Library Coq.ZArith.Wf_Z

Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Require Import Znat.
Require Import Zmisc.
Require Import Wf_nat.
Open Local Scope Z_scope.

Our purpose is to write an induction shema for {0,1,2,...} similar to the nat schema (Theorem Natlike_rec). For that the following implications will be used :
 (n:nat)(Q n)==(n:nat)(P (inject_nat n)) ===> (x:Z)`x > 0) -> (P x)

       	     /\
             ||
             ||

  (Q O) (n:nat)(Q n)->(Q (S n)) <=== (P 0) (x:Z) (P x) -> (P (Zs x))

      	       	       	       	<=== (inject_nat (S n))=(Zs (inject_nat n))

      	       	       	       	<=== inject_nat_complete


Then the diagram will be closed and the theorem proved.

Lemma Z_of_nat_complete :
 forall x:Z, 0 <= x -> exists n : nat, x = Z_of_nat n.
intro x; destruct x; intros;
 [ exists 0%nat; auto with arith
 | specialize (ZL4 p); intros Hp; elim Hp; intros; exists (S x); intros;
    simpl in |- *; specialize (nat_of_P_o_P_of_succ_nat_eq_succ x);
    intro Hx0; rewrite <- H0 in Hx0; apply f_equal with (f:= Zpos);
    apply nat_of_P_inj; auto with arith
 | absurd (0 <= Zneg p);
    [ unfold Zle in |- *; simpl in |- *; do 2 unfold not in |- *; auto with arith | assumption ] ].
Qed.

Lemma ZL4_inf : forall y:positive, {h : nat | nat_of_P y = S h}.
intro y; induction y as [p H| p H1| ];
 [ elim H; intros x H1; exists (S x + S x)%nat; unfold nat_of_P in |- *; simpl in |- *; rewrite ZL0; rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H1; rewrite H1; auto with arith | elim H1; intros x H2; exists (x + S x)%nat; unfold nat_of_P in |- *; simpl in |- *; rewrite ZL0; rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H2; rewrite H2; auto with arith | exists 0%nat; auto with arith ].
Qed.

Lemma Z_of_nat_complete_inf :
 forall x:Z, 0 <= x -> {n : nat | x = Z_of_nat n}.
intro x; destruct x; intros;
 [ exists 0%nat; auto with arith
 | specialize (ZL4_inf p); intros Hp; elim Hp; intros x0 H0; exists (S x0);
    intros; simpl in |- *; specialize (nat_of_P_o_P_of_succ_nat_eq_succ x0);
    intro Hx0; rewrite <- H0 in Hx0; apply f_equal with (f:= Zpos);
    apply nat_of_P_inj; auto with arith
 | absurd (0 <= Zneg p);
    [ unfold Zle in |- *; simpl in |- *; do 2 unfold not in |- *; auto with arith | assumption ] ].
Qed.

Lemma Z_of_nat_prop :
 forall P:Z -> Prop,
   (forall n:nat, P (Z_of_nat n)) -> forall x:Z, 0 <= x -> P x.
intros P H x H0.
specialize (Z_of_nat_complete x H0).
intros Hn; elim Hn; intros.
rewrite H1; apply H.
Qed.

Lemma Z_of_nat_set :
 forall P:Z -> Set,
   (forall n:nat, P (Z_of_nat n)) -> forall x:Z, 0 <= x -> P x.
intros P H x H0.
specialize (Z_of_nat_complete_inf x H0).
intros Hn; elim Hn; intros.
rewrite p; apply H.
Qed.

Lemma natlike_ind :
 forall P:Z -> Prop,
   P 0 ->
   (forall x:Z, 0 <= x -> P x -> P (Zsucc x)) -> forall x:Z, 0 <= x -> P x.
intros P H H0 x H1; apply Z_of_nat_prop;
 [ simple induction n;
    [ simpl in |- *; assumption | intros; rewrite (inj_S n0); exact (H0 (Z_of_nat n0) (Zle_0_nat n0) H2) ]
 | assumption ].
Qed.

Lemma natlike_rec :
 forall P:Z -> Set,
   P 0 ->
   (forall x:Z, 0 <= x -> P x -> P (Zsucc x)) -> forall x:Z, 0 <= x -> P x.
intros P H H0 x H1; apply Z_of_nat_set;
 [ simple induction n;
    [ simpl in |- *; assumption | intros; rewrite (inj_S n0); exact (H0 (Z_of_nat n0) (Zle_0_nat n0) H2) ]
 | assumption ].
Qed.

Section Efficient_Rec.

natlike_rec2 is the same as natlike_rec, but with a different proof, designed to give a better extracted term.

Let R (a b:Z) := 0 <= a /\ a < b.

Let R_wf : well_founded R.
Proof.
set
 (f:=
  fun z =>
    match z with
    | Zpos p => nat_of_P p
    | Z0 => 0%nat
    | Zneg _ => 0%nat
    end) in *.
apply well_founded_lt_compat with f.
unfold R, f in |- *; clear f R.
intros x y; case x; intros; elim H; clear H.
case y; intros; apply lt_O_nat_of_P || inversion H0.
case y; intros; apply nat_of_P_lt_Lt_compare_morphism || inversion H0; auto.
intros; elim H; auto.
Qed.

Lemma natlike_rec2 :
 forall P:Z -> Type,
   P 0 ->
   (forall z:Z, 0 <= z -> P z -> P (Zsucc z)) -> forall z:Z, 0 <= z -> P z.
Proof.
intros P Ho Hrec z; pattern z in |- *;
 apply (well_founded_induction_type R_wf).
intro x; case x.
trivial.
intros.
assert (0 <= Zpred (Zpos p)).
apply Zorder.Zlt_0_le_0_pred; unfold Zlt in |- *; simpl in |- *; trivial.
rewrite Zsucc_pred.
apply Hrec.
auto.
apply X; auto; unfold R in |- *; intuition; apply Zlt_pred.
intros; elim H; simpl in |- *; trivial.
Qed.

A variant of the previous using Zpred instead of Zs.

Lemma natlike_rec3 :
 forall P:Z -> Type,
   P 0 ->
   (forall z:Z, 0 < z -> P (Zpred z) -> P z) -> forall z:Z, 0 <= z -> P z.
Proof.
intros P Ho Hrec z; pattern z in |- *;
 apply (well_founded_induction_type R_wf).
intro x; case x.
trivial.
intros; apply Hrec.
unfold Zlt in |- *; trivial.
assert (0 <= Zpred (Zpos p)).
apply Zorder.Zlt_0_le_0_pred; unfold Zlt in |- *; simpl in |- *; trivial.
apply X; auto; unfold R in |- *; intuition; apply Zlt_pred.
intros; elim H; simpl in |- *; trivial.
Qed.

A more general induction principal using Zlt.

Lemma Z_lt_rec :
 forall P:Z -> Type,
   (forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> P x) ->
   forall x:Z, 0 <= x -> P x.
Proof.
intros P Hrec z; pattern z in |- *; apply (well_founded_induction_type R_wf).
intro x; case x; intros.
apply Hrec; intros.
assert (H2 : 0 < 0).
  apply Zle_lt_trans with y; intuition.
inversion H2.
firstorder.
unfold Zle, Zcompare in H; elim H; auto.
Defined.

Lemma Z_lt_induction :
 forall P:Z -> Prop,
   (forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> P x) ->
   forall x:Z, 0 <= x -> P x.
Proof.
exact Z_lt_rec.
Qed.

End Efficient_Rec.

Index
This page has been generated by coqdoc