Library Coq.Wellfounded.Union

Author: Bruno Barras

Require Import Relation_Operators.
Require Import Relation_Definitions.
Require Import Transitive_Closure.

Section WfUnion.
   Variable A : Set.
   Variables R1 R2 : relation A.
  
 Notation Union := (union A R1 R2).

  Hint Resolve Acc_clos_trans wf_clos_trans.

Remark strip_commut :
 commut A R1 R2 ->
 forall x y:A,
   clos_trans A R1 y x ->
   forall z:A, R2 z y -> exists2 y' : A, R2 y' x & clos_trans A R1 z y'.
Proof.
 induction 2 as [x y| x y z H0 IH1 H1 IH2]; intros.
 elim H with y x z; auto with sets; intros x0 H2 H3.
 exists x0; auto with sets.

 elim IH1 with z0; auto with sets; intros.
 elim IH2 with x0; auto with sets; intros.
 exists x1; auto with sets.
 apply t_trans with x0; auto with sets.
Qed.

  Lemma Acc_union :
   commut A R1 R2 ->
   (forall x:A, Acc R2 x -> Acc R1 x) -> forall a:A, Acc R2 a -> Acc Union a.
Proof.
 induction 3 as [x H1 H2].
 apply Acc_intro; intros.
 elim H3; intros; auto with sets.
 cut (clos_trans A R1 y x); auto with sets.
 elimtype (Acc (clos_trans A R1) y); intros.
 apply Acc_intro; intros.
 elim H8; intros.
 apply H6; auto with sets.
 apply t_trans with x0; auto with sets.

 elim strip_commut with x x0 y0; auto with sets; intros.
 apply Acc_inv_trans with x1; auto with sets.
 unfold union in |- *.
 elim H11; auto with sets; intros.
 apply t_trans with y1; auto with sets.

 apply (Acc_clos_trans A).
 apply Acc_inv with x; auto with sets.
 apply H0.
 apply Acc_intro; auto with sets.
Qed.

  Theorem wf_union :
   commut A R1 R2 -> well_founded R1 -> well_founded R2 -> well_founded Union.
Proof.
 unfold well_founded in |- *.
 intros.
 apply Acc_union; auto with sets.
Qed.

End WfUnion.

Index
This page has been generated by coqdoc