Library Coq.IntMap.Mapfold
Require
Import
Bool.
Require
Import
Sumbool.
Require
Import
ZArith.
Require
Import
Addr.
Require
Import
Adist.
Require
Import
Addec.
Require
Import
Map.
Require
Import
Fset.
Require
Import
Mapaxioms.
Require
Import
Mapiter.
Require
Import
Lsort.
Require
Import
Mapsubset.
Require
Import
List.
Section
MapFoldResults.
Variable
A : Set.
Variable
M : Set.
Variable
neutral : M.
Variable
op : M -> M -> M.
Variable
nleft : forall a:M, op neutral a = a.
Variable
nright : forall a:M, op a neutral = a.
Variable
assoc : forall a b c:M, op (op a b) c = op a (op b c).
Lemma
MapFold_ext :
forall (f:ad -> A -> M) (m m':Map A),
eqmap A m m' -> MapFold _ _ neutral op f m = MapFold _ _ neutral op f m'.
Proof
.
intros. rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m).
rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m').
cut (alist_of_Map A m = alist_of_Map A m'). intro. rewrite H0. reflexivity.
apply alist_canonical. unfold eqmap in H. apply eqm_trans with (f':= MapGet A m).
apply eqm_sym. apply alist_of_Map_semantics.
apply eqm_trans with (f':= MapGet A m'). assumption.
apply alist_of_Map_semantics.
apply alist_of_Map_sorts2.
apply alist_of_Map_sorts2.
Qed
.
Lemma
MapFold_ext_f_1 :
forall (m:Map A) (f g:ad -> A -> M) (pf:ad -> ad),
(forall (a:ad) (y:A), MapGet _ m a = SOME _ y -> f (pf a) y = g (pf a) y) ->
MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op g pf m.
Proof
.
simple induction m. trivial.
simpl in |- *. intros. apply H. rewrite (ad_eq_correct a). reflexivity.
intros. simpl in |- *. rewrite (H f g (fun a0:ad => pf (ad_double a0))).
rewrite (H0 f g (fun a0:ad => pf (ad_double_plus_un a0))). reflexivity.
intros. apply H1. rewrite MapGet_M2_bit_0_1. rewrite ad_double_plus_un_div_2. assumption.
apply ad_double_plus_un_bit_0.
intros. apply H1. rewrite MapGet_M2_bit_0_0. rewrite ad_double_div_2. assumption.
apply ad_double_bit_0.
Qed
.
Lemma
MapFold_ext_f :
forall (f g:ad -> A -> M) (m:Map A),
(forall (a:ad) (y:A), MapGet _ m a = SOME _ y -> f a y = g a y) ->
MapFold _ _ neutral op f m = MapFold _ _ neutral op g m.
Proof
.
intros. exact (MapFold_ext_f_1 m f g (fun a0:ad => a0) H).
Qed
.
Lemma
MapFold1_as_Fold_1 :
forall (m:Map A) (f f':ad -> A -> M) (pf pf':ad -> ad),
(forall (a:ad) (y:A), f (pf a) y = f' (pf' a) y) ->
MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op f' pf' m.
Proof
.
simple induction m. trivial.
intros. simpl in |- *. apply H.
intros. simpl in |- *.
rewrite
(H f f' (fun a0:ad => pf (ad_double a0))
(fun a0:ad => pf' (ad_double a0))).
rewrite
(H0 f f' (fun a0:ad => pf (ad_double_plus_un a0))
(fun a0:ad => pf' (ad_double_plus_un a0))).
reflexivity.
intros. apply H1.
intros. apply H1.
Qed
.
Lemma
MapFold1_as_Fold :
forall (f:ad -> A -> M) (pf:ad -> ad) (m:Map A),
MapFold1 _ _ neutral op f pf m =
MapFold _ _ neutral op (fun (a:ad) (y:A) => f (pf a) y) m.
Proof
.
intros. unfold MapFold in |- *. apply MapFold1_as_Fold_1. trivial.
Qed
.
