Equality is decidable on nat
|
Open Local
Scope nat_scope.
Notation
not_eq_sym := sym_not_eq.
Implicit
Types m n p q : nat.
Require
Import
Arith.
Require
Import
Peano_dec.
Require
Import
Compare_dec.
Definition
le_or_le_S := le_le_S_dec.
Definition
Pcompare := gt_eq_gt_dec.
Lemma
le_dec : forall n m, {n <= m} + {m <= n}.
Proof
le_ge_dec.
Definition
lt_or_eq n m := {m > n} + {n = m}.
Lemma
le_decide : forall n m, n <= m -> lt_or_eq n m.
Proof
le_lt_eq_dec.
Lemma
le_le_S_eq : forall n m, n <= m -> S n <= m \/ n = m.
Proof
le_lt_or_eq.
Lemma
discrete_nat :
forall n m, n < m -> S n = m \/ (exists r : nat, m = S (S (n + r))).
Proof
.
intros m n H.
lapply (lt_le_S m n); auto with arith.
intro H'; lapply (le_lt_or_eq (S m) n); auto with arith.
induction 1; auto with arith.
right; exists (n - S (S m)); simpl in |- *.
rewrite (plus_comm m (n - S (S m))).
rewrite (plus_n_Sm (n - S (S m)) m).
rewrite (plus_n_Sm (n - S (S m)) (S m)).
rewrite (plus_comm (n - S (S m)) (S (S m))); auto with arith.
Qed
.
Require
Export
Wf_nat.
Require
Export
Min.