Library Coq.Wellfounded.Lexicographic_Exponentiation

Author: Cristina Cornes

From : Constructing Recursion Operators in Type Theory L. Paulson JSC (1986) 2, 325-355

Require Import Eqdep.
Require Import List.
Require Import Relation_Operators.
Require Import Transitive_Closure.

Section Wf_Lexicographic_Exponentiation.
Variable A : Set.
Variable leA : A -> A -> Prop.

Notation Power := (Pow A leA).
Notation Lex_Exp := (lex_exp A leA).
Notation ltl := (Ltl A leA).
Notation Descl := (Desc A leA).

Notation List := (list A).
Notation Nil := (nil (A:=A)).
Notation Cons := (cons (A:=A)).
Notation "<< x , y >>" := (exist Descl x y) (at level 0, x, y at level 100).

Hint Resolve d_one d_nil t_step.

Lemma left_prefix : forall x y z:List, ltl (x ++ y) z -> ltl x z.
Proof.
 simple induction x.
 simple induction z.
 simpl in |- *; intros H.
 inversion_clear H.
 simpl in |- *; intros; apply (Lt_nil A leA).
 intros a l HInd.
 simpl in |- *.
 intros.
 inversion_clear H.
 apply (Lt_hd A leA); auto with sets.
 apply (Lt_tl A leA).
 apply (HInd y y0); auto with sets.
Qed.

Lemma right_prefix :
 forall x y z:List,
   ltl x (y ++ z) -> ltl x y \/ (exists y' : List, x = y ++ y' /\ ltl y' z).
Proof.
 intros x y; generalize x.
 elim y; simpl in |- *.
 right.
 exists x0; auto with sets.
 intros.
 inversion H0.
 left; apply (Lt_nil A leA).
 left; apply (Lt_hd A leA); auto with sets.
 generalize (H x1 z H3).
 simple induction 1.
 left; apply (Lt_tl A leA); auto with sets.
 simple induction 1.
 simple induction 1; intros.
 rewrite H8.
 right; exists x2; auto with sets.
Qed.

Lemma desc_prefix : forall (x:List) (a:A), Descl (x ++ Cons a Nil) -> Descl x.
Proof.
 intros.
 inversion H.
 generalize (app_cons_not_nil _ _ _ H1); simple induction 1.
 cut (x ++ Cons a Nil = Cons x0 Nil); auto with sets.
 intro.
 generalize (app_eq_unit _ _ H0).
 simple induction 1; simple induction 1; intros.
 rewrite H4; auto with sets.
 discriminate H5.
 generalize (app_inj_tail _ _ _ _ H0).
 simple induction 1; intros.
 rewrite <- H4; auto with sets.
Qed.

Lemma desc_tail :
 forall (x:List) (a b:A),
   Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b.
Proof.
 intro.
 apply rev_ind with
  (A:= A)
  (P:= fun x:List =>
          forall a b:A,
            Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b).
 intros.

 inversion H.
 cut (Cons b (Cons a Nil) = (Nil ++ Cons b Nil) ++ Cons a Nil);
  auto with sets; intro.
 generalize H0.
 intro.
 generalize (app_inj_tail (l ++ Cons y Nil) (Nil ++ Cons b Nil) _ _ H4);
  simple induction 1.
 intros.

 generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros.
 generalize H1.
 rewrite <- H10; rewrite <- H7; intro.
 apply (t_step A leA); auto with sets.

 intros.
 inversion H0.
 generalize (app_cons_not_nil _ _ _ H3); intro.
 elim H1.

 generalize H0.
 generalize (app_comm_cons (l ++ Cons x0 Nil) (Cons a Nil) b);
  simple induction 1.
 intro.
 generalize (desc_prefix (Cons b (l ++ Cons x0 Nil)) a H5); intro.
 generalize (H x0 b H6).
 intro.
 apply t_trans with (A:= A) (y:= x0); auto with sets.

 apply t_step.
 generalize H1.
 rewrite H4; intro.

 generalize (app_inj_tail _ _ _ _ H8); simple induction 1.
 intros.
 generalize H2; generalize (app_comm_cons l (Cons x0 Nil) b).
 intro.
 generalize H10.
 rewrite H12; intro.
 generalize (app_inj_tail _ _ _ _ H13); simple induction 1.
 intros.
 rewrite <- H11; rewrite <- H16; auto with sets.
Qed.