Lemma
MapFold1_ext :
forall (f:ad -> A -> M) (m m':Map A),
eqmap A m m' ->
forall pf:ad -> ad,
MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op f pf m'.
Proof
.
intros. rewrite MapFold1_as_Fold. rewrite MapFold1_as_Fold. apply MapFold_ext. assumption.
Qed
.
Variable
comm : forall a b:M, op a b = op b a.
Lemma
MapFold_Put_disjoint_1 :
forall (p:positive) (f:ad -> A -> M) (pf:ad -> ad)
(a1 a2:ad) (y1 y2:A),
ad_xor a1 a2 = ad_x p ->
MapFold1 A M neutral op f pf (MapPut1 A a1 y1 a2 y2 p) =
op (f (pf a1) y1) (f (pf a2) y2).
Proof
.
simple induction p. intros. simpl in |- *. elim (sumbool_of_bool (ad_bit_0 a1)). intro H1. rewrite H1.
simpl in |- *. rewrite ad_div_2_double_plus_un. rewrite ad_div_2_double. apply comm.
change (ad_bit_0 a2 = negb true) in |- *. rewrite <- H1. rewrite (ad_neg_bit_0_2 _ _ _ H0).
rewrite negb_elim. reflexivity.
assumption.
intro H1. rewrite H1. simpl in |- *. rewrite ad_div_2_double. rewrite ad_div_2_double_plus_un.
reflexivity.
change (ad_bit_0 a2 = negb false) in |- *. rewrite <- H1. rewrite (ad_neg_bit_0_2 _ _ _ H0).
rewrite negb_elim. reflexivity.
assumption.
simpl in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a1)). intro H1. rewrite H1. simpl in |- *.
rewrite nleft.
rewrite
(H f (fun a0:ad => pf (ad_double_plus_un a0)) (
ad_div_2 a1) (ad_div_2 a2) y1 y2).
rewrite ad_div_2_double_plus_un. rewrite ad_div_2_double_plus_un. reflexivity.
rewrite <- (ad_same_bit_0 _ _ _ H0). assumption.
assumption.
rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
intro H1. rewrite H1. simpl in |- *. rewrite nright.
rewrite
(H f (fun a0:ad => pf (ad_double a0)) (ad_div_2 a1) (ad_div_2 a2) y1 y2)
.
rewrite ad_div_2_double. rewrite ad_div_2_double. reflexivity.
rewrite <- (ad_same_bit_0 _ _ _ H0). assumption.
assumption.
rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
intros. simpl in |- *. elim (sumbool_of_bool (ad_bit_0 a1)). intro H0. rewrite H0. simpl in |- *.
rewrite ad_div_2_double. rewrite ad_div_2_double_plus_un. apply comm.
assumption.
change (ad_bit_0 a2 = negb true) in |- *. rewrite <- H0. rewrite (ad_neg_bit_0_1 _ _ H).
rewrite negb_elim. reflexivity.
intro H0. rewrite H0. simpl in |- *. rewrite ad_div_2_double. rewrite ad_div_2_double_plus_un.
reflexivity.
change (ad_bit_0 a2 = negb false) in |- *. rewrite <- H0. rewrite (ad_neg_bit_0_1 _ _ H).
rewrite negb_elim. reflexivity.
assumption.
Qed
.
Lemma
MapFold_Put_disjoint_2 :
forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A) (pf:ad -> ad),
MapGet A m a = NONE A ->
MapFold1 A M neutral op f pf (MapPut A m a y) =
op (f (pf a) y) (MapFold1 A M neutral op f pf m).
