Library Coq.Reals.Cauchy_prod
Require
Import
Rbase
.
Require
Import
Rfunctions
.
Require
Import
Rseries
.
Require
Import
PartSum
.
Local
Open
Scope
R_scope
.
Lemma
sum_N_predN
:
forall
(
An
:
nat
->
R
) (
N
:
nat
),
(0
<
N
)%
nat
->
sum_f_R0
An
N
=
sum_f_R0
An
(
pred
N
)
+
An
N
.
Lemma
sum_plus
:
forall
(
An
Bn
:
nat
->
R
) (
N
:
nat
),
sum_f_R0
(
fun
l
:
nat
=>
An
l
+
Bn
l
)
N
=
sum_f_R0
An
N
+
sum_f_R0
Bn
N
.
Theorem
cauchy_finite
:
forall
(
An
Bn
:
nat
->
R
) (
N
:
nat
),
(0
<
N
)%
nat
->
sum_f_R0
An
N
*
sum_f_R0
Bn
N
=
sum_f_R0
(
fun
k
:
nat
=>
sum_f_R0
(
fun
p
:
nat
=>
An
p
*
Bn
(
k
-
p
)%
nat
)
k
)
N
+
sum_f_R0
(
fun
k
:
nat
=>
sum_f_R0
(
fun
l
:
nat
=>
An
(
S
(
l
+
k
))
*
Bn
(
N
-
l
)%
nat
)
(
pred
(
N
-
k
))) (
pred
N
).