The FLINT Project

Research

People

Publications

Software

Support

Links

Internal

Paired Training Framework for Time-Constrained Learning

Last modified: Mon May 24 01:48:55 2021 GMT.

Authors

Jung-Eun Kim
Richard Bradford
Max Del Giudice
Zhong Shao

Abstract

This paper presents a design framework for machine learning applications that operate in systems such as cyber-physical systems where time is a scarce resource. We manage the tradeoff between processing time and solution quality by performing as much preprocessing of data as time will allow. This approach leads us to a design framework in which there are two separate learning networks: one for preprocessing and one for the core application functionality. We show how these networks can be trained together and how they can operate in an anytime fashion to optimize performance.

Published

In Proceedings of the 2021 Design, Automation, and Test in Europe Conference & Exhibition (DATE'21), Virtual, February 2021.
  • Conference Paper [PDF]

  • Copyright © 1996-2021 The FLINT Group <flint at cs dot yale dot edu>
    Yale University Department of Computer Science
    Validate this page
    colophon