We consider a Set U , given with a commutative-associative operator op ,
and a congruence cong ; we show permutation lemmas
|
Section
Axiomatisation.
Variable
U : Set.
Variable
op : U -> U -> U.
Variable
cong : U -> U -> Prop.
Hypothesis
op_comm : forall x y:U, cong (op x y) (op y x).
Hypothesis
op_ass : forall x y z:U, cong (op (op x y) z) (op x (op y z)).
Hypothesis
cong_left : forall x y z:U, cong x y -> cong (op x z) (op y z).
Hypothesis
cong_right : forall x y z:U, cong x y -> cong (op z x) (op z y).
Hypothesis
cong_trans : forall x y z:U, cong x y -> cong y z -> cong x z.
Hypothesis
cong_sym : forall x y:U, cong x y -> cong y x.
Remark. we do not need: .
|
Lemma
cong_congr :
forall x y z t:U, cong x y -> cong z t -> cong (op x z) (op y t).
Proof
.
intros; apply cong_trans with (op y z).
apply cong_left; trivial.
apply cong_right; trivial.
Qed
.
Lemma
comm_right : forall x y z:U, cong (op x (op y z)) (op x (op z y)).
Proof
.
intros; apply cong_right; apply op_comm.
Qed
.
Lemma
comm_left : forall x y z:U, cong (op (op x y) z) (op (op y x) z).
Proof
.
intros; apply cong_left; apply op_comm.
Qed
.
Lemma
perm_right : forall x y z:U, cong (op (op x y) z) (op (op x z) y).
Proof
.
intros.
apply cong_trans with (op x (op y z)).
apply op_ass.
apply cong_trans with (op x (op z y)).
apply cong_right; apply op_comm.
apply cong_sym; apply op_ass.
Qed
.
Lemma
perm_left : forall x y z:U, cong (op x (op y z)) (op y (op x z)).
Proof
.
intros.
apply cong_trans with (op (op x y) z).
apply cong_sym; apply op_ass.
apply cong_trans with (op (op y x) z).
apply cong_left; apply op_comm.
apply op_ass.
Qed
.
Lemma
op_rotate : forall x y z t:U, cong (op x (op y z)) (op z (op x y)).
Proof
.
intros; apply cong_trans with (op (op x y) z).
apply cong_sym; apply op_ass.
apply op_comm.
Qed
.
Lemma
twist :
forall x y z t:U, cong (op x (op (op y z) t)) (op (op y (op x t)) z).
Proof
.
intros.
apply cong_trans with (op x (op (op y t) z)).
apply cong_right; apply perm_right.
apply cong_trans with (op (op x (op y t)) z).
apply cong_sym; apply op_ass.
apply cong_left; apply perm_left.
Qed
.
End
Axiomatisation.