Library Coq.Arith.Factorial

Require Import Plus.
Require Import Mult.
Require Import Lt.
Open Local Scope nat_scope.

Factorial

Fixpoint fact (n:nat) : nat :=
  match n with
  | O => 1
  | S n => S n * fact n
  end.

Arguments Scope fact [nat_scope].

Lemma lt_O_fact : forall n:nat, 0 < fact n.
Proof.
simple induction n; unfold lt in |- *; simpl in |- *; auto with arith.
Qed.

Lemma fact_neq_0 : forall n:nat, fact n <> 0.
Proof.
intro.
apply sym_not_eq.
apply lt_O_neq.
apply lt_O_fact.
Qed.

Lemma fact_le : forall n m:nat, n <= m -> fact n <= fact m.
Proof.
induction 1.
apply le_n.
assert (1 * fact n <= S m * fact m).
apply mult_le_compat.
apply lt_le_S; apply lt_O_Sn.
assumption.
simpl (1 * fact n) in H0.
rewrite <- plus_n_O in H0.
assumption.
Qed.

Index
This page has been generated by coqdoc