Proof
.
simple induction m. intros. simpl in |- *. rewrite (nright (f (pf a) y)). reflexivity.
intros a1 y1 a2 y2 pf H. simpl in |- *. elim (ad_sum (ad_xor a1 a2)). intro H0. elim H0.
intros p H1. rewrite H1. rewrite comm. exact (MapFold_Put_disjoint_1 p f pf a1 a2 y1 y2 H1).
intro H0. rewrite (ad_eq_complete _ _ (ad_xor_eq_true _ _ H0)) in H.
rewrite (M1_semantics_1 A a2 y1) in H. discriminate H.
intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2.
cut (MapPut A (M2 A m0 m1) a y = M2 A m0 (MapPut A m1 (ad_div_2 a) y)). intro.
rewrite H3. simpl in |- *. rewrite (H0 (ad_div_2 a) y (fun a0:ad => pf (ad_double_plus_un a0))).
rewrite ad_div_2_double_plus_un. rewrite <- assoc.
rewrite
(comm (MapFold1 A M neutral op f (fun a0:ad => pf (ad_double a0)) m0)
(f (pf a) y)).
rewrite assoc. reflexivity.
assumption.
rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. assumption.
simpl in |- *. elim (ad_sum a). intro H3. elim H3. intro p. elim p. intros p0 H4 H5. rewrite H5.
reflexivity.
intros p0 H4 H5. rewrite H5 in H2. discriminate H2.
intro H4. rewrite H4. reflexivity.
intro H3. rewrite H3 in H2. discriminate H2.
intro H2. cut (MapPut A (M2 A m0 m1) a y = M2 A (MapPut A m0 (ad_div_2 a) y) m1).
intro. rewrite H3. simpl in |- *. rewrite (H (ad_div_2 a) y (fun a0:ad => pf (ad_double a0))).
rewrite ad_div_2_double. rewrite <- assoc. reflexivity.
assumption.
rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. assumption.
simpl in |- *. elim (ad_sum a). intro H3. elim H3. intro p. elim p. intros p0 H4 H5. rewrite H5 in H2.
discriminate H2.
intros p0 H4 H5. rewrite H5. reflexivity.
intro H4. rewrite H4 in H2. discriminate H2.
intro H3. rewrite H3. reflexivity.
Qed
.
Lemma
MapFold_Put_disjoint :
forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A),
MapGet A m a = NONE A ->
MapFold A M neutral op f (MapPut A m a y) =
op (f a y) (MapFold A M neutral op f m).
Proof
.
intros. exact (MapFold_Put_disjoint_2 f m a y (fun a0:ad => a0) H).
Qed
.
Lemma
MapFold_Put_behind_disjoint_2 :
forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A) (pf:ad -> ad),
MapGet A m a = NONE A ->
MapFold1 A M neutral op f pf (MapPut_behind A m a y) =
op (f (pf a) y) (MapFold1 A M neutral op f pf m).
Proof
.
intros. cut (eqmap A (MapPut_behind A m a y) (MapPut A m a y)). intro.
rewrite (MapFold1_ext f _ _ H0 pf). apply MapFold_Put_disjoint_2. assumption.
apply eqmap_trans with (m':= MapMerge A (M1 A a y) m). apply MapPut_behind_as_Merge.
apply eqmap_trans with (m':= MapMerge A m (M1 A a y)).
apply eqmap_trans with (m':= MapDelta A (M1 A a y) m). apply eqmap_sym. apply MapDelta_disjoint.
unfold MapDisjoint in |- *. unfold in_dom in |- *. simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)).
intro H2. rewrite (ad_eq_complete _ _ H2) in H. rewrite H in H1. discriminate H1.
intro H2. rewrite H2 in H0. discriminate H0.
apply eqmap_trans with (m':= MapDelta A m (M1 A a y)). apply MapDelta_sym.
apply MapDelta_disjoint. unfold MapDisjoint in |- *. unfold in_dom in |- *. simpl in |- *. intros.
elim (sumbool_of_bool (ad_eq a a0)). intro H2. rewrite (ad_eq_complete _ _ H2) in H.
rewrite H in H0. discriminate H0.
intro H2. rewrite H2 in H1. discriminate H1.
apply eqmap_sym. apply MapPut_as_Merge.
Qed
.
Lemma
MapFold_Put_behind_disjoint :
forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A),
MapGet A m a = NONE A ->
MapFold A M neutral op f (MapPut_behind A m a y) =
op (f a y) (MapFold A M neutral op f m).
