Library Coq.Reals.Alembert
Require
Import
Rbase
.
Require
Import
Rfunctions
.
Require
Import
Rseries
.
Require
Import
SeqProp
.
Require
Import
PartSum
.
Require
Import
Max
.
Local
Open
Scope
R_scope
.
Lemma
Alembert_C1
:
forall
An
:
nat
->
R
,
(
forall
n
:
nat
, 0
<
An
n
) ->
Un_cv
(
fun
n
:
nat
=>
Rabs
(
An
(
S
n
)
/
An
n
)) 0 ->
{
l
:
R
|
Un_cv
(
fun
N
:
nat
=>
sum_f_R0
An
N
)
l
}
.
Lemma
Alembert_C2
:
forall
An
:
nat
->
R
,
(
forall
n
:
nat
,
An
n
<>
0) ->
Un_cv
(
fun
n
:
nat
=>
Rabs
(
An
(
S
n
)
/
An
n
)) 0 ->
{
l
:
R
|
Un_cv
(
fun
N
:
nat
=>
sum_f_R0
An
N
)
l
}
.
Lemma
AlembertC3_step1
:
forall
(
An
:
nat
->
R
) (
x
:
R
),
x
<>
0 ->
(
forall
n
:
nat
,
An
n
<>
0) ->
Un_cv
(
fun
n
:
nat
=>
Rabs
(
An
(
S
n
)
/
An
n
)) 0 ->
{
l
:
R
|
Pser
An
x
l
}
.
Lemma
AlembertC3_step2
:
forall
(
An
:
nat
->
R
) (
x
:
R
),
x
=
0 ->
{
l
:
R
|
Pser
An
x
l
}
.
A useful criterion of convergence for power series
Theorem
Alembert_C3
:
forall
(
An
:
nat
->
R
) (
x
:
R
),
(
forall
n
:
nat
,
An
n
<>
0) ->
Un_cv
(
fun
n
:
nat
=>
Rabs
(
An
(
S
n
)
/
An
n
)) 0 ->
{
l
:
R
|
Pser
An
x
l
}
.
Lemma
Alembert_C4
:
forall
(
An
:
nat
->
R
) (
k
:
R
),
0
<=
k
<
1 ->
(
forall
n
:
nat
, 0
<
An
n
) ->
Un_cv
(
fun
n
:
nat
=>
Rabs
(
An
(
S
n
)
/
An
n
))
k
->
{
l
:
R
|
Un_cv
(
fun
N
:
nat
=>
sum_f_R0
An
N
)
l
}
.
Lemma
Alembert_C5
:
forall
(
An
:
nat
->
R
) (
k
:
R
),
0
<=
k
<
1 ->
(
forall
n
:
nat
,
An
n
<>
0) ->
Un_cv
(
fun
n
:
nat
=>
Rabs
(
An
(
S
n
)
/
An
n
))
k
->
{
l
:
R
|
Un_cv
(
fun
N
:
nat
=>
sum_f_R0
An
N
)
l
}
.
Convergence of power series in D(O,1/k) k=0 is described in Alembert_C3
Lemma
Alembert_C6
:
forall
(
An
:
nat
->
R
) (
x
k
:
R
),
0
<
k
->
(
forall
n
:
nat
,
An
n
<>
0) ->
Un_cv
(
fun
n
:
nat
=>
Rabs
(
An
(
S
n
)
/
An
n
))
k
->
Rabs
x
<
/
k
->
{
l
:
R
|
Pser
An
x
l
}
.