Library Coq.NArith.BinNat

Require Import BinPos.

Binary natural numbers

Inductive N : Set :=
  | N0 : N
  | Npos : positive -> N.

Declare binding key for scope positive_scope

Delimit Scope N_scope with N.

Automatically open scope N_scope for the constructors of N

Bind Scope N_scope with N.
Arguments Scope Npos [N_scope].

Open Local Scope N_scope.

Operation x -> 2*x+1

Definition Ndouble_plus_one x :=
  match x with
  | N0 => Npos 1%positive
  | Npos p => Npos (xI p)
  end.

Operation x -> 2*x

Definition Ndouble n := match n with
                        | N0 => N0
                        | Npos p => Npos (xO p)
                        end.

Successor

Definition Nsucc n :=
  match n with
  | N0 => Npos 1%positive
  | Npos p => Npos (Psucc p)
  end.

Addition

Definition Nplus n m :=
  match n, m with
  | N0, _ => m
  | _, N0 => n
  | Npos p, Npos q => Npos (p + q)%positive
  end.

Infix "+" := Nplus : N_scope.

Multiplication

Definition Nmult n m :=
  match n, m with
  | N0, _ => N0
  | _, N0 => N0
  | Npos p, Npos q => Npos (p * q)%positive
  end.

Infix "*" := Nmult : N_scope.

Order

Definition Ncompare n m :=
  match n, m with
  | N0, N0 => Eq
  | N0, Npos m' => Lt
  | Npos n', N0 => Gt
  | Npos n', Npos m' => (n' ?= m')%positive Eq
  end.

Infix "?=" := Ncompare (at level 70, no associativity) : N_scope.

Peano induction on binary natural numbers

Theorem Nind :
 forall P:N -> Prop,
   P N0 -> (forall n:N, P n -> P (Nsucc n)) -> forall n:N, P n.
Proof.
destruct n.
  assumption.
  apply Pind with (P:= fun p => P (Npos p)).
exact (H0 N0 H).
intro p'; exact (H0 (Npos p')).
Qed.

Properties of addition

Theorem Nplus_0_l : forall n:N, N0 + n = n.
Proof.
reflexivity.
Qed.

Theorem Nplus_0_r : forall n:N, n + N0 = n.
Proof.
destruct n; reflexivity.
Qed.

Theorem Nplus_comm : forall n m:N, n + m = m + n.
Proof.
intros.
destruct n; destruct m; simpl in |- *; try reflexivity.
rewrite Pplus_comm; reflexivity.
Qed.

Theorem Nplus_assoc : forall n m p:N, n + (m + p) = n + m + p.
Proof.
intros.
destruct n; try reflexivity.
destruct m; try reflexivity.
destruct p; try reflexivity.
simpl in |- *; rewrite Pplus_assoc; reflexivity.
Qed.

Theorem Nplus_succ : forall n m:N, Nsucc n + m = Nsucc (n + m).
Proof.
destruct n; destruct m.
  simpl in |- *; reflexivity.
  unfold Nsucc, Nplus in |- *; rewrite <- Pplus_one_succ_l; reflexivity.
  simpl in |- *; reflexivity.
  simpl in |- *; rewrite Pplus_succ_permute_l; reflexivity.
Qed.

Theorem Nsucc_inj : forall n m:N, Nsucc n = Nsucc m -> n = m.
Proof.
destruct n; destruct m; simpl in |- *; intro H; reflexivity || injection H;
 clear H; intro H.
  symmetry in H; contradiction Psucc_not_one with p.
  contradiction Psucc_not_one with p.
  rewrite Psucc_inj with (1 := H); reflexivity.
Qed.

Theorem Nplus_reg_l : forall n m p:N, n + m = n + p -> m = p.
Proof.
intro n; pattern n in |- *; apply Nind; clear n; simpl in |- *.
  trivial.
  intros n IHn m p H0; do 2 rewrite Nplus_succ in H0.
  apply IHn; apply Nsucc_inj; assumption.
Qed.

Properties of multiplication

Theorem Nmult_1_l : forall n:N, Npos 1%positive * n = n.
Proof.
destruct n; reflexivity.
Qed.

Theorem Nmult_1_r : forall n:N, n * Npos 1%positive = n.
Proof.
destruct n; simpl in |- *; try reflexivity.
rewrite Pmult_1_r; reflexivity.
Qed.

Theorem Nmult_comm : forall n m:N, n * m = m * n.
Proof.
intros.
destruct n; destruct m; simpl in |- *; try reflexivity.
rewrite Pmult_comm; reflexivity.
Qed.

Theorem Nmult_assoc : forall n m p:N, n * (m * p) = n * m * p.
Proof.
intros.
destruct n; try reflexivity.
destruct m; try reflexivity.
destruct p; try reflexivity.
simpl in |- *; rewrite Pmult_assoc; reflexivity.
Qed.

Theorem Nmult_plus_distr_r : forall n m p:N, (n + m) * p = n * p + m * p.
Proof.
intros.
destruct n; try reflexivity.
destruct m; destruct p; try reflexivity.
simpl in |- *; rewrite Pmult_plus_distr_r; reflexivity.
Qed.

Theorem Nmult_reg_r : forall n m p:N, p <> N0 -> n * p = m * p -> n = m.
Proof.
destruct p; intros Hp H.
contradiction Hp; reflexivity.
destruct n; destruct m; reflexivity || (try discriminate H).
injection H; clear H; intro H; rewrite Pmult_reg_r with (1 := H); reflexivity.
Qed.

Theorem Nmult_0_l : forall n:N, N0 * n = N0.
Proof.
reflexivity.
Qed.

Properties of comparison

Theorem Ncompare_Eq_eq : forall n m:N, (n ?= m) = Eq -> n = m.
Proof.
destruct n as [| n]; destruct m as [| m]; simpl in |- *; intro H;
 reflexivity || (try discriminate H).
  rewrite (Pcompare_Eq_eq n m H); reflexivity.
Qed.

Index
This page has been generated by coqdoc