Proof
.
intros. exact (MapFold_Put_behind_disjoint_2 f m a y (fun a0:ad => a0) H).
Qed
.
Lemma
MapFold_Merge_disjoint_1 :
forall (f:ad -> A -> M) (m1 m2:Map A) (pf:ad -> ad),
MapDisjoint A A m1 m2 ->
MapFold1 A M neutral op f pf (MapMerge A m1 m2) =
op (MapFold1 A M neutral op f pf m1) (MapFold1 A M neutral op f pf m2).
Proof
.
simple induction m1. simpl in |- *. intros. rewrite nleft. reflexivity.
intros. unfold MapMerge in |- *. apply (MapFold_Put_behind_disjoint_2 f m2 a a0 pf).
apply in_dom_none. exact (MapDisjoint_M1_l _ _ m2 a a0 H).
simple induction m2. intros. simpl in |- *. rewrite nright. reflexivity.
intros. unfold MapMerge in |- *. rewrite (MapFold_Put_disjoint_2 f (M2 A m m0) a a0 pf). apply comm.
apply in_dom_none. exact (MapDisjoint_M1_r _ _ (M2 A m m0) a a0 H1).
intros. simpl in |- *. rewrite (H m3 (fun a0:ad => pf (ad_double a0))).
rewrite (H0 m4 (fun a0:ad => pf (ad_double_plus_un a0))).
cut (forall a b c d:M, op (op a b) (op c d) = op (op a c) (op b d)). intro. apply H4.
intros. rewrite assoc. rewrite <- (assoc b c d). rewrite (comm b c). rewrite (assoc c b d).
rewrite assoc. reflexivity.
exact (MapDisjoint_M2_r _ _ _ _ _ _ H3).
exact (MapDisjoint_M2_l _ _ _ _ _ _ H3).
Qed
.
Lemma
MapFold_Merge_disjoint :
forall (f:ad -> A -> M) (m1 m2:Map A),
MapDisjoint A A m1 m2 ->
MapFold A M neutral op f (MapMerge A m1 m2) =
op (MapFold A M neutral op f m1) (MapFold A M neutral op f m2).
Proof
.
intros. exact (MapFold_Merge_disjoint_1 f m1 m2 (fun a0:ad => a0) H).
Qed
.
End
MapFoldResults.
Section
MapFoldDistr.
Variable
A : Set.
Variable
M : Set.
Variable
neutral : M.
Variable
op : M -> M -> M.
Variable
M' : Set.
Variable
neutral' : M'.
Variable
op' : M' -> M' -> M'.
Variable
N : Set.
Variable
times : M -> N -> M'.
Variable
absorb : forall c:N, times neutral c = neutral'.
Variable
distr :
forall (a b:M) (c:N), times (op a b) c = op' (times a c) (times b c).
Lemma
MapFold_distr_r_1 :
forall (f:ad -> A -> M) (m:Map A) (c:N) (pf:ad -> ad),
times (MapFold1 A M neutral op f pf m) c =
MapFold1 A M' neutral' op' (fun (a:ad) (y:A) => times (f a y) c) pf m.
Proof
.
simple induction m. intros. exact (absorb c).
trivial.
intros. simpl in |- *. rewrite distr. rewrite H. rewrite H0. reflexivity.
Qed
.
Lemma
MapFold_distr_r :
forall (f:ad -> A -> M) (m:Map A) (c:N),
times (MapFold A M neutral op f m) c =
MapFold A M' neutral' op' (fun (a:ad) (y:A) => times (f a y) c) m.
Proof
.
intros. exact (MapFold_distr_r_1 f m c (fun a:ad => a)).
Qed
.
End
MapFoldDistr.
Section
MapFoldDistrL.
Variable
A : Set.
Variable
M : Set.
Variable
neutral : M.
Variable
op : M -> M -> M.
Variable
M' : Set.
Variable
neutral' : M'.
Variable
op' : M' -> M' -> M'.