Lemma dist_aux :
 forall z:List, Descl z -> forall x y:List, z = x ++ y -> Descl x /\ Descl y.
Proof.
 intros z D.
 elim D.
 intros.
 cut (x ++ y = Nil); auto with sets; intro.
 generalize (app_eq_nil _ _ H0); simple induction 1.
 intros.
 rewrite H2; rewrite H3; split; apply d_nil.

 intros.
 cut (x0 ++ y = Cons x Nil); auto with sets.
 intros E.
 generalize (app_eq_unit _ _ E); simple induction 1.
 simple induction 1; intros.
 rewrite H2; rewrite H3; split.
 apply d_nil.

 apply d_one.

 simple induction 1; intros.
 rewrite H2; rewrite H3; split.
 apply d_one.

 apply d_nil.

 do 5 intro.
 intros Hind.
 do 2 intro.
 generalize x0.
 apply rev_ind with
  (A:= A)
  (P:= fun y0:List =>
          forall x0:List,
            (l ++ Cons y Nil) ++ Cons x Nil = x0 ++ y0 ->
            Descl x0 /\ Descl y0).

 intro.
 generalize (app_nil_end x1); simple induction 1; simple induction 1.
 split. apply d_conc; auto with sets.

 apply d_nil.

 do 3 intro.
 generalize x1.
 apply rev_ind with
  (A:= A)
  (P:= fun l0:List =>
          forall (x1:A) (x0:List),
            (l ++ Cons y Nil) ++ Cons x Nil = x0 ++ l0 ++ Cons x1 Nil ->
            Descl x0 /\ Descl (l0 ++ Cons x1 Nil)).

 simpl in |- *.
 split.
 generalize (app_inj_tail _ _ _ _ H2); simple induction 1.
 simple induction 1; auto with sets.

 apply d_one.
 do 5 intro.
 generalize (app_ass x4 (l1 ++ Cons x2 Nil) (Cons x3 Nil)).
 simple induction 1.
 generalize (app_ass x4 l1 (Cons x2 Nil)); simple induction 1.
 intro E.
 generalize (app_inj_tail _ _ _ _ E).
 simple induction 1; intros.
 generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros.
 rewrite <- H7; rewrite <- H10; generalize H6.
 generalize (app_ass x4 l1 (Cons x2 Nil)); intro E1.
 rewrite E1.
 intro.
 generalize (Hind x4 (l1 ++ Cons x2 Nil) H11).
 simple induction 1; split.
 auto with sets.

 generalize H14.
 rewrite <- H10; intro.
 apply d_conc; auto with sets.
Qed.

Lemma dist_Desc_concat :
 forall x y:List, Descl (x ++ y) -> Descl x /\ Descl y.
Proof.
  intros.
  apply (dist_aux (x ++ y) H x y); auto with sets.
Qed.

Lemma desc_end :
 forall (a b:A) (x:List),
   Descl (x ++ Cons a Nil) /\ ltl (x ++ Cons a Nil) (Cons b Nil) ->
   clos_trans A leA a b.

Proof.
 intros a b x.
 case x.
 simpl in |- *.
 simple induction 1.
 intros.
 inversion H1; auto with sets.
 inversion H3.

 simple induction 1.
 generalize (app_comm_cons l (Cons a Nil) a0).
 intros E; rewrite <- E; intros.
 generalize (desc_tail l a a0 H0); intro.
 inversion H1.
 apply t_trans with (y:= a0); auto with sets.

 inversion H4.
Qed.

