Library Coq.Reals.Rsigma
Require
Import
Rbase
.
Require
Import
Rfunctions
.
Require
Import
Rseries
.
Require
Import
PartSum
.
Local
Open
Scope
R_scope
.
Set Implicit Arguments
.
Section
Sigma
.
Variable
f
:
nat
->
R
.
Definition
sigma
(
low
high
:
nat
) :
R
:=
sum_f_R0
(
fun
k
:
nat
=>
f
(
low
+
k
)) (
high
-
low
).
Theorem
sigma_split
:
forall
low
high
k
:
nat
,
(
low
<=
k
)%
nat
->
(
k
<
high
)%
nat
->
sigma
low
high
=
sigma
low
k
+
sigma
(
S
k
)
high
.
Theorem
sigma_diff
:
forall
low
high
k
:
nat
,
(
low
<=
k
)%
nat
->
(
k
<
high
)%
nat
->
sigma
low
high
-
sigma
low
k
=
sigma
(
S
k
)
high
.
Theorem
sigma_diff_neg
:
forall
low
high
k
:
nat
,
(
low
<=
k
)%
nat
->
(
k
<
high
)%
nat
->
sigma
low
k
-
sigma
low
high
=
-
sigma
(
S
k
)
high
.
Theorem
sigma_first
:
forall
low
high
:
nat
,
(
low
<
high
)%
nat
->
sigma
low
high
=
f
low
+
sigma
(
S
low
)
high
.
Theorem
sigma_last
:
forall
low
high
:
nat
,
(
low
<
high
)%
nat
->
sigma
low
high
=
f
high
+
sigma
low
(
pred
high
).
Theorem
sigma_eq_arg
:
forall
low
:
nat
,
sigma
low
low
=
f
low
.
End
Sigma
.