Library Coq.Arith.Peano_dec
Require
Import
Decidable.
Open Local
Scope nat_scope.
Implicit
Types m n x y : nat.
Theorem
O_or_S : forall n, {m : nat | S m = n} + {0 = n}.
Proof
.
induction n.
auto.
left; exists n; auto.
Defined
.
Theorem
eq_nat_dec : forall n m, {n = m} + {n <> m}.
Proof
.
induction n; induction m; auto.
elim (IHn m); auto.
Defined
.
Hint
Resolve O_or_S eq_nat_dec: arith.
Theorem
dec_eq_nat : forall n m, decidable (n = m).
intros x y; unfold decidable in |- *; elim (eq_nat_dec x y); auto with arith.
Defined
.
Index
This page has been generated by coqdoc