Lemma ltl_unit :
 forall (x:List) (a b:A),
   Descl (x ++ Cons a Nil) ->
   ltl (x ++ Cons a Nil) (Cons b Nil) -> ltl x (Cons b Nil).
Proof.
 intro.
 case x.
 intros; apply (Lt_nil A leA).

 simpl in |- *; intros.
 inversion_clear H0.
 apply (Lt_hd A leA a b); auto with sets.
 
 inversion_clear H1.
Qed.

Lemma acc_app :
 forall (x1 x2:List) (y1:Descl (x1 ++ x2)),
   Acc Lex_Exp << x1 ++ x2, y1 >> ->
   forall (x:List) (y:Descl x), ltl x (x1 ++ x2) -> Acc Lex_Exp << x, y >>.
Proof.
 intros.
 apply (Acc_inv (R:=Lex_Exp) (x:=<< x1 ++ x2, y1 >>)).
 auto with sets.

 unfold lex_exp in |- *; simpl in |- *; auto with sets.
Qed.

Theorem wf_lex_exp : well_founded leA -> well_founded Lex_Exp.
Proof.
 unfold well_founded at 2 in |- *.
 simple induction a; intros x y.
 apply Acc_intro.
 simple induction y0.
 unfold lex_exp at 1 in |- *; simpl in |- *.
 apply rev_ind with
  (A:= A)
  (P:= fun x:List =>
          forall (x0:List) (y:Descl x0), ltl x0 x -> Acc Lex_Exp << x0, y >>).
 intros.
 inversion_clear H0.

 intro.
 generalize (well_founded_ind (wf_clos_trans A leA H)).
 intros GR.
 apply GR with
  (P:= fun x0:A =>
          forall l:List,
            (forall (x1:List) (y:Descl x1),
               ltl x1 l -> Acc Lex_Exp << x1, y >>) ->
            forall (x1:List) (y:Descl x1),
              ltl x1 (l ++ Cons x0 Nil) -> Acc Lex_Exp << x1, y >>).
 intro; intros HInd; intros.
 generalize (right_prefix x2 l (Cons x1 Nil) H1).
 simple induction 1.
 intro; apply (H0 x2 y1 H3).

 simple induction 1.
 intro; simple induction 1.
 clear H4 H2.
 intro; generalize y1; clear y1.
 rewrite H2.
 apply rev_ind with
  (A:= A)
  (P:= fun x3:List =>
          forall y1:Descl (l ++ x3),
            ltl x3 (Cons x1 Nil) -> Acc Lex_Exp << l ++ x3, y1 >>).
 intros.
 generalize (app_nil_end l); intros Heq.
 generalize y1.
 clear y1.
 rewrite <- Heq.
 intro.
 apply Acc_intro.
 simple induction y2.
 unfold lex_exp at 1 in |- *.
 simpl in |- *; intros x4 y3. intros.
 apply (H0 x4 y3); auto with sets.

 intros.
 generalize (dist_Desc_concat l (l0 ++ Cons x4 Nil) y1).
 simple induction 1.
 intros.
 generalize (desc_end x4 x1 l0 (conj H8 H5)); intros.
 generalize y1.
 rewrite <- (app_ass l l0 (Cons x4 Nil)); intro.
 generalize (HInd x4 H9 (l ++ l0)); intros HInd2.
 generalize (ltl_unit l0 x4 x1 H8 H5); intro.
 generalize (dist_Desc_concat (l ++ l0) (Cons x4 Nil) y2).
 simple induction 1; intros.
 generalize (H4 H12 H10); intro.
 generalize (Acc_inv H14).
 generalize (acc_app l l0 H12 H14).
 intros f g.
 generalize (HInd2 f); intro.
 apply Acc_intro.
 simple induction y3.
 unfold lex_exp at 1 in |- *; simpl in |- *; intros.
 apply H15; auto with sets.
Qed.

End Wf_Lexicographic_Exponentiation.

Index
This page has been generated by coqdoc