Variable
N : Set.
Variable
times : N -> M -> M'.
Variable
absorb : forall c:N, times c neutral = neutral'.
Variable
distr :
forall (a b:M) (c:N), times c (op a b) = op' (times c a) (times c b).
Lemma
MapFold_distr_l :
forall (f:ad -> A -> M) (m:Map A) (c:N),
times c (MapFold A M neutral op f m) =
MapFold A M' neutral' op' (fun (a:ad) (y:A) => times c (f a y)) m.
Proof
.
intros. apply MapFold_distr_r with (times:= fun (a:M) (b:N) => times b a);
assumption.
Qed
.
End
MapFoldDistrL.
Section
MapFoldExists.
Variable
A : Set.
Lemma
MapFold_orb_1 :
forall (f:ad -> A -> bool) (m:Map A) (pf:ad -> ad),
MapFold1 A bool false orb f pf m =
match MapSweep1 A f pf m with
| SOME _ => true
| _ => false
end.
Proof
.
simple induction m. trivial.
intros a y pf. simpl in |- *. unfold MapSweep2 in |- *. case (f (pf a) y); reflexivity.
intros. simpl in |- *. rewrite (H (fun a0:ad => pf (ad_double a0))).
rewrite (H0 (fun a0:ad => pf (ad_double_plus_un a0))).
case (MapSweep1 A f (fun a0:ad => pf (ad_double a0)) m0); reflexivity.
Qed
.
Lemma
MapFold_orb :
forall (f:ad -> A -> bool) (m:Map A),
MapFold A bool false orb f m =
match MapSweep A f m with
| SOME _ => true
| _ => false
end.
Proof
.
intros. exact (MapFold_orb_1 f m (fun a:ad => a)).
Qed
.
End
MapFoldExists.
Section
DMergeDef.
Variable
A : Set.
Definition
DMerge :=
MapFold (Map A) (Map A) (M0 A) (MapMerge A) (fun (_:ad) (m:Map A) => m).
Lemma
in_dom_DMerge_1 :
forall (m:Map (Map A)) (a:ad),
in_dom A a (DMerge m) =
match MapSweep _ (fun (_:ad) (m0:Map A) => in_dom A a m0) m with
| SOME _ => true
| _ => false
end.
Proof
.
unfold DMerge in |- *. intros.
rewrite
(MapFold_distr_l (Map A) (Map A) (M0 A) (MapMerge A) bool false orb ad
(in_dom A) (fun c:ad => refl_equal _) (in_dom_merge A))
.
apply MapFold_orb.
Qed
.
Lemma
in_dom_DMerge_2 :
forall (m:Map (Map A)) (a:ad),
in_dom A a (DMerge m) = true ->
{b : ad &
{m0 : Map A | MapGet _ m b = SOME _ m0 /\ in_dom A a m0 = true}}.
Proof
.
intros m a. rewrite in_dom_DMerge_1.
elim
(option_sum _
(MapSweep (Map A) (fun (_:ad) (m0:Map A) => in_dom A a m0) m)).
intro H. elim H. intro r. elim r. intros b m0 H0. intro. split with b. split with m0.
split. exact (MapSweep_semantics_2 _ _ _ _ _ H0).
exact (MapSweep_semantics_1 _ _ _ _ _ H0).
intro H. rewrite H. intro. discriminate H0.
Qed
.
Lemma
in_dom_DMerge_3 :
forall (m:Map (Map A)) (a b:ad) (m0:Map A),
MapGet _ m a = SOME _ m0 ->
in_dom A b m0 = true -> in_dom A b (DMerge m) = true.
Proof
.
intros m a b m0 H H0. rewrite in_dom_DMerge_1.
elim
(MapSweep_semantics_4 _ (fun (_:ad) (m'0:Map A) => in_dom A b m'0) _ _ _
H H0).
intros a' H1. elim H1. intros m'0 H2. rewrite H2. reflexivity.
Qed
.
End
DMergeDef.
Index
This page has been generated by coqdoc