We prove that there is only one proof of x=x , i.e (refl_equal ? x) .
This holds if the equality upon the set of x is decidable.
A corollary of this theorem is the equality of the right projections
of two equal dependent pairs.
Author: Thomas Kleymann |<tms@dcs.ed.ac.uk>| in Lego adapted to Coq by B. Barras Credit: Proofs up to K_dec follows an outline by Michael Hedberg
|
We need some dependent elimination schemes |
Set Implicit
Arguments.
Bijection between eq and eqT
|
Definition
eq2eqT (A:Set) (x y:A) (eqxy:x = y) :
x = y :=
match eqxy in (_ = y) return x = y with
| refl_equal => refl_equal x
end.
Definition
eqT2eq (A:Set) (x y:A) (eqTxy:x = y) :
x = y :=
match eqTxy in (_ = y) return x = y with
| refl_equal => refl_equal x
end.
Lemma
eq_eqT_bij : forall (A:Set) (x y:A) (p:x = y), p = eqT2eq (eq2eqT p).
intros.
case p; reflexivity.
Qed
.
Lemma
eqT_eq_bij : forall (A:Set) (x y:A) (p:x = y), p = eq2eqT (eqT2eq p).
intros.
case p; reflexivity.
Qed
.
Section
DecidableEqDep.
Variable
A : Type.
Let
comp (x y y':A) (eq1:x = y) (eq2:x = y') : y = y' :=
eq_ind _ (fun a => a = y') eq2 _ eq1.
Remark
trans_sym_eqT : forall (x y:A) (u:x = y), comp u u = refl_equal y.
intros.
case u; trivial.
Qed
.
Variable
eq_dec : forall x y:A, x = y \/ x <> y.
Variable
x : A.
Let
nu (y:A) (u:x = y) : x = y :=
match eq_dec x y with
| or_introl eqxy => eqxy
| or_intror neqxy => False_ind _ (neqxy u)
end.
Let
nu_constant : forall (y:A) (u v:x = y), nu u = nu v.
intros.
unfold nu in |- *.
case (eq_dec x y); intros.
reflexivity.
case n; trivial.
Qed
.
Let
nu_inv (y:A) (v:x = y) : x = y := comp (nu (refl_equal x)) v.
Remark
nu_left_inv : forall (y:A) (u:x = y), nu_inv (nu u) = u.
intros.
case u; unfold nu_inv in |- *.
apply trans_sym_eqT.
Qed
.
Theorem
eq_proofs_unicity : forall (y:A) (p1 p2:x = y), p1 = p2.
intros.
elim nu_left_inv with (u:= p1).
elim nu_left_inv with (u:= p2).
elim nu_constant with y p1 p2.
reflexivity.
Qed
.
Theorem
K_dec :
forall P:x = x -> Prop, P (refl_equal x) -> forall p:x = x, P p.
intros.
elim eq_proofs_unicity with x (refl_equal x) p.
trivial.
Qed
.
The corollary |
Let
proj (P:A -> Prop) (exP:ex P) (def:P x) : P x :=
match exP with
| ex_intro x' prf =>
match eq_dec x' x with
| or_introl eqprf => eq_ind x' P prf x eqprf
| _ => def
end
end.
Theorem
inj_right_pair :
forall (P:A -> Prop) (y y':P x),
ex_intro P x y = ex_intro P x y' -> y = y'.
intros.
cut (proj (ex_intro P x y) y = proj (ex_intro P x y') y).
simpl in |- *.
case (eq_dec x x).
intro e.
elim e using K_dec; trivial.
intros.
case n; trivial.
case H.
reflexivity.
Qed
.
End
DecidableEqDep.
We deduce the K axiom for (decidable) Set
|
Theorem
K_dec_set :
forall A:Set,
(forall x y:A, {x = y} + {x <> y}) ->
forall (x:A) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
intros.
rewrite eq_eqT_bij.
elim (eq2eqT p) using K_dec.
intros.
case (H x0 y); intros.
elim e; left; reflexivity.
right; red in |- *; intro neq; apply n; elim neq; reflexivity.
trivial.
Qed
.