Properties of a binary relation R on type A
|
Section
Rstar.
Variable
A : Type.
Variable
R : A -> A -> Prop.
Definition of the reflexive-transitive closure R* of R
|
Smallest reflexive P containing R o P
|
Definition
Rstar (x y:A) :=
forall P:A -> A -> Prop,
(forall u:A, P u u) -> (forall u v w:A, R u v -> P v w -> P u w) -> P x y.
Theorem
Rstar_reflexive : forall x:A, Rstar x x.
Proof
fun (x:A) (P:A -> A -> Prop) (h1:forall u:A, P u u)
(h2:forall u v w:A, R u v -> P v w -> P u w) =>
h1 x.
Theorem
Rstar_R : forall x y z:A, R x y -> Rstar y z -> Rstar x z.
Proof
fun (x y z:A) (t1:R x y) (t2:Rstar y z) (P:A -> A -> Prop)
(h1:forall u:A, P u u) (h2:forall u v w:A, R u v -> P v w -> P u w) =>
h2 x y z t1 (t2 P h1 h2).
We conclude with transitivity of Rstar :
|
Theorem
Rstar_transitive :
forall x y z:A, Rstar x y -> Rstar y z -> Rstar x z.
Proof
fun (x y z:A) (h:Rstar x y) =>
h (fun u v:A => Rstar v z -> Rstar u z) (fun (u:A) (t:Rstar u z) => t)
(fun (u v w:A) (t1:R u v) (t2:Rstar w z -> Rstar v z)
(t3:Rstar w z) => Rstar_R u v z t1 (t2 t3)).
Another characterization of R*
|
Smallest reflexive P containing R o R*
|
Definition
Rstar' (x y:A) :=
forall P:A -> A -> Prop,
P x x -> (forall u:A, R x u -> Rstar u y -> P x y) -> P x y.
Theorem
Rstar'_reflexive : forall x:A, Rstar' x x.
Proof
fun (x:A) (P:A -> A -> Prop) (h:P x x)
(h':forall u:A, R x u -> Rstar u x -> P x x) => h.
Theorem
Rstar'_R : forall x y z:A, R x z -> Rstar z y -> Rstar' x y.
Proof
fun (x y z:A) (t1:R x z) (t2:Rstar z y) (P:A -> A -> Prop)
(h1:P x x) (h2:forall u:A, R x u -> Rstar u y -> P x y) =>
h2 z t1 t2.
Equivalence of the two definitions: |
Theorem
Rstar'_Rstar : forall x y:A, Rstar' x y -> Rstar x y.
Proof
fun (x y:A) (h:Rstar' x y) =>
h Rstar (Rstar_reflexive x) (fun u:A => Rstar_R x u y).
Theorem
Rstar_Rstar' : forall x y:A, Rstar x y -> Rstar' x y.
Proof
fun (x y:A) (h:Rstar x y) =>
h Rstar' (fun u:A => Rstar'_reflexive u)
(fun (u v w:A) (h1:R u v) (h2:Rstar' v w) =>
Rstar'_R u w v h1 (Rstar'_Rstar v w h2)).
Property of Commutativity of two relations |
Definition
commut (A:Set) (R1 R2:A -> A -> Prop) :=
forall x y:A,
R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
End
Rstar.