Library compcert.driver.Compiler


The whole compiler and its proof of semantic preservation
Libraries.
Require Import String.
Require Import Coqlib.
Require Import Errors.
Require Import AST.
Require Import Smallstep.
Languages (syntax and semantics).
Require Csyntax.
Require Csem.
Require Cstrategy.
Require Cexec.
Require Clight.
Require Csharpminor.
Require Cminor.
Require CminorSel.
Require RTL.
Require LTL.
Require Linear.
Require Mach.
Require Asm.
Translation passes.
Require Initializers.
Require SimplExpr.
Require SimplLocals.
Require Cshmgen.
Require Cminorgen.
Require Selection.
Require RTLgen.
Require Tailcall.
Require Inlining.
Require Renumber.
Require Constprop.
Require CSE.
Require Deadcode.
Require Allocation.
Require Tunneling.
Require Linearize.
Require CleanupLabels.
Require Stacking.
Require Asmgen.
Proofs of semantic preservation.
Require SimplExprproof.
Require SimplLocalsproof.
Require Cshmgenproof.
Require Cminorgenproof.
Require Import SelectLongproofImpl.
Require Selectionproof.
Require RTLgenproof.
Require Tailcallproof.
Require Inliningproof.
Require Renumberproof.
Require Import ValueAnalysisImpl.
Require Constpropproof.
Require CSEproof.
Require Deadcodeproof.
Require Import DeadcodeproofImpl.
Require Allocproof.
Require Tunnelingproof.
Require Linearizeproof.
Require CleanupLabelsproof.
Require Stackingproof.
Require Asmgenproof.

Pretty-printers (defined in Caml).
Parameter print_Clight: Clight.program -> unit.
Parameter print_Cminor: Cminor.program -> unit.
Parameter print_RTL: Z -> RTL.program -> unit.
Parameter print_LTL: LTL.program -> unit.
Parameter print_Mach: Mach.program -> unit.

Open Local Scope string_scope.

Composing the translation passes

We first define useful monadic composition operators, along with funny (but convenient) notations.

Definition apply_total (A B: Type) (x: res A) (f: A -> B) : res B :=
  match x with Error msg => Error msg | OK x1 => OK (f x1) end.

Definition apply_partial (A B: Type)
                         (x: res A) (f: A -> res B) : res B :=
  match x with Error msg => Error msg | OK x1 => f x1 end.

Notation "a @@@ b" :=
   (apply_partial _ _ a b) (at level 50, left associativity).
Notation "a @@ b" :=
   (apply_total _ _ a b) (at level 50, left associativity).

Definition print {A: Type} (printer: A -> unit) (prog: A) : A :=
  let unused := printer prog in prog.

Definition time {A B: Type} (name: string) (f: A -> B) : A -> B := f.

We define three translation functions for whole programs: one starting with a C program, one with a Cminor program, one with an RTL program. The three translations produce Asm programs ready for pretty-printing and assembling.

Definition transf_rtl_program (f: RTL.program) : res Asm.program :=
   OK f
   @@ print (print_RTL 0)
   @@ time "Tail calls" Tailcall.transf_program
   @@ print (print_RTL 1)
  @@@ time "Inlining" Inlining.transf_program
   @@ print (print_RTL 2)
   @@ time "Renumbering" Renumber.transf_program
   @@ print (print_RTL 3)
   @@ time "Constant propagation" Constprop.transf_program
   @@ print (print_RTL 4)
   @@ time "Renumbering" Renumber.transf_program
   @@ print (print_RTL 5)
  @@@ time "CSE" CSE.transf_program
   @@ print (print_RTL 6)
  @@@ time "Dead code" Deadcode.transf_program
   @@ print (print_RTL 7)
  @@@ time "Register allocation" Allocation.transf_program
   @@ print print_LTL
   @@ time "Branch tunneling" Tunneling.tunnel_program
  @@@ Linearize.transf_program
   @@ time "Label cleanup" CleanupLabels.transf_program
  @@@ time "Mach generation" Stacking.transf_program
   @@ print print_Mach
  @@@ time "Asm generation" Asmgen.transf_program.

Definition transf_cminor_program (p: Cminor.program) : res Asm.program :=
   OK p
   @@ print print_Cminor
  @@@ time "Instruction selection" Selection.sel_program
  @@@ time "RTL generation" RTLgen.transl_program
  @@@ transf_rtl_program.

Definition transf_clight_program (p: Clight.program) : res Asm.program :=
  OK p
   @@ print print_Clight
  @@@ time "Simplification of locals" SimplLocals.transf_program
  @@@ time "C#minor generation" Cshmgen.transl_program
  @@@ time "Cminor generation" Cminorgen.transl_program
  @@@ transf_cminor_program.

