Equality on natural numbers |
Open Local
Scope nat_scope.
Implicit
Types m n x y : nat.
Fixpoint
eq_nat n m {struct n} : Prop :=
match n, m with
| O, O => True
| O, S _ => False
| S _, O => False
| S n1, S m1 => eq_nat n1 m1
end.
Theorem
eq_nat_refl : forall n, eq_nat n n.
induction n; simpl in |- *; auto.
Qed
.
Hint
Resolve eq_nat_refl: arith v62.
Theorem
eq_eq_nat : forall n m, n = m -> eq_nat n m.
induction 1; trivial with arith.
Qed
.
Hint
Immediate
eq_eq_nat: arith v62.
Theorem
eq_nat_eq : forall n m, eq_nat n m -> n = m.
induction n; induction m; simpl in |- *; contradiction || auto with arith.
Qed
.
Hint
Immediate
eq_nat_eq: arith v62.
Theorem
eq_nat_elim :
forall n (P:nat -> Prop), P n -> forall m, eq_nat n m -> P m.
intros; replace m with n; auto with arith.
Qed
.
Theorem
eq_nat_decide : forall n m, {eq_nat n m} + {~ eq_nat n m}.
induction n.
destruct m as [| n].
auto with arith.
intros; right; red in |- *; trivial with arith.
destruct m as [| n0].
right; red in |- *; auto with arith.
intros.
simpl in |- *.
apply IHn.
Defined
.
Fixpoint
beq_nat n m {struct n} : bool :=
match n, m with
| O, O => true
| O, S _ => false
| S _, O => false
| S n1, S m1 => beq_nat n1 m1
end.
Lemma
beq_nat_refl : forall n, true = beq_nat n n.
Proof
.
intro x; induction x; simpl in |- *; auto.
Qed
.
Definition
beq_nat_eq : forall x y, true = beq_nat x y -> x = y.
Proof
.
double induction x y; simpl in |- *.
reflexivity.
intros; discriminate H0.
intros; discriminate H0.
intros; case (H0 _ H1); reflexivity.
Defined
.