Definition
Z.max
is now
BinInt.Z.max
.
Exact compatibility
Notation
Zmax_case
:=
Z.max_case
(
compat
"8.3").
Notation
Zmax_case_strong
:=
Z.max_case_strong
(
compat
"8.3").
Notation
Zmax_right
:=
Z.max_r
(
compat
"8.3").
Notation
Zle_max_l
:=
Z.le_max_l
(
compat
"8.3").
Notation
Zle_max_r
:=
Z.le_max_r
(
compat
"8.3").
Notation
Zmax_lub
:=
Z.max_lub
(
compat
"8.3").
Notation
Zmax_lub_lt
:=
Z.max_lub_lt
(
compat
"8.3").
Notation
Zle_max_compat_r
:=
Z.max_le_compat_r
(
compat
"8.3").
Notation
Zle_max_compat_l
:=
Z.max_le_compat_l
(
compat
"8.3").
Notation
Zmax_idempotent
:=
Z.max_id
(
compat
"8.3").
Notation
Zmax_n_n
:=
Z.max_id
(
compat
"8.3").
Notation
Zmax_comm
:=
Z.max_comm
(
compat
"8.3").
Notation
Zmax_assoc
:=
Z.max_assoc
(
compat
"8.3").
Notation
Zmax_irreducible_dec
:=
Z.max_dec
(
compat
"8.3").
Notation
Zmax_le_prime
:=
Z.max_le
(
compat
"8.3").
Notation
Zsucc_max_distr
:=
Z.succ_max_distr
(
compat
"8.3").
Notation
Zmax_SS
:=
Z.succ_max_distr
(
compat
"8.3").
Notation
Zplus_max_distr_l
:=
Z.add_max_distr_l
(
compat
"8.3").
Notation
Zplus_max_distr_r
:=
Z.add_max_distr_r
(
compat
"8.3").
Notation
Zmax_plus
:=
Z.add_max_distr_r
(
compat
"8.3").
Notation
Zmax1
:=
Z.le_max_l
(
compat
"8.3").
Notation
Zmax2
:=
Z.le_max_r
(
compat
"8.3").
Notation
Zmax_irreducible_inf
:=
Z.max_dec
(
compat
"8.3").
Notation
Zmax_le_prime_inf
:=
Z.max_le
(
compat
"8.3").
Notation
Zpos_max
:=
Pos2Z.inj_max
(
compat
"8.3").
Notation
Zpos_minus
:=
Pos2Z.inj_sub_max
(
compat
"8.3").
Slightly different lemmas
Lemma
Zmax_spec
x
y
:
x
>=
y
/\
Z.max
x
y
=
x
\/
x
<
y
/\
Z.max
x
y
=
y
.
Lemma
Zmax_left
n
m
:
n
>=
m
->
Z.max
n
m
=
n
.
Lemma
Zpos_max_1
p
:
Z.max
1 (
Z.pos
p
)
=
Z.pos
p
.