Definition transf_c_program (p: Csyntax.program) : res Asm.program :=
  OK p
  @@@ time "Clight generation" SimplExpr.transl_program
  @@@ transf_clight_program.

Force Initializers and Cexec to be extracted as well.
CompCertX:test-compcert-param-memory In fact, we have to list all extracted symbols that are actually used in OCaml code, and instantiate them with the concrete Memimpl memory model. They have nothing to do with compilation, they are relevant only for initializer and interpreter. See InitializersImpl and CexecImpl.
The following lemmas help reason over compositions of passes.

Lemma print_identity:
  forall (A: Type) (printer: A -> unit) (prog: A),
  print printer prog = prog.
Proof.
  intros; unfold print. destruct (printer prog); auto.
Qed.

Lemma compose_print_identity:
  forall (A: Type) (x: res A) (f: A -> unit),
  x @@ print f = x.
Proof.
  intros. destruct x; simpl. rewrite print_identity. auto. auto.
Qed.

Semantic preservation

We prove that the transf_program translations preserve semantics by constructing the following simulations:
  • Forward simulations from Cstrategy / Cminor / RTL to Asm (composition of the forward simulations for each pass).
  • Backward simulations for the same languages (derived from the forward simulation, using receptiveness of the source language and determinacy of Asm).
  • Backward simulation from Csem to Asm (composition of two backward simulations).
These results establish the correctness of the whole compiler!
CompCertX:test-compcert-param-memory We create section WITHMEM and associated contexts to parameterize the proof over the memory model. We also parameterize over mmatch_inj, the proof that matching a concrete memory state with an abstract representation yields a memory that injects into itself. We also parameterize over magree_spec, the specification of memory matching for dead code elimination (a weaker form of memory extension.) CompCertX:test-compcert-param-extcall Actually, we also need to parameterize over external functions. To this end, we created a CompilerConfiguration class (cf. Events) which is designed to be the single class on which the whole CompCert is to be parameterized. It includes all operations and properties on which CompCert depends: memory model, semantics of external functions and their preservation through compilation. But it does not include mmatch_inj nor magree_spec (because their specification are too specific to the optimizations)
CompCertX:test-compcert-param-i64-helpers Because of the axiom get_helpers_correct, we need to instantiate those classes now. It does not matter for whole programs.

Theorem transf_rtl_program_correct:
  forall p tp,
  transf_rtl_program p = OK tp ->
  forward_simulation (RTL.semantics p) (Asm.semantics tp)
  * backward_simulation (RTL.semantics p) (Asm.semantics tp).
Proof.
  intros.
  assert (F: forward_simulation (RTL.semantics p) (Asm.semantics tp)).
  unfold transf_rtl_program, time in H.
  repeat rewrite compose_print_identity in H.
  simpl in H.
  set (p1 := Tailcall.transf_program p) in *.
  destruct (Inlining.transf_program p1) as [p11|] eqn:?; simpl in H; try discriminate.
  set (p12 := Renumber.transf_program p11) in *.
  set (p2 := Constprop.transf_program p12) in *.
  set (p21 := Renumber.transf_program p2) in *.
  destruct (CSE.transf_program p21) as [p3|] eqn:?; simpl in H; try discriminate.
  destruct (Deadcode.transf_program p3) as [p31|] eqn:?; simpl in H; try discriminate.
  destruct (Allocation.transf_program p31) as [p4|] eqn:?; simpl in H; try discriminate.
  set (p5 := Tunneling.tunnel_program p4) in *.
  destruct (Linearize.transf_program p5) as [p6|] eqn:?; simpl in H; try discriminate.
  set (p7 := CleanupLabels.transf_program p6) in *.
  destruct (Stacking.transf_program p7) as [p8|] eqn:?; simpl in H; try discriminate.
  eapply compose_forward_simulation. apply Tailcallproof.transf_program_correct.
  eapply compose_forward_simulation. apply Inliningproof.transf_program_correct. eassumption.
  eapply compose_forward_simulation. apply Renumberproof.transf_program_correct.
  eapply compose_forward_simulation. apply Constpropproof.transf_program_correct.
  eapply compose_forward_simulation. apply Renumberproof.transf_program_correct.
  eapply compose_forward_simulation. apply CSEproof.transf_program_correct. eassumption.
  eapply compose_forward_simulation. apply Deadcodeproof.transf_program_correct. eassumption.
  eapply compose_forward_simulation. apply Allocproof.transf_program_correct. eassumption.
  eapply compose_forward_simulation. apply Tunnelingproof.transf_program_correct.
  eapply compose_forward_simulation. apply Linearizeproof.transf_program_correct. eassumption.
  eapply compose_forward_simulation. apply CleanupLabelsproof.transf_program_correct.
  eapply compose_forward_simulation. apply Stackingproof.transf_program_correct.
    eexact Asmgenproof.return_address_exists. eassumption.
  apply Asmgenproof.transf_program_correct; eauto.
  split. auto.
  apply forward_to_backward_simulation. auto.
  apply RTL.semantics_receptive.
  apply Asm.semantics_determinate.
Qed.

Theorem transf_cminor_program_correct:
  forall p tp,
  transf_cminor_program p = OK tp ->
  forward_simulation (Cminor.semantics p) (Asm.semantics tp)
  * backward_simulation (Cminor.semantics p) (Asm.semantics tp).
Proof.
  intros.
  assert (F: forward_simulation (Cminor.semantics p) (Asm.semantics tp)).
  unfold transf_cminor_program, time in H.
  repeat rewrite compose_print_identity in H.
  simpl in H.
  destruct (Selection.sel_program p) as [p1|] eqn:?; simpl in H; try discriminate.
  destruct (RTLgen.transl_program p1) as [p2|] eqn:?; simpl in H; try discriminate.
  eapply compose_forward_simulation. apply Selectionproof.transf_program_correct. eauto.
  eapply SelectLongproofImpl.get_helpers_correct.
  eauto.
  eapply compose_forward_simulation. apply RTLgenproof.transf_program_correct. eassumption.
  exact (fst (transf_rtl_program_correct _ _ H)).

  split. auto.
  apply forward_to_backward_simulation. auto.
  apply Cminor.semantics_receptive.
  apply Asm.semantics_determinate.
Qed.

Theorem transf_clight_program_correct:
  forall p tp,
  transf_clight_program p = OK tp ->
  forward_simulation (Clight.semantics1 p) (Asm.semantics tp)
  * backward_simulation (Clight.semantics1 p) (Asm.semantics tp).
Proof.
  intros.
  assert (F: forward_simulation (Clight.semantics1 p) (Asm.semantics tp)).
  revert H; unfold transf_clight_program, time; simpl.
  rewrite print_identity.
  caseEq (SimplLocals.transf_program p); simpl; try congruence; intros p0 EQ0.
  caseEq (Cshmgen.transl_program p0); simpl; try congruence; intros p1 EQ1.
  caseEq (Cminorgen.transl_program p1); simpl; try congruence; intros p2 EQ2.
  intros EQ3.
  eapply compose_forward_simulation. apply SimplLocalsproof.transf_program_correct. eauto.
  eapply compose_forward_simulation. apply Cshmgenproof.transl_program_correct. eauto.
  eapply compose_forward_simulation. apply Cminorgenproof.transl_program_correct. eauto.
  exact (fst (transf_cminor_program_correct _ _ EQ3)).

  split. auto.
  apply forward_to_backward_simulation. auto.
  apply Clight.semantics_receptive.
  apply Asm.semantics_determinate.
Qed.

Theorem transf_cstrategy_program_correct:
  forall p tp,
  transf_c_program p = OK tp ->
  forward_simulation (Cstrategy.semantics p) (Asm.semantics tp)
  * backward_simulation (atomic (Cstrategy.semantics p)) (Asm.semantics tp).
Proof.
  intros.
  assert (F: forward_simulation (Cstrategy.semantics p) (Asm.semantics tp)).
  revert H; unfold transf_c_program, time; simpl.
  caseEq (SimplExpr.transl_program p); simpl; try congruence; intros p0 EQ0.
  intros EQ1.
  eapply compose_forward_simulation. apply SimplExprproof.transl_program_correct. eauto.
  exact (fst (transf_clight_program_correct _ _ EQ1)).

  split. auto.
  apply forward_to_backward_simulation.
  apply factor_forward_simulation. auto. eapply sd_traces. eapply Asm.semantics_determinate.
  apply atomic_receptive. apply Cstrategy.semantics_strongly_receptive.
  apply Asm.semantics_determinate.
Qed.

Theorem transf_c_program_correct:
  forall p tp,
  transf_c_program p = OK tp ->
  backward_simulation (Csem.semantics p) (Asm.semantics tp).
Proof.
  intros.
  apply compose_backward_simulation with (atomic (Cstrategy.semantics p)).
  eapply sd_traces; eapply Asm.semantics_determinate.
  apply factor_backward_simulation.
  apply Cstrategy.strategy_simulation.
  apply Csem.semantics_single_events.
  eapply ssr_well_behaved; eapply Cstrategy.semantics_strongly_receptive.
  exact (snd (transf_cstrategy_program_correct _ _ H)).